EP0494099A2 - Mauerverstärkung - Google Patents
Mauerverstärkung Download PDFInfo
- Publication number
- EP0494099A2 EP0494099A2 EP92200823A EP92200823A EP0494099A2 EP 0494099 A2 EP0494099 A2 EP 0494099A2 EP 92200823 A EP92200823 A EP 92200823A EP 92200823 A EP92200823 A EP 92200823A EP 0494099 A2 EP0494099 A2 EP 0494099A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- tie
- core
- space
- wall
- fins
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000002787 reinforcement Effects 0.000 title description 7
- 239000000463 material Substances 0.000 claims abstract description 22
- 239000004570 mortar (masonry) Substances 0.000 claims abstract description 19
- 238000000034 method Methods 0.000 claims abstract description 17
- 230000003014 reinforcing effect Effects 0.000 claims abstract description 7
- 238000005260 corrosion Methods 0.000 claims abstract description 4
- 230000007797 corrosion Effects 0.000 claims abstract description 4
- 239000011162 core material Substances 0.000 description 11
- 239000011449 brick Substances 0.000 description 10
- 238000005452 bending Methods 0.000 description 3
- 238000010008 shearing Methods 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 239000004575 stone Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000011398 Portland cement Substances 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 229910000963 austenitic stainless steel Inorganic materials 0.000 description 1
- 239000004567 concrete Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 230000009972 noncorrosive effect Effects 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/38—Connections for building structures in general
- E04B1/41—Connecting devices specially adapted for embedding in concrete or masonry
- E04B1/4178—Masonry wall ties
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/38—Connections for building structures in general
- E04B1/41—Connecting devices specially adapted for embedding in concrete or masonry
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/38—Connections for building structures in general
- E04B1/41—Connecting devices specially adapted for embedding in concrete or masonry
- E04B1/4178—Masonry wall ties
- E04B1/4185—Masonry wall ties for cavity walls with both wall leaves made of masonry
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/74—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
- E04B1/76—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
- E04B1/7608—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only comprising a prefabricated insulating layer, disposed between two other layers or panels
- E04B1/7612—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only comprising a prefabricated insulating layer, disposed between two other layers or panels in combination with an air space
- E04B1/7616—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only comprising a prefabricated insulating layer, disposed between two other layers or panels in combination with an air space with insulation-layer locating devices combined with wall ties
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B2/00—Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
- E04B2/02—Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls built-up from layers of building elements
- E04B2/14—Walls having cavities in, but not between, the elements, i.e. each cavity being enclosed by at least four sides forming part of one single element
- E04B2/16—Walls having cavities in, but not between, the elements, i.e. each cavity being enclosed by at least four sides forming part of one single element using elements having specially-designed means for stabilising the position
- E04B2/20—Walls having cavities in, but not between, the elements, i.e. each cavity being enclosed by at least four sides forming part of one single element using elements having specially-designed means for stabilising the position by filling material with or without reinforcements in small channels in, or in grooves between, the elements
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B2/00—Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
- E04B2/02—Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls built-up from layers of building elements
- E04B2/28—Walls having cavities between, but not in, the elements; Walls of elements each consisting of two or more parts kept in distance by means of spacers, all parts being solid
- E04B2/30—Walls having cavities between, but not in, the elements; Walls of elements each consisting of two or more parts kept in distance by means of spacers, all parts being solid using elements having specially designed means for stabilising the position; Spacers for cavity walls
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C5/00—Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
- E04C5/01—Reinforcing elements of metal, e.g. with non-structural coatings
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C5/00—Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
- E04C5/01—Reinforcing elements of metal, e.g. with non-structural coatings
- E04C5/012—Discrete reinforcing elements, e.g. fibres
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C5/00—Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
- E04C5/01—Reinforcing elements of metal, e.g. with non-structural coatings
- E04C5/02—Reinforcing elements of metal, e.g. with non-structural coatings of low bending resistance
- E04C5/03—Reinforcing elements of metal, e.g. with non-structural coatings of low bending resistance with indentations, projections, ribs, or the like, for augmenting the adherence to the concrete
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04G—SCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
- E04G23/00—Working measures on existing buildings
- E04G23/02—Repairing, e.g. filling cracks; Restoring; Altering; Enlarging
- E04G23/0218—Increasing or restoring the load-bearing capacity of building construction elements
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04G—SCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
- E04G23/00—Working measures on existing buildings
- E04G23/02—Repairing, e.g. filling cracks; Restoring; Altering; Enlarging
- E04G23/0218—Increasing or restoring the load-bearing capacity of building construction elements
- E04G23/0222—Replacing or adding wall ties
Definitions
- This invention relates to the reinforcement of the walls. Reinforcement in this sense includes mainly the stabilisation of existing walls, but can involve new walls in certain circumstances.
