EP0490914B1 - Verfahren zur ablagerung von deckschichten auf anodisierbaren metallsubstraten und dadurch erhaltene produkte - Google Patents

Verfahren zur ablagerung von deckschichten auf anodisierbaren metallsubstraten und dadurch erhaltene produkte Download PDF

Info

Publication number
EP0490914B1
EP0490914B1 EP90912713A EP90912713A EP0490914B1 EP 0490914 B1 EP0490914 B1 EP 0490914B1 EP 90912713 A EP90912713 A EP 90912713A EP 90912713 A EP90912713 A EP 90912713A EP 0490914 B1 EP0490914 B1 EP 0490914B1
Authority
EP
European Patent Office
Prior art keywords
metal
deposited
pore
layer
electroless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90912713A
Other languages
English (en)
French (fr)
Other versions
EP0490914A1 (de
Inventor
Dan Fern
Christopher James Hanthorn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rio Tinto Alcan International Ltd
Original Assignee
Alcan International Ltd Canada
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcan International Ltd Canada filed Critical Alcan International Ltd Canada
Priority to AT9090912713T priority Critical patent/ATE104703T1/de
Publication of EP0490914A1 publication Critical patent/EP0490914A1/de
Application granted granted Critical
Publication of EP0490914B1 publication Critical patent/EP0490914B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1653Two or more layers with at least one layer obtained by electroless plating and one layer obtained by electroplating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1803Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces
    • C23C18/1848Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by electrochemical pretreatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/06Anodisation of aluminium or alloys based thereon characterised by the electrolytes used
    • C25D11/08Anodisation of aluminium or alloys based thereon characterised by the electrolytes used containing inorganic acids
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing
    • C25D11/20Electrolytic after-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing
    • C25D11/24Chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing
    • C25D11/24Chemical after-treatment
    • C25D11/246Chemical after-treatment for sealing layers

