EP0489192B1 - Wassergekühlter Kondensator - Google Patents

Wassergekühlter Kondensator Download PDF

Info

Publication number
EP0489192B1
EP0489192B1 EP90123310A EP90123310A EP0489192B1 EP 0489192 B1 EP0489192 B1 EP 0489192B1 EP 90123310 A EP90123310 A EP 90123310A EP 90123310 A EP90123310 A EP 90123310A EP 0489192 B1 EP0489192 B1 EP 0489192B1
Authority
EP
European Patent Office
Prior art keywords
flange
titanium
condenser
water
welded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90123310A
Other languages
English (en)
French (fr)
Other versions
EP0489192A1 (de
Inventor
Vaclav Svoboda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Asea Brown Boveri Ltd
ABB AB
Original Assignee
ABB Asea Brown Boveri Ltd
Asea Brown Boveri AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Asea Brown Boveri Ltd, Asea Brown Boveri AB filed Critical ABB Asea Brown Boveri Ltd
Priority to ES90123310T priority Critical patent/ES2052142T3/es
Priority to EP90123310A priority patent/EP0489192B1/de
Priority to DE90123310T priority patent/DE59004704D1/de
Priority to AU88065/91A priority patent/AU651632B2/en
Priority to CA002056094A priority patent/CA2056094A1/en
Priority to US07/797,899 priority patent/US5181559A/en
Publication of EP0489192A1 publication Critical patent/EP0489192A1/de
Application granted granted Critical
Publication of EP0489192B1 publication Critical patent/EP0489192B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/086Heat exchange elements made from metals or metal alloys from titanium or titanium alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B1/00Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser
    • F28B1/02Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser using water or other liquid as the cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0219Arrangements for sealing end plates into casing or header box; Header box sub-elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/20Fastening; Joining with threaded elements

Definitions

  • the invention relates to a water-cooled condenser, in which the condenser tubes made of titanium are rolled and / or welded at their ends into a tube sheet and in which the condenser jacket and the water chamber jacket are each provided with a welded-on flange, between which the titanium tube sheets are arranged in a sealed manner and are provided with a screw connection, the capacitor jacket made of sheet steel being provided with a titanium explosive plating at the junction with the tube sheets, which is welded watertight to the tube sheets on the steam chamber side.
  • a water-cooled condenser is known with a steel condenser jacket, in which titanium tubes penetrate and are rolled into a steel tube sheet and are welded with their ends in a special titanium plate in front of the tube sheet.
  • This configuration solves the problem of the otherwise usual welded pipe / tube sheet connection.
  • the titanium plate itself is screwed directly to the water chamber and screwed to the tube sheet via spacers. The latter is also screwed to the capacitor jacket. Since a steel tube plate is thus to be connected to a steel condenser jacket, there are no difficulties in terms of material technology, even if in the case shown, air ingress into the vapor space of the condenser may be expected due to the mere screwing.
  • Explosion-plated titanium 8 is arranged on the flange 1 'on the side facing the steam chamber 6. Explosive plating or explosive welding is a process that can be used to produce metal combinations that are not possible by fusion welding.
  • the titanium sheet is placed over the flange 1 'to be coated at a small distance.
  • the explosive distributed on the titanium sheet is detonated on one side, whereupon the detonation zone runs over the titanium at high speed and accelerates it onto the flange. This creates very high pressures in the collision zone, which are to flow Metal boundary layers and thus lead to a large-area welding.
  • the cladding 8 is completely sealed with a weld 9 after the assembly of the tube sheets with the capacitor jacket.
  • the steam chamber 6 is thus secured against air ingress.
  • precautions have been taken against the previously possible penetration of cooling water - which could emerge from the water chamber 7 as a result of a leaky protective coating 3 and could penetrate into the vapor space 6 via the holes 11 and a leaky weld 9.
  • These precautions can be seen in the shape of the flanges 1 'and 2'. These are designed such that the screw connections 10 and thus the through holes 11 in the tube sheet 4 are located outside the actual sealing surface between the flange 1 'and tube sheet 4.
  • the sealing point designated X in the drawing between the tube sheet 4 and flange 1 ' is readily accessible for inspection, regardless of whether the flange 1' is an annular flange (in the case of round capacitors) or are flat flanges (in the case of rectangular capacitors). If, on the occasion of such a check, it is determined that the weld seam 9 is actually leaking, and this leads to air ingress into the vapor space, the point designated by X can be sealed in the simplest manner to the required length or entirely with, for example, liquid silicone rubber.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Prevention Of Electric Corrosion (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Description