- One object of the present invention is to provide a system for an existing wall or wall leaf which has cracked or slipped. Another is to secure adjacent walls or wall leaves together in ways which locally reinforce the masonry materials being secured together.
- a method for reinforcing a wall which comprises forming a space in the wall material, locating a structural tie in the space formed and grouting or cementing the tie in position, characterised in that tie comprises a length of wire preferably of corrosion resistant material including a core and preferably two or more externally projecting fins or ridges, the diameter of the core being 2 to 6mm and the maximum diameter of the entire tie being 10mm.
- the length of the wire may be perhaps between 18 and 20cm. When used for stabilisation or reinforcement in a brick wall, the length might be up to 1 or 2 metres, or about nine bricks' length.
- the fins or ridges might be about 1 or 2 millimetres proud of the surface of the core or possibly they might be a distance from the core equal to the diameter of the core to leave a substantial flange providing a good grip in the surrounding wall material.
- the overall cross section of perhaps 8 or 10 millimetres is sufficiently small to enable the tie to be inserted in the space left by raking out the mortar in cracked brickwork, after which the wall would be repointed around the inserted reinforcement.
- a tie (or ties) can easily be introduced into a long line of mortar between several bricks, and if necessary can be bent to extend both vertically and horizontally.
- the ease with which the tie can be bent is another advantage arising from the small core dimensions and it enables a tie to have two bends so that its two ends are parallel with each other and are joined by an intermediate portion at an angle to the two ends.
- the fins give a good grip between the tie and the mortar and also define drip points from which water can drop into a cavity to avoid moisture being transferred from one wall to the other across the tie.
- the tie can be easily made using a pair of rollers of novel form.
- the rollers will have generally cylindrical surfaces with a parallel sided slot at the centre and then as round or square section rod is fed into the nip of the rolls, the section will be first out at the edge of the slots and then deformed so that the cut material is squeezed into the gap between the rollers at their closest point to define a pair of opposed fins. No material is lost but the material is deformed to leave a generally rectangular sectioned core with fins extending from either side, and the section can then be uniformly twisted in a subsequent manufacturing step.
- the method of forming the fins by a combination of shearing and squeezing forces work hardens and stretches the fin material without hardening the core material. This predisposes the material for transformation by twisting into a tight and constant helix without the need for annealing and provides maximum hardness in the fins.
- the width of the fins can be chosen by appropriate setting of the spacing between the rollers.
- a single pass of the rollers can be sufficient to form the desired section, even with a hard metal such as stainless steel.
- a double pass enables four fins to be provided.
- wire Another possible form of the wire is a triangular section, simply uniformly twisted along its length, with a squared off end.
- the corner edges of the triangular section will act nearly as well as the fins in embodiments involving embeddment in mortar.
- the invention also provides for the use of a tie to provide tensile reinforcement to improve the performance of structural members made of materials in which a particularly efficient mechanical bond is necessary to transfer the stresses from the material to the reinforcing wire.
- materials may include for example portland cement and/or resin based concretes which are aerated or made with lightweight aggregates and natural organic materials such as timber.
- the ties may be embedded in some materials as they are cast and with others such as timber may be pressed into grooves cut in their surfaces. Since the wires are made of a corrosion resistant material such as stainless steel they can be used close to the surface of a member exposed to moisture in a corrosive environment.
- the ties can also assist in the transfer of loads from the end of one structural member into another structural member which may be of a dissimilar material.
- the rod shown in Figure 1 is straight and of constant cruciform cross section, the arms of the cruciform being uniformly twisted about the axis of the rod and forming helical ribs or fins 4 around the central solid core of the rod.