Definitions

  • This invention is concerned with improvements in or relating to methods for depositing metal coatings on substrates of anodisable metals, such as aluminum and its anodisable alloys, and to the products of such methods.
  • the deposition of metals on a substrate is a well-developed art.
  • Plating on less easily oxidized metals such as steel is relatively routine, involving for example the deposition of a layer of copper directly on the steel substrate, followed in succession by a thick "semi-bright” nickel layer, a thinner "bright” nickel layer, and an even thinner finish layer of chromium; the chromium is semi-transparent and the bright appearance is actually provided by the bright nickel layer seen through the finish chromium layer.
  • Plating on anodisable metals is considerably more difficult owing to their relative ease of oxidation, and the consequent inevitable presence of an oxide coating which must be removed if adequate adhesion of the deposited layers to the underlying metal substrate is to be obtained.
  • the art currently is dominated by two methods of preparing the substrate surface, namely zincate and stannate immersion. In these processes the substrate surface is immersed in a suitable zincate or stannate solution, usually of the sodium salt, together with other additions that have been found in practice to increase the appearance and adhesion of the coatings.
  • the zinc or tin atoms respectively displace aluminum atoms at the surface, in the process removing the oxide layer, to result in an adherent zinc or tin layer on which other layers, for example copper followed by nickel and chromium can be deposited. Both of these processes are relatively expensive and are therefore mainly used on expensive commodities.
  • the stannate immersion processes are reported to provide better anti-corrosion performance and adhesion of the resultant coatings, but are the more expensive of the two because of the more expensive components and longer processing times.
  • a new method of depositing metal on a surface of a substrate of an anodisable metal which substrate has been anodised at the surface using acid to produce a porous anodised layer and subsequently metal has been deposited electrolytically in the pores, the method being characterised by the steps of:
  • Figure 1 is a cross-section through an aluminum substrate 10 at the upper surface of which there has been formed by acid anodising a layer 12 of aluminum oxide, a portion of which, together with the immediately adjacent portions of the substrate and deposited metal layers, are shown to a larger scale in Figure 2.
  • the anodising employs phosphoric acid which produces elongated wide pores 14 (not seen in Figure 1), and in accordance with this invention at least the bottom portions of the pore walls have had applied thereto by electrolytic deposition a layer of adherent pore-filling metal 16 (also not seen in Figure 1).
  • the electrolytically deposited metal is found initially to deposit principally at the bottoms of the pores and the immediately adjacent parts of the side walls, and the resultant coatings or layers then grow progressively in thickness upwards in the pores as more metal is deposited. It is also found initially that discontinuous patches 17 of the metal are deposited on the side walls in what appears at present to be a random manner. After sufficient metal has been electrolytically deposited the filling of the pores is continued using electroless deposited metal 18 until, in this embodiment, they are completely filled and a continuous support layer has been formed over the entire surface of the anodised layer 12. In this embodiment cobalt is used as the initial electrolytically deposited metal 16 and 17, while electroless nickel is employed for the metal 18. The deposition of metal layers is continued to provide a semi-bright nickel layer 20, a bright nickel layer 22 and a tri-chrome finish layer 24.
  • the invention thus employs the electrolytic deposition of pore filling metal to apply an inital "seed" coating to the bottom wall portion of each pore and to at least the lower portion of the side wall of each pore. It is found that such an electrolytically deposited metal coating adheres very well to the anodised material, and the subsequently electroless deposited metal adheres very well to the electrolytically deposited metal, whereas metals deposited by electroless processes directly on aluminum oxide do not adhere well and result in lower strength metal coatings.
  • Electroless coating processes have the advantage that they are more efficient than electrolytic processes in filling the pores and result in more dense or compact coatings, and the processes of the invention enable advantage to be taken of this property while overcoming the potential problem of insufficient adherence of the electroless deposited metal to the anodised layer.
  • the anodised layer is inherently porous in structure because of the manner of its formation, and a typical structure of a layer 12 obtained by phosphoric acid anodising of the aluminum substrate 10 is illustrated by Figure 2.