    Technisches Gebiet
  • Die Erfindung betrifft einen wassergekühlten Kondensator, bei welchem die Kondensatorrohre aus Titan an ihren Enden in jeweils einen Rohrboden eingewalzt und/oder eingeschweisst sind und bei welchem der Kondensatormantel und der Wasserkammermantel jeweils mit einem aufgeschweissten Flansch versehen sind, zwischen denen die Rohrböden aus Titan abgedichtet angeordnet und mit einer Verschraubung versehen sind, wobei der Kondensatormantel aus Stahlblech an der Verbindungsstelle mit den Rohrböden mit einer Titan-Sprengplattierung versehen ist, welche dampfraumseitig mit den Rohrböden wasserdicht verschweisst ist.
  • Derartige Kondensatoren, die am sogenannten kalten Ende von Kraftmaschinen angeordnet sind und zum Zwecke haben, durch Erzeugung eines grösstmöglichen Vakuums beispielsweise einer Dampfturbine ein grösseres Druck- und Wärmegefälle zu geben, sind bekannt. Sind bei diesen Kondensatoren die Wasserkammern über Flansche mit den Rohrböden und der Kondensatorschale verbunden, herrschen folgende Probleme vor:
    • Die Bearbeitung der ausserordentlich grossen Flansche für die heutigen Grosskondensaoren gestalten sich auf der Baustelle sehr aufwendig;
    • es besteht grundsätzlich die Gefahr, dass durch die grossen Flansche Luft in den Dampfraum des Kondensators eindringen kann;
    • undichte Flansche können nachträglich nur sehr behelfsmässig und schwierig abgedichtet werden.
  • Heute werden von Kraftwerksbetreibern extreme Dichtheiten gegen Kühlwassereinbruch in Kondensatoren verlangt. Die zulässigen Leckraten sind kaum messbar, was dazu führt, dass die bisher angewandte Technik des Einwalzens der Rohre ergänzt wird durch Einschweissen der Rohre. Darüber hinaus gelangen heute extrem korrosionsbeständige Titanrohre zur Anwendung.
  • Stand der Technik
  • Bei der genannten Flanschverbindung besteht nun die Möglichkeit, die Titanrohre auch in Titan-Rohrböden einzuwalzen und/oder einzuschweissen. Dies ist insbesondere deshalb naheliegend, weil sich Titan praktisch nur mit Titan verschweissen lässt. Zur Verschraubung des Titanrohrbodens mit den Flanschen sowohl des Wasserkammermantels als auch des Kondensatormantels müssen entsprechende Dichtungen vorgesehen werden. Zwischen Wasserkammermantel und Rohrboden hat man deshalb die ohnehin benötigte Gummischicht des Schutzüberzuges angeordnet, während zwischen Rohrboden und Flansch des Kondensatormantels eine Weichdichtung eingelegt wurde. Nach längerer Betriebszeit kann eine derartige Lösung indessen sowohl zu einem Kühlwasser- als auch zu einem Lufteinbruch in den Dampfraum führen, da die Dichtungen wegen der unterschiedlichen Dehnungen zwischen Rohren und Kondensatorschale sehr hoch beansprucht sind.
  • Aus der US-A-4,252,182 ist ein wassergekühlter Kondensator bekannt mit einem stählernen Kondensatormantel, bei dem Titanrohre einen stählernen Rohrboden durchdringen und in diesen eingewalzt sind und mit ihren Enden in einer speziellen, dem Rohrboden vorgelagerten Titanplatte eingeschweisst sind. Durch diese Konfiguration wird die Problematik der sonst üblichen Schweissverbindung Rohr/Rohrboden gelöst. Die Titanplatte selbst ist mit der Wasserkammer direkt verschraubt und über Abstandsglieder mit dem Rohrboden verschraubt. Letzterer ist ebenfalls mit dem Kondensatormantel verschraubt. Da somit ein Stahlrohrboden mit einem Stahlkondensatormantel zu verbinden ist, sind materialtechnisch keine Schwierigkeiten vorhanden, wenn auch im dargestellten Fall infolge der blossen Verschraubung eventuell mit Lufteinbrüchen in den Dampfraum des Kondensators zu rechnen ist.
  • Desweiteren ist aus der US-A-4,562,887 eine Flanschverbindung der eingangs genannten Art bekannt, bei welcher die Stirnseite des mit dem Rohrboden zu verschraubenden Flansches mit einer Sprengplattierung versehen ist. Nach der Montage der Rohrböden mit dem Kondensatormantel wird diese Sprengplattierung mit den Rohrböden verschweisst. Zwar wird bei dieser Lösung die Sprengplattierung ausschliesslich auf Druck beansprucht und kann sich somit nicht vom Flansch ablösen. Indes könnte die Schweissnaht aus irgendeinem Grund beschädigt werden, worauf die Möglichkeit von Lufteinbrüchen und insbesondere von Kühlwassereinbrüchen über undichte Schutzüberzüge und die Schraubenlöcher bestünde.
  • Darstellung der Erfindung
  • Der Erfindung liegt deshalb die Aufgabe zugrunde, bei einem Kondensator der eingangs genannten Art eine kontrollierbare Verbindung des Titan-Rohrbodens mit dem Stahlblech des Flansches/Kondensatormantels zu schaffen.
  • Erfindungsgemäss wird diese Aufgabe dadurch gelöst, dass dass die Sprengplattierung am dampfraumseitigen Teil des Flansches angebracht ist und dass die Flanschverschraubung ausserhalb der Dichtfläche zwischen Flansch und Rohrboden angeordnet ist.