- the rod shown in Figure 2 is of constant triangular cross-section and is uniformly twisted with a pitch of approximately twice the maximum cross-sectional dimension of the rod.
- Figure 3 shows a straight bulbous rod of varying circular cross section, having annular rings 8 in the form of truncated spheres.
- Figure 4 shows a rod having one end formed with axially arranged flat sections 9 alternately in planes at right angles to their neighbours.
- the helical ribs 4 of the rod shown in Figure 1 served to provide a strong grip of the rod within mortar over short distances of embedment or penetration; the curves 6 of the rod shown in Figure 2, the rings 8 of the rod shown in Figure 3, and the sections 9 in Figure 4, also provide a strong grip of the respective rod when set within mortar.
- a further feature of the helical ribs 4 is that they provide the rod with natural drip features which hinder the passage of water in an undesirable direction ie.
- twists 6 and the rings 8 of the rods shown in Figures 2 and 3 and the plates 9 of the rod shown in Figure 4 respectively also provide a profile giving this feature.
- the helical ribs 4 of the Figure 1 embodiment may be as shown in Figure 1 with two opposed thick ribs 11 alternating with thinner ribs 12; but alternatively the uniform section may be as shown in Figure 6 with four equally circumferential spaced ribs 13 extending from the sides of a square.
- the overall diameter of the rods is such as to enable the rods to be incorporated within a mortar layer of a wall, ie. about 4-8mms in a layer about 8-14mms thick.
- the rods are made from a strong flexible non-corrosive material such as copper or stainless steel so that a rod of the diameter as stated above may hold an outer wall against wind suction and pressure yet flex readily to accommodate different settlement of walls between which the rod is affixed and not corrode after long exposure to the atmosphere or encasement in mortar.
- the wire is merely a uniformly twisted length of triangular cross-section, with a squared-off end.
- rods of the types shown in Figures 2, 3 and 4 may be similarly utilised as well as those described in the preceding paragraph.
- Figure 7 shows a wall tie 15 comprising a rod of the type shown in Figure 1 which is bent in two places 16 in equal, but opposite directions so that the tie 15 has a cranked middle portion 17 and two end portions 18 and 19 all of which portions have co-planar axes, the axes of end portions 18 and 19 also being parallel.
- the length of the cranked portion 17 is such that when the end portions 18 and 19 of the tie are embedded in mortar layers of parallel inner and outer brick walls 21 and 22 respectively, the bends are just within the cavity 23 between the walls yet each is adjacent the face of a different wall.
- the figure shows alternative positions of the end 19 for different levels of the bricks on the wall 22.
- the helical ribs or fins 4 of the cranked portion 17 provide drip points, as described above, which prevent water running across the cavity bridge throughout a range of rotational positions of the tie 15, even when there is a slight back fall (of up to 15 o ) of the cranked portion.
- the range of acceptable arc of rotation of the tie is approximately 210 o if one considers both sides of a vertical datum. Good location of the end portions 18 and 19 within the mortar beds is also achieved by the helical ribs 4 when the mortar sets around them.
- Figure 8 shows the tie 15 in use as described above, but performing the additional function of locating a slab 25 of insulation material for example foamed plastics, at one side of the cavity 23.
- the location of the slab 25 is achieved by pushing one end of the tie 15 through the slab like a skewer, until the bend lies within the slab and the slab is axially located on the tie 15 both the helical ribs 4 and by the bend.
- the rods shown in Figures 1-4 can be used as mortar reinforcing rods as shown in Figures 9, 10 and 11.
- a crack as shown at 51 or 52 in Figure 11 can be reinforced by removing about a quarter - say 25mm - into the wall, of the layer of mortar for some distances to each side of the crack, positioning the rod 53 longitudinally between the bricks, and repointing the wall as shown at 54 in Figures 9 and 10.
- Brick lintels can also be reinforced using the above method and by overlapping the rods as at 55, the reinforced bricks can be made to act as beams.
- the inserted reinforcing rods may be long enough to extend through the length of at least 2, and perhaps 3 or 4 bricks, or even 9 bricks as shown in Figure 11.
- the preferred helical rod shown in Figure 1 is conveniently produced from square, rectangular, or round, section austenitic stainless steel wire by a single or double pass rolling-shearing process shown in Figures 5 followed by twisting.