  • Figure 2 For convenience in drawing the horizontal surfaces of the layers are shown as flat, but in practice they will be seen to be highly irregular even at quite low magnification.
  • Figure 1 illustrates an embodiment in which an anodised layer 12 of aluminum oxide (Al203) has been produced of about 2 micrometres (250,000 Angstroms) thickness, typically by use of phosphoric acid at about 20°C and of about 109g/litre or 10% by weight concentration, employing an anodising voltage of about 50-60 volts for 10 minutes.
  • the porous structure obtained is relatively uniform, although highly idealised as shown in Figure 1 for convenience in drawing, and typically the pores 14 will be found to average 0.09 micrometre (900 Angstroms) in transverse dimension, spaced on average about 0.07 micrometre (700 Angstroms) from one another.
  • the pores have an average length/width ratio of 20:1.
  • the bottoms of the pores do not end at the surface of the aluminum substrate, but instead they are on average spaced about 0.07 micrometre (700 Angstroms) from that surface to form a continuous non-porous barrier layer 26 of the relatively non-conductive aluminum oxide, the thickness of this layer depending principally directly on the value of the anodising voltage. It may be noted that references herein and in the literature to pore sizes, etc. are usually made in Angstroms, while references to thicknesses are made in micrometres, merely to avoid the need to refer to large numbers or small fractions, 1 micrometre being equal to 10,000 Angstroms.
  • Metal deposition processes may use either alternating current or direct current, or a combination thereof.
  • A.C. deposition is usually much slower that the equivalent D.C. current and D.C. is therefore preferred if speed is important.
  • D.C. has a greater tendency to cause disruption of the coating especially with the narrow pores characteristic of sulfuric acid anodising.
  • modified A.C. preferably one in which a predetermind negative-going D.C. has been superimposed on the A.C.
  • Such a system avoids the disruption that would be produced by a pure D.C. current.
  • A.C. produces metal deposition owing to the rectification characteristic of the aluminum oxide, but as the thicknesses of the coatings increase such unmodified A.C.
  • deposition gives poorer pore penetration and slower deposition rates.
  • the D.C. component is therefore increased to the maximum level that does not cause disruption.
  • This method of deposition is disclosed for example in U.S. Patent No. 4,226,680, assigned to Alcan Research and Development Limited, the disclosure of which is incorporated by this reference; these processes have now become known as the Alcan "ANOLOK" (Trade Mark) processes.
  • Other modified A.C. systems are also possible; for example, another system offsets the A.C. waveform in a manner that will produce an effective negative bias, while a further way is to increase the amplitude of the negative portion of the waveform relative to that of the positive portion, which again has the same effect.
  • the processes of the invention are applicable generally to anodisable metals, their alloys and composites; whether rolled, pressed, cast or wrought.
  • Cast metals are generally less dense and more porous in structure than the corresponding rolled, pressed or wrought product.
  • Attempts to use only electroless deposition, or only electrolytic deposition, directly on the anodised surface of a cast material have not been as successful as the processes of the invention because of this higher porosity and because of the usual higher silicon content (e.g. 7-12%) of such metals.
  • Suitable substrate metals in addition to aluminum and its anodisable alloys, are magnesium and its anodisable alloys.
  • Metals suitable for the electrolytic deposition of the initial "seed" layer are cobalt, nickel, zinc, copper, tin and palladium.
  • the substrate is aluminum or an alloy thereof cobalt has been found to be particularly suitable for electrolytic deposition and nickel for electroless deposition.
  • the thickness of the electrolytic layers within the pores increases a point may be reached at which the adhesion to the aluminum begins to decrease, and this then sets an upper limit at which the electrolytic deposition should be stopped and replaced by the electroless deposition.
  • the electrolytic deposition can be discontinued earlier depending upon the other parameters of the particular process. It is found that the thickness of the initial seed coatings, as measured from the bottom of the pores, correlates well with the apparent colour of the substrate surface as seen by an observer, and the table below shows a specific correlation that is obtained when the anodised layer that has been produced by sulfuric acid anodising is 5 micrometres thick; the electrodeposited metal is cobalt. The same principle applies with phosphoric acid anodising but the colours obtained are slightly different.
  • the thickness of the electrolytically deposited metal is most expeditiously expressed in the units milligrams (mg) of metal per square metre (m2) of anodic surface. It is found with this combination that the cut-off for good adhesion is between about 550 and about 850 mg/m2.