  • Der Vorteil der Erfindung ist neben der Tatsache, dass die kritische Stelle bei Flanschkonstruktionen nunmehr mit einer absolut dichten Schweissverbindung versehen ist, insbesondere darin zu sehen, dass selbst im Falle einer undichten Schweissnaht zwischen Sprengplattierung und Rohrboden die Dichtfläche von aussen zu Reparaturzwecken zugänglich ist.
  • Kurze Beschreibung der Zeichnung
  • In der Zeichnung sind ein Ausführungsbeispiel der Erfindung schematisch dargestellt. Die einzige Figur zeigt einen Teillängsschnitt einer Flanschverbindung von Wasserkammer, Rohrboden und Kondensatorschale.
  • Erfindungsunwesentliche Elemente wie beispielsweise die Ausgestaltung der Wasserkammer und der Rohreintritte sind nicht dargestellt, obschon die korrosive Wirkung des Kühlwassers eine Randbedingung hinsichtlich deren Konstruktion ist. Auch die eigentliche Rohrbefestigung sowie die bündelförmige Konfiguration der Rohre im Dampfraum sind nicht dargestellt, da sich nichts zum besseren Verständnis der Erfindung beitragen. Ferner sei festgehalten, dass die eigentliche Geometrie des Kondensators, seine Grösse und seine Aufstellungsart im vorliegenden Zusammenhang nicht von Bedeutung sind und dass auch die Form der Rohrböden, ob rund oder mehreckig, die Wirkungsweise der Erfindung nicht beeinflusst. All dies führt dazu, dass die Erläuterung der Erfindung anhand einer einfachen Prinzipskizze einer Wasserkammer erfolgen kann.
  • Weg zur Ausführung der Erfindung
  • Bei der Kondensatorausbildung bestehen sowohl der Kondensatormantel 1 als auch die Wasserkammerwand 2 aus einfachem C-Stahl. Sie sind jeweils mit einem aufgeschweissten Flansch 1' resp. 2' versehen, zwischen denen der Titan-Rohrboden mittels der Verschraubung 10 fest verschraubt wird. Insbesondere wenn Meerwasser als Kühlmittel verwendet wird, ist auf der Wasserseite die Wand 2 vollständig mit einem Schutzüberzug 3 versehen, welcher in der Regel eine Gummischicht ist, jedoch auch ein glasfaserverstärkter Epoxydharzanstrich sein kann. Auf der Wasserseite wird der Schutzüberzug 3 mit in den Flansch 2' einbezogen.
  • Der Rohrboden 4 besteht aus reinem Titan. Es ist mit einer Vielzahl von Titanrohren 5 bestückt, die entweder mit ihren Enden eingewalzt, eingeschweisst oder beides sein können. Durch diese Rohre, welche die eigentliche Kühlfläche bilden und die den Dampfraum 6 in ihrer ganzen Länge durchdringen und dabei in nicht gezeigten Stützplatten abgestützt sind, wird das frische Kühlwasser von der ersten Wasserkammer 7 in die nicht dargestellte zweite, gegenüberliegende Wasserkammer gefördert. Im Dampfraum 6 sind die Rohre vom zu kondensierenden Dampf im Querstrom umströmt.
  • Am Flansch 1' ist an der dem Dampfraum 6 zugekehrten Seite sprengplattiertes Titan 8 angeordnet. Es handelt sich beim Sprengplattieren oder auch Sprengschweissen um ein Verfahren, mit dem Metallkombination hergestellt werden können, die durch Schmelzschweissen nicht möglich sind. Über den zu beschichtenden Flansch 1' wird mit geringem Abstand das Titanblech gelegt. Der auf dem Titanblech verteilte Sprengstoff wird auf einer Seite gezündet, worauf die Detonationszone mit grosser Geschwindigkeit über das Titan hinwegläuft und dieses auf den Flansch beschleunigt. Dabei entstehen sehr hohe Drücke in der Kollisionszone, die zu fliessenden Metallgrenzschichten und somit zu einer grossflächigen Schweissung führen.
  • Die Plattierung 8 wird im Anschluss an die Montage der Rohrböden mit dem Kondensatormantel mit einer Schweissnaht 9 vollständig abgedichtet. Der Dampfraum 6 ist damit gegen Lufteinbrüche gesichert. Aber auch im Fall einer undichten Schweissnaht 9 sind gegen das bisher mögliche Eindringen von Kühlwasser - welches infolge eines undichten Schutzüberzuges 3 aus der Wasserkammer 7 heraustreten könnte und über die Löcher 11 und eine undichte Schweissnaht 9 in den Dampfraum 6 eindringen könnte - Vorkehrungen getroffen. Diese Vorkehrungen sind in der Formwahl der Flansche 1' und 2' zu sehen. Diese sind derart konzipiert, dass die Verschraubungen 10 und damit die Durchgangslöcher 11 im Rohrboden 4 sich ausserhalb der eigentlichen Dichtfläche zwischen Flansch 1' und Rohrboden 4 befinden. Es wird somit deutlich, dass die in der Zeichnung mit X bezeichnete Dichtstelle zwischen Rohrboden 4 und Flansch 1' einer Inspektion ohne weiteres zugänglich ist, und zwar unabhängig davon, ob es sich beim Flansch 1' um einen Ringflansch (im Falle von Rundkondensatoren) oder um flache Flansche (im Falle von Rechteckkondensatoren) handelt. Wird anlässlich einer solchen Kontrolle festgestellt, dass die Schweissnaht 9 tatsächlich undicht ist, und es dadurch zu Lufteinbrüchen in den Dampfraum kommt, so kann die mit X bezeichnete Stelle auf einfachste Weise auf der erforderlichen Länge oder gänzlich mit beispielsweise flüssigem Silikonkautschuk abgedichtet werden.