- the rollers 56 and 57 are each approximately 150mm in diameter and each has a rectangular section circumferential groove 58 around its mid portion.
- the very pronounced fins which are required to provide a good anchorage within mortar, are formed by shearing and squeezing the material in the area of A so that it is transferred to the adjacent area of B of the fin.
- the fins become work hardened due to the above process, but the core remains unhardened, thus giving a desirable configuration of hardened fins with good cutting and wear resistant properties, and an unhardened core with good flexibility.
- the space between the rollers 60 and 62 can be adjusted it is possible to alter the fin thickness. Sharpening of the cutting edges 59 of the grooves 58 is possible by use of a grinding stone between the sides of the grooves while the rollers are rotated.
- the bevels 60 can also be sharpened by application of a square grinding stone to the groove away from the common tangential space between the two rollers.
- the groove depths are made to allow for a substantial amount of re-sharpening resulting in a reduction in roller diameter and hence groove depth. Further adjustablility of the rollers can be achieved by dividing them along the line marked x-x so that they may be bolted together with shims inserted, thus enabling the cutting space between the edges to varied, and hence different size wire to be accommodated.
- a single pass would produce a section as shown dotted in Figure 5.
- a second pass with the rod rotated through 90 o could produce the four-finned section shown in Figure 6.
- material is cut and squeezed from the original section to the fins.
- Uniform twisting follows to leave a long length of formed wire which can be cut into suitable lengths and cranked as necessary.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Mechanical Engineering (AREA)
- Acoustics & Sound (AREA)
- Reinforcement Elements For Buildings (AREA)
- Building Environments (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB848419523A GB8419523D0 (en) | 1984-07-31 | 1984-07-31 | Reinforcements and ties |
GB8419523 | 1984-07-31 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP85305405.4 Division | 1985-07-29 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0494099A2 true EP0494099A2 (de) | 1992-07-08 |
EP0494099A3 EP0494099A3 (en) | 1992-12-16 |
EP0494099B1 EP0494099B1 (de) | 1995-07-05 |
Family
ID=10564729
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19920200823 Expired - Lifetime EP0494099B1 (de) | 1984-07-31 | 1985-07-29 | Mauerverstärkung |
EP19850305405 Expired EP0171250B1 (de) | 1984-07-31 | 1985-07-29 | Verfahren zum Herstellen eines Mauerbindeglieds und durch das Verfahren erzeugtes Bindeglied |
EP19920200822 Ceased EP0494723A3 (en) | 1984-07-31 | 1985-07-29 | Structural ties |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19850305405 Expired EP0171250B1 (de) | 1984-07-31 | 1985-07-29 | Verfahren zum Herstellen eines Mauerbindeglieds und durch das Verfahren erzeugtes Bindeglied |
EP19920200822 Ceased EP0494723A3 (en) | 1984-07-31 | 1985-07-29 | Structural ties |
Country Status (3)
Country | Link |
---|---|
EP (3) | EP0494099B1 (de) |
DE (2) | DE3588038T2 (de) |
GB (1) | GB8419523D0 (de) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2270535A (en) * | 1992-09-14 | 1994-03-16 | William George Edscer | Methods of reinforcing walls |
WO1995007400A1 (en) * | 1993-09-09 | 1995-03-16 | William George Edscer | Method for reinforcing a cavity wall |
GB2288842A (en) * | 1994-04-22 | 1995-11-01 | Bruce Anthony Wallace Day | Stitch for brickwork |