  • each pore is about 30% filled in volume with the electrolytically deposited metal, leaving the remaining 70% to be filled with the electroless deposited metal.
  • Nickel is found to produce approximately the same colour correlation as cobalt. Copper produces a range of different colours extending from pink through light maroon and dark maroon to black. Tin requires a thicker anodised coating of about 10 micrometres before black is obtained.
  • the amount of electroless applied metal that is deposited in the pores will of course depend upon the required properties and intended use of the resultant product, and for some applications the pores may not need to be completely filled; from about 6% to about 60% of complete filling may be all that is required.
  • a useful range for the electrolytic deposition is about 3% to about 30%, a useful range for the electroless deposition is also from about 3% to the remainder required to fill the pores to the required extent.
  • the subsequent processing steps will also depend upon the commercial application of the resultant product and the characteristics and appearance that are required.
  • the electroless deposition can simply be continued until a final layer (over the anodised layer) of adequate thickness is obtained, the usual range for such an application being from about 50 micrometres to about 75 micrometres. More usually the electroless deposition is continued until it forms a support layer of adequate thickness over the entire surface of the anodised layer, as illutrated by Figures 1 and 2, the usual values being from about 0.5 micrometre to about 3 micrometres, more preferably in the range 1-2 micrometres. Thereafter, a finish layer (for example chromium) may be applied over the support layer, with or without the provision of one or more intermediate layers between the support and finish layers.
  • a finish layer for example chromium
  • phosphoric acid is found to be particularly advantageous with cast materials, and it has been found for example that the cast aluminum such as is used for automotive wheels the adhesion of the final coating/s was increased by at least 50% upon use of phosphoric acid in place of sulfuric acid for the anodising.
  • a suitable test for adhesion is to cut the finished part through the substrate and coatings and then to attempt to lift or peel the coating away from the substrate by use of a sharp knife edge; it was found possible with this test to peel the coatings from sulfuric acid anodised substrates with various degrees of difficulty depending on the processing conditions, but not possible to peel it from phosphoric acid anodised substrates.
  • anodised layer before plating introduces the possibility, if desired, of a reduction in the thickness of the subsequent plated layers with consequent cost savings.
  • the anodising processes described employing acid baths in the temperature range of 20-35°C are usually characterised as “conventional” anodising, but “hard anodising” processes can also be employed for the invention, the usual bath temperature being in the range 3-7°C; such hard anodised layers are usually thicker than the conventional anodised layers. Further reductions in the subsequent layers therefore are possible by using a thicker and/or stronger anodic film such as that produced using these lower temperature anodising processes.
  • Such hard layers also constitute an excellent basis for the pore-filling metal deposition characteristic of the invention, the electroless layer being the support layer for further deposits, which can be thinner than those normally previously used. It will be understood that this industry is particularly cost conscious, especially with regard to the relatively expensive corrosion-resistant metals that are employed in the intermediate and finish coatings, so that any saving that can be achieved in their thickness for an equivalent performance in protection and/or appearance is commercially important.
  • the anodised layer 10 can be of a thickness in the range 0.5 - 50 micrometres, usually in tne range 1-10 micrometres, preferably in the range 2-6 micrometres, and more preferably 3-5 micrometres, with a thickness of 5 micrometres being usually commercially suitable.
  • the electroless-deposited pore-filling material need not form a support coating of more than about 2 micrometres thickness and excellent results can be obtained with the application of a single thin finish coating of chromium over the support layer.
  • the preferred electroless deposited metal is nickel. Metals otner than nickel, such as cobalt, tin or copper, can also be used.
  • the finished chromium layer if provided preferably is of thickness in the range of 0.2-0.3 micrometres.
  • the process is employed to provide a bright finishing procedure for articles such as cast aluminum automotive wheels, giving a simulation of the appearance of bright chrome or stainless steel, and includes the following steps.
  • the substrate will be rinsed in known manner which need not be detailed here. It may be noted that in this and the other examples described a cyanide or hexavalent chromium bath is not used, which is environmentally desirable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Claims (21)