EP0811736A1 (de) * | 1996-06-04 | 1997-12-10 | William George Edscer | Armierung von Mauerwerk |
EP1710372A2 (de) * | 2000-08-12 | 2006-10-11 | William Henry Ollis | Spiralförmiges Verbindungselement |
WO2006117513A1 (en) * | 2005-04-29 | 2006-11-09 | Kevin Hewson | A masonry reinforcement element |
CZ298844B6 (cs) * | 2000-04-14 | 2008-02-20 | Helifix Cz S.R.O. | Systém dodatecného vyztužení pro opravy statických poruch stenových panelu a styku panelu |
ITPG20100045A1 (it) * | 2010-08-03 | 2012-02-03 | Kimia S P A | Struttura ad alta resistenza alla corrosione ed al fuoco, ancorabile e pretensionabile, per il rinforzo di componenti edilizi e relativi sistemi di ancoraggio |
EP2562318A1 (de) * | 2011-08-23 | 2013-02-27 | NV Bekaert SA | Bindeglied für eine Gebäudewandstruktur |
GB2501131A (en) * | 2012-04-11 | 2013-10-16 | Yijun Liu | Non-magnetic wall tie with magnetic portion |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB8419523D0 (en) | 1984-07-31 | 1984-09-05 | Ollis W J B | Reinforcements and ties |
GB8704963D0 (en) * | 1987-03-03 | 1987-04-08 | Ollis W J B | Helical pin developments |
GB2206135A (en) * | 1987-06-24 | 1988-12-29 | Clan Contracting Ltd | Cavity wall ties for brick (outer) & timber inner skins |
GB8718310D0 (en) * | 1987-08-03 | 1987-09-09 | Helix Reinforcements Ltd | Wall starter tie |
ES2035457T3 (es) * | 1988-07-15 | 1993-04-16 | Machtle Gmbh | Taco de fachada. |
DK162316C (da) * | 1988-09-07 | 1994-12-27 | Tonex V Bjarne Andersen Fa | Murbinder og værktøj |
GB2249120B (en) * | 1991-01-26 | 1993-04-07 | Executive Insulation | Structural repair process |
GB2270937A (en) * | 1992-09-26 | 1994-03-30 | Red Circle Ltd | Cavity wall ties |
US5586605A (en) * | 1994-02-28 | 1996-12-24 | Helifix Ltd. | Multi-wall tie apparatus |
DE69528250T2 (de) | 1995-05-02 | 2003-04-17 | Helifix Ltd., London | Einschlagwerkzeug für Trocken-Befestigungssystem |
US5989713A (en) * | 1996-09-05 | 1999-11-23 | The Regents Of The University Of Michigan | Optimized geometries of fiber reinforcements of cement, ceramic and polymeric based composites |
GB9907993D0 (en) | 1999-04-09 | 1999-06-02 | Knight Keith | Fastener |
GB2357113B (en) * | 1999-12-09 | 2002-07-03 | Elle Van | Post-tensioning of structures |
GB2359109A (en) * | 2000-02-09 | 2001-08-15 | Cheshunt Engineering Ltd | Wall tie |
DK200000168Y6 (da) * | 2000-05-11 | 2006-11-10 | Arminox As | Murbinder af tråd |
GB2438854A (en) * | 2006-06-08 | 2007-12-12 | Wallfast Ltd | Wall ties |
GB0612745D0 (en) | 2006-06-27 | 2006-08-09 | Ollis William H | Impact driven fastener and fastening system |
KR100857930B1 (ko) | 2007-03-29 | 2008-09-09 | 이완섭 | 철근 및 철근 커플러와 그들을 이용한 철근의 연결 방법 |
US8555587B2 (en) | 2010-05-11 | 2013-10-15 | Mitek Holdings, Inc. | Restoration anchoring system |
GB2501462B (en) * | 2012-03-26 | 2016-12-28 | Wallfast Ltd | Structural fixing |
CN108999424A (zh) * | 2018-09-28 | 2018-12-14 | 浙江省东阳市横店园林古典建筑公司 | 加强墙体结构强度的构造方法 |
KR200494608Y1 (ko) * | 2021-07-19 | 2021-11-12 | 한덕구 | 스크류 보강부재, 연결캡 및 이를 포함하는 스크류 보강 어셈블리 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1233175A (de) | 1967-07-10 | 1971-05-26 | ||
EP0171250A2 (de) | 1984-07-31 | 1986-02-12 | OLLIS, William John Bernard | Verfahren zum Herstellen eines Mauerbindeglieds und durch das Verfahren erzeugtes Bindeglied |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB593998A (en) * | 1945-06-22 | 1947-10-30 | Hermann Kirschenbaum | Method for repairing cracks in walls |
FR644030A (fr) * | 1927-11-16 | 1928-10-01 | Perfectionnement aux pointes de clouage | |
FR746537A (fr) * | 1932-11-29 | 1933-05-30 | Clou | |
NL84152C (de) * | 1951-06-01 | |||
CH552732A (de) * | 1972-06-08 | 1974-08-15 | Von Moos Schen Eisenwerke Ag D | Bewehrungsstab fuer stahlbeton. |
DE2603734A1 (de) * | 1976-01-31 | 1977-08-04 | Wilhelm Schwarz | Betonbewehrungsstab |
BE840070A (nl) * | 1976-03-26 | 1976-07-16 | Spouwmuur en spouwanker hierbij gebruikt | |
GB2007287B (en) * | 1977-10-11 | 1982-04-07 | Pynford Ltd | Structural support |
GB1572953A (en) * | 1978-02-22 | 1980-08-06 | Leedham R | Wall ties for cavity walls of brick and timber construction |
GB2115851A (en) * | 1981-11-19 | 1983-09-14 | Phillips Drill Co | Cavity wall tie |
GB2130327B (en) * | 1982-11-20 | 1986-07-30 | Clan Contracting Ltd | Ties for building structures |
DE8309759U1 (de) * | 1983-04-02 | 1983-08-18 | Knoche, Alfons, 5758 Fröndenberg | Drahtanker fuer zweischaliges mauerwerk |
-
1984
- 1984-07-31 GB GB848419523A patent/GB8419523D0/en active Pending
-
1985
- 1985-07-29 EP EP19920200823 patent/EP0494099B1/de not_active Expired - Lifetime
- 1985-07-29 DE DE19853588038 patent/DE3588038T2/de not_active Expired - Lifetime
- 1985-07-29 EP EP19850305405 patent/EP0171250B1/de not_active Expired
- 1985-07-29 EP EP19920200822 patent/EP0494723A3/en not_active Ceased
- 1985-07-29 DE DE19853586701 patent/DE3586701T2/de not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1233175A (de) | 1967-07-10 | 1971-05-26 | ||
EP0171250A2 (de) | 1984-07-31 | 1986-02-12 | OLLIS, William John Bernard | Verfahren zum Herstellen eines Mauerbindeglieds und durch das Verfahren erzeugtes Bindeglied |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2270535A (en) * | 1992-09-14 | 1994-03-16 | William George Edscer | Methods of reinforcing walls |
GB2270535B (en) * | 1992-09-14 | 1996-10-09 | William George Edscer | Methods for reinforcing walls and reinforcement for use in such methods |
WO1995007400A1 (en) * | 1993-09-09 | 1995-03-16 | William George Edscer | Method for reinforcing a cavity wall |
GB2288842A (en) * | 1994-04-22 | 1995-11-01 | Bruce Anthony Wallace Day | Stitch for brickwork |
GB2288842B (en) * | 1994-04-22 | 1998-07-08 | Bruce Anthony Wallace Day | Stitch for brickwork |
EP0811736A1 (de) * | 1996-06-04 | 1997-12-10 | William George Edscer | Armierung von Mauerwerk |
CZ298844B6 (cs) * | 2000-04-14 | 2008-02-20 | Helifix Cz S.R.O. | Systém dodatecného vyztužení pro opravy statických poruch stenových panelu a styku panelu |
EP1710372A3 (de) * | 2000-08-12 | 2008-01-02 | William Henry Ollis | Spiralförmiges Verbindungselement |
EP1710372A2 (de) * | 2000-08-12 | 2006-10-11 | William Henry Ollis | Spiralförmiges Verbindungselement |
US7866116B2 (en) | 2000-08-12 | 2011-01-11 | William Henry Ollis | Method for connecting layers of nailable material together |
WO2006117513A1 (en) * | 2005-04-29 | 2006-11-09 | Kevin Hewson | A masonry reinforcement element |
ITPG20100045A1 (it) * | 2010-08-03 | 2012-02-03 | Kimia S P A | Struttura ad alta resistenza alla corrosione ed al fuoco, ancorabile e pretensionabile, per il rinforzo di componenti edilizi e relativi sistemi di ancoraggio |
EP2562318A1 (de) * | 2011-08-23 | 2013-02-27 | NV Bekaert SA | Bindeglied für eine Gebäudewandstruktur |
WO2013026641A1 (en) * | 2011-08-23 | 2013-02-28 | Nv Bekaert Sa | A binding element for a building wall structure |
CN103814180A (zh) * | 2011-08-23 | 2014-05-21 | 贝卡尔特公司 | 用于建筑物壁结构的约束元件 |
GB2501131A (en) * | 2012-04-11 | 2013-10-16 | Yijun Liu | Non-magnetic wall tie with magnetic portion |
GB2501131B (en) * | 2012-04-11 | 2014-04-02 | Yijun Liu | A stainless steel wall tie with martensitic portions |
Also Published As