  1. Ein Verfahren zur Abscheidung von Metall auf einer Oberfläche eines Substrats aus einem anodisierbaren Metall, wobei dieses Substrat unter Verwendung von Säure an der Oberfläche anodisiert worden ist, um eine poröse anodisierte Schicht zu erzeugen, und anschließend Metall elektrolytisch in den Poren abgeschieden worden ist, wobei das Verfahren durch die Schritte gekennzeichnet ist:
    a) Anodisieren des Substrats unter Verwendung von Phosphorsäure, um eine poröse anodisierte Schicht zu erzeugen, die eine Porengröße von mehr als etwa 0,03 Mikrometern und eine Dicke von etwa 0,5 bis etwa 50 Mikrometern aufweist;
    b) elektrolytisches Abscheiden von Porenfüllmetall in die Poren, so daß dieses an den Wänden derselben anhaftet und jede Pore zu etwa 3% bis etwa 30% ihres Volumens füllt; und
    c) Fortsetzen der Abscheidung von Porenfüllmetall durch stromlose Abscheidung auf dem elektrolytisch abgeschiedenen Metall, um jede Pore bis zum erforderlichen Umfang zu füllen.
  2. Ein Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Anodisierung Poren mit einer Querabmessung von etwa 0,03 bis 0,10 Mikrometern erzeugt.
  3. Ein Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die elektrolytische Abscheidung bis zu einem Abschlußwert fortgesetzt wird, bei dem die Adhäsion des Metalls beginnt abzunehmen.
  4. Ein Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß das elektrolytisch abgeschiedene Porenfüllmetall bis zu einer Dicke von bis zu 550 Milligramm pro Quadratmeter abgeschieden wird.
  5. Ein Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die stromlose Abscheidung fortgesetzt wird, bis ein Überzug des Metalls mit einer Dicke im Bereich von etwa 0,5 bis 3 Mikrometern auf der Oberfläche der anodisierten Schicht abgeschieden ist.
  6. Ein Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß das elektrolytisch abgeschiedene Metall abgeschieden wird, um eine Trägerschicht auf der Oberfläche des Substrats mit einer Dicke im Bereich von etwa 0,5 bis 3 Mikrometern zu bilden, und daß eines oder mehrere folgende Schichten auf der Trägerschicht abgeschieden werden.
  7. Ein Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das stromlose abgeschiedene Metall bis zu einer Dicke von etwa 10-25 Mikrometern auf der Oberfläche des Substrats abgeschieden wird.
  8. Ein Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß das anodisierbare Substratmetall ausgewählt wird aus Aluminium und Magnesium und anodisierbaren Legierungen derselben.
  9. Ein Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß das anodisierbare Metall ausgewählt wird aus Gußaluminium und seinen Legierungen.
  10. Ein Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß das elektrolytisch abgeschiedene Porenfüllmetall ausgewählt wird aus Nickel, Kobalt, Zink, Kupfer, Zinn, Palladium und Mischungen derselben.
  11. Ein Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß das stromlose Porenfüllmetall ausgewählt wird aus Nickel, Kobalt, Kupfer, Zinn und Mischungen derselben.
  12. Ein mit Metallüberzug versehenes Produkt, das aus einem anodisierbaren Metallsubstrat besteht, das mit Säure anodisiert ist, um eine poröse anodisierte Schicht aufzuweisen, und mit elektrolytisch in den Poren derselben abgeschiedenem Metall, dadurch gekennzeichnet, daß:
    a) die anodisierte Schicht mit Phosphorsäure anodisiert ist, um Poren einer Porengröße von mehr als 0,03 Mikrometern und eine Dicke von etwa 0,5 bis etwa 50 Mikrometern aufzuweisen;
    b) die poröse Schicht ein in den Poren derselben elektrolytisch abgeschiedenes Porenfüllmetall aufweist, welches an den Wänden derselben anhaftet und jede Pore zu etwa 3% bis etwa 30% ihres Volumens füllt; und
    c) die poröse Schicht in den Poren auf dem elektrolytisch abgeschiedenen Metall stromlos abgeschiedenes Porenfüllmetall aufweist, um jede Pore bis zum erforderlichen Umfang zu füllen.
  13. Ein Produkt nach Anspruch 12, dadurch gekennzeichnet, daß das Substrat anodisiert worden ist, um Poren mit einer Querabmessung von etwa 0,03 bis 0,10 Mikrometern zu erzeugen.
  14. Ein Produkt nach Anspruch 12 oder 13, dadurch gekennzeichnet, daß das elektrolytisch abgeschiedene Porenfüllmetall bis zu einer Dicke von bis zu 550 Milligramm pro Quadratmeter abgeschieden ist.
  15. Ein Produkt nach einem der Ansprüche 12 bis 13, dadurch gekennzeichnet, daß das stromlose Metall genügend dick ist, um einen auf der Oberfläche der anodisierten Schicht abgeschiedenen Überzug zu bilden.
  16. Ein Produkt nach Anspruch 15, dadurch gekennzeichnet, daß das stromlos abgeschiedene Metall bis zu einer Dicke von etwa 10-25 Mikrometern auf der Oberfläche des Substrats abgeschieden ist.
  17. Ein Produkt nach einem der Ansprüche 12 bis 15, dadurch gekennzeichnet, daß das stromlos abgeschiedene Metall abgeschieden ist, um eine Trägerschicht auf der Oberfläche des Substrats mit einer Dicke im Bereich von etwa 0,5 bis 3 Mikrometern zu bilden, und daß eine oder mehrere folgende Schichten auf der Trägerschicht abgeschieden sind.
  18. Ein Produkt nach einem der Ansprüche 12 bis 17, dadurch gekennzeichnet, daß das anodisierbare Substratmetall ausgewählt ist aus Aluminium und Magnesium und anodisierbaren Legierungen derselben.
  19. Ein Produkt nach einem der Ansprüche 12 bis 17, dadurch gekennzeichnet, daß das anodisierbare Metall ausgewählt ist aus Gußaluminium und seinen Legierungen.
  20. Ein Produkt nach einem der Ansprüche 12 bis 19, dadurch gekennzeichnet, daß das elektrolytisch abgeschiedene Porenfüllmetall ausgewählt ist aus Nickel, Kobalt, Zink, Kupfer, Zinn, Palladium und Mischungen derselben.
  21. Ein Produkt nach einem der Ansprüche 12 bis 20, dadurch gekennzeichnet, daß das stromlose Porenfüllmetall ausgewählt ist aus Nickel, Kobalt, Kupfer, Zinn und Mischungen derselben.
EP90912713A 1989-09-05 1990-09-05 Verfahren zur ablagerung von deckschichten auf anodisierbaren metallsubstraten und dadurch erhaltene produkte Expired - Lifetime EP0490914B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT9090912713T ATE104703T1 (de) 1989-09-05 1990-09-05 Verfahren zur ablagerung von deckschichten auf anodisierbaren metallsubstraten und dadurch erhaltene produkte.