Publication number | Publication date |
---|---|
EP0171250B1 (de) | 1992-09-30 |
GB8419523D0 (en) | 1984-09-05 |
EP0494099B1 (de) | 1995-07-05 |
EP0171250A2 (de) | 1986-02-12 |
EP0494723A2 (de) | 1992-07-15 |
DE3586701D1 (de) | 1992-11-05 |
EP0171250A3 (en) | 1988-02-24 |
EP0494723A3 (en) | 1992-12-16 |
DE3588038T2 (de) | 1996-04-11 |
EP0494099A3 (en) | 1992-12-16 |
DE3586701T2 (de) | 1993-04-22 |
DE3588038D1 (de) | 1995-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0494099A2 (de) | Mauerverstärkung | |
US6234709B1 (en) | Wedge-receiving cavity with radiused edge for an anchor body of a post-tension anchor system | |
CN201087480Y (zh) | 预应力混凝土叠合梁 | |
SU778713A3 (ru) | Стальной стержень дл армировани бетона | |
US5590497A (en) | Circular or generally circular prestressed concrete tank and method of constructing same | |
EP1307303B1 (de) | Verbindungsvorrichtung | |
WO1991019059A1 (en) | Reinforcing element | |
CN111428302A (zh) | 一种回转式钢筋混凝土湿接缝设计方法 | |
US20150361665A1 (en) | Three-Dimensionally Deformed Fiber for Concrete Reinforcement | |
JP2791946B2 (ja) | コンクリート構造物の目地 | |
EP0302613A2 (de) | Wandanschlussanker | |
EP1169524A1 (de) | Hohlwandanker | |
JPS6149022A (ja) | コンクリ−ト合成基礎杭 | |
CZ341892A3 (en) | Insulating plate, process of its manufacture and apparatus for making the same | |
JPS621311Y2 (de) | ||
SU1186747A1 (ru) | Бессварочное стыковое соединение внутренних стеновых панелей и плит перекрыти | |
SU1176049A2 (ru) | Способ усилени бетонных элементов,поврежденных трещинами | |
SU953346A1 (ru) | Железобетонна труба | |
JPS6078014A (ja) | コンクリ−トパイル | |
JPH0331767Y2 (de) | ||
EP0811736A1 (de) | Armierung von Mauerwerk | |
KR930006957B1 (ko) | 콘크리트 구조물용 절곡 메탈라스 | |
SU1372051A1 (ru) | Сборна железобетонна обделка тоннел | |
SU1724834A1 (ru) | Арматурный элемент дл дисперсного армировани | |
JPH0458522B2 (de) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19920402 |
|
AC | Divisional application: reference to earlier application |
Ref document number: 171250 Country of ref document: EP |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): BE DE FR GB IT NL |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): BE DE FR GB IT NL |
|
17Q | First examination report despatched |
Effective date: 19940331 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AC | Divisional application: reference to earlier application |
Ref document number: 171250 Country of ref document: EP |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE DE FR GB IT NL |
|
REF | Corresponds to: |
Ref document number: 3588038 Country of ref document: DE Date of ref document: 19950810 |
|
ET | Fr: translation filed | ||
ITF | It: translation for a ep patent filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20040810 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20040811 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20040812 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20040823 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20040909 Year of fee payment: 20 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20050728 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20050729 |
|
BE20 | Be: patent expired |
Owner name: *OLLIS WILLIAM HENRY Effective date: 20050729 Owner name: *OLLIS WILLIAM JOHN BERNARD Effective date: 20050729 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 |
|
NLV7 | Nl: ceased due to reaching the maximum lifetime of a patent |
Effective date: 20050729 |
|
BE20 | Be: patent expired |
Owner name: *OLLIS WILLIAM HENRY Effective date: 20050729 Owner name: *OLLIS WILLIAM JOHN BERNARD Effective date: 20050729 |