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CA000610259A CA1341327C (en) 1989-09-05 1989-09-05 Methods for depositing finish coatings on substrates of anodisable metals and the products thereof
CA610259 1989-09-05
PCT/CA1990/000287 WO1991003583A1 (en) 1989-09-05 1990-09-05 Methods for depositing finish coatings on substrates of anodisable metals and the products thereof

Publications (2)

Publication Number Publication Date
EP0490914A1 EP0490914A1 (de) 1992-06-24
EP0490914B1 true EP0490914B1 (de) 1994-04-20

Family

ID=4140553

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90912713A Expired - Lifetime EP0490914B1 (de) 1989-09-05 1990-09-05 Verfahren zur ablagerung von deckschichten auf anodisierbaren metallsubstraten und dadurch erhaltene produkte

Country Status (7)

Country Link
EP (1) EP0490914B1 (de)
JP (1) JP2945472B2 (de)
AU (1) AU6287090A (de)
CA (1) CA1341327C (de)
DE (1) DE69008359T2 (de)
ES (1) ES2052269T3 (de)
WO (1) WO1991003583A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1914330A1 (de) * 2005-06-17 2008-04-23 Tohoku University Schutzfilmestruktur von metallelement, metallbauteil mit schutzfilmstruktur und vorrichtung zur herstellung eines halbleiters oder eines flachdisplays mit schutzfilmstruktur
CN110114517A (zh) * 2016-08-17 2019-08-09 席勒斯材料科学有限公司 在轻合金上生成薄功能涂层的方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4238242C2 (de) * 1992-09-17 2003-04-24 Rieger Franz Metallveredelung Verfahren zur Vorbehandlung von Leichtmetallen nach Patent DE 4231052 C2
US6217737B1 (en) 1997-10-03 2001-04-17 Hirel Connectors Inc. Method for forming a corrosion-resistant conductive connector shell
DE19807823A1 (de) 1998-02-26 1999-09-09 Fraunhofer Ges Forschung Verfahren zur Herstellung einer korrosionsschützenden Beschichtung und Schichtsystem für Substrate aus Leichtmetall
DE19831370A1 (de) * 1998-07-13 2000-01-27 Fraunhofer Ges Forschung Verfahren zur Beschichtung von Körpern aus Leichtmetallen oder Leichtmetallegierungen mittels Plasmaunterstützung
EP1688683A1 (de) * 2005-01-06 2006-08-09 Fenis Teknik Ürünler A.S. Leichtgewicht -Hochleistungs-Sonnenkollektor aus Aluminiumfolie mit selektiver Oberfläche
US8309237B2 (en) 2007-08-28 2012-11-13 Alcoa Inc. Corrosion resistant aluminum alloy substrates and methods of producing the same
US7732068B2 (en) * 2007-08-28 2010-06-08 Alcoa Inc. Corrosion resistant aluminum alloy substrates and methods of producing the same
US8927392B2 (en) 2007-11-02 2015-01-06 Siva Power, Inc. Methods for forming crystalline thin-film photovoltaic structures
KR101100858B1 (ko) * 2009-09-28 2012-01-02 포항공과대학교 산학협력단 연료 전지용 세퍼레이터와 이의 제조 방법 및 이를 포함하는 연료 전지 스택
DE102015105449B4 (de) 2015-04-09 2019-01-17 Rieger Metallveredlung GmbH & Co. KG Verfahren zum Aufbringen einer Schutzschicht auf Aluminiumteile
CN115341169A (zh) * 2021-05-14 2022-11-15 北京小米移动软件有限公司 表面处理方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4525247A (en) * 1982-07-12 1985-06-25 Rogers Corporation Microwave circuit boards and method of manufacture thereof
DE3671764D1 (de) * 1985-02-06 1990-07-12 Fujitsu Ltd Verfahren zur bildung eines komposit-aluminium-filmes.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Chemical Abstracts, vol. 101, No. 26, 24 December 1984, (Columbus, Ohio, US), see page 427, abstract 237330z, & JP-A-59140398 (Pilot Precision Co., Ltd.) 11 August 1984 & Patent Abstracts of Japan, vol. 8, No. 266 (C-255)(1703), 6 December 1984 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1914330A1 (de) * 2005-06-17 2008-04-23 Tohoku University Schutzfilmestruktur von metallelement, metallbauteil mit schutzfilmstruktur und vorrichtung zur herstellung eines halbleiters oder eines flachdisplays mit schutzfilmstruktur
EP1914330A4 (de) * 2005-06-17 2010-03-03 Univ Tohoku Schutzfilmestruktur von metallelement, metallbauteil mit schutzfilmstruktur und vorrichtung zur herstellung eines halbleiters oder eines flachdisplays mit schutzfilmstruktur
US8124240B2 (en) 2005-06-17 2012-02-28 Tohoku University Protective film structure of metal member, metal component employing protective film structure, and equipment for producing semiconductor or flat-plate display employing protective film structure
CN110114517A (zh) * 2016-08-17 2019-08-09 席勒斯材料科学有限公司 在轻合金上生成薄功能涂层的方法

Also Published As

Publication number Publication date
ES2052269T3 (es) 1994-07-01
EP0490914A1 (de) 1992-06-24
DE69008359T2 (de) 1994-08-04
CA1341327C (en) 2001-12-18
DE69008359D1 (de) 1994-05-26
JP2945472B2 (ja) 1999-09-06
WO1991003583A1 (en) 1991-03-21
AU6287090A (en) 1991-04-08
JPH05503316A (ja) 1993-06-03

Similar Documents

Publication Publication Date Title
EP0490914B1 (de) Verfahren zur ablagerung von deckschichten auf anodisierbaren metallsubstraten und dadurch erhaltene produkte
US5245847A (en) Process for zinc electroplating of aluminum strip
US4022671A (en) Electrolytic coloring of anodized aluminum
US5002838A (en) Aluminum plating substance for anodizing
JP7389847B2 (ja) 軽合金上に薄い機能性コーティングを生成する方法
Kalantary et al. The production of compositionally modulated alloys by simulated high speed electrodeposition from a single solution
EP0368470A1 (de) Verfahren zur Ablagerung von Deckschichten auf anodisierbaren Metall-Substraten und die erhaltenen Produkte
US3943039A (en) Anodizing pretreatment for nickel plating
US4014756A (en) Process for making metal powders
Monteiro et al. Pretreatments of improve the adhesion of electrodeposits on aluminium
JP3180197B2 (ja) アルミニウム及びアルミニウム合金の表面処理法
Golby et al. A study of the effect of pretreatment procedures on the plating of aluminium alloys
JPH11181597A (ja) アルミニウムの表面処理方法
WO2009046328A1 (en) Galvanic deposition of metal layers on magnesium or magnesium alloy surfaces
JPH06240490A (ja) 耐食性クロムめっき
JPH05302195A (ja) チタン及びチタン合金の電気メッキ法
JPH0250988B2 (de)
JPH05179484A (ja) Ti及びTi合金の陽極酸化処理方法
JP3344973B2 (ja) アルミニウム材料の着色方法
KR100382284B1 (ko) 마그네슘합금의 착색방법
Runge et al. Plating on Aluminum
JPS5920758B2 (ja) アルミニウムまたはアルミニウム合金の着色法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19920306

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LI LU NL SE

17Q First examination report despatched

Effective date: 19930521

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19940420

Ref country code: DK

Effective date: 19940420

Ref country code: BE

Effective date: 19940420

Ref country code: AT

Effective date: 19940420

REF Corresponds to:

Ref document number: 104703

Country of ref document: AT

Date of ref document: 19940515

Kind code of ref document: T

REF Corresponds to:

Ref document number: 69008359

Country of ref document: DE

Date of ref document: 19940526

ET Fr: translation filed
ITF It: translation for a ep patent filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2052269

Country of ref document: ES

Kind code of ref document: T3

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19940930

EAL Se: european patent in force in sweden

Ref document number: 90912713.6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020819

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20020820

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20020821

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020828

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020930

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20021009

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030906

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040401

GBPC Gb: european patent ceased through non-payment of renewal fee
EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040528

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20030906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050905