Claims (1)

  1. Wassergekühlter Kondensator, bei welchem die Kondensatorrohre (5) aus Titan an ihren Enden in jeweils einen Rohrboden (4) eingewalzt und/oder eingeschweisst sind und bei welchem der Kondensatormantel (1) und der Wasserkammermantel (2) jeweils mit einem aufgeschweissten Flansch (1', 2') versehen sind, zwischen denen die Rohrböden (4) aus Titan abgedichtet angeordnet und mit einer Verschraubung (10) versehen sind, wobei der Kondensatormantel aus Stahlblech an der Verbindungsstelle mit den Rohrböden mit einer Titan-Sprengplattierung (8) versehen ist, welche dampfraumseitig mit den Rohrböden wasserdicht verschweisst ist,
    dadurch gekennzeichnet,
    dass die Sprengplattierung (8) am dampfraumseitigen Teil des Flansches (1') angebracht ist und dass die Flanschverschraubung (10) ausserhalb der Dichtfläche zwischen Flansch (1') und Rohrboden (4) angeordnet ist.
EP90123310A 1990-12-05 1990-12-05 Wassergekühlter Kondensator Expired - Lifetime EP0489192B1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
ES90123310T ES2052142T3 (es) 1990-12-05 1990-12-05 Condensador refrigerado por agua.
EP90123310A EP0489192B1 (de) 1990-12-05 1990-12-05 Wassergekühlter Kondensator
DE90123310T DE59004704D1 (de) 1990-12-05 1990-12-05 Wassergekühlter Kondensator.
AU88065/91A AU651632B2 (en) 1990-12-05 1991-11-22 Water-cooled condenser
CA002056094A CA2056094A1 (en) 1990-12-05 1991-11-25 Water-cooled condenser
US07/797,899 US5181559A (en) 1990-12-05 1991-11-26 Water-cooled condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP90123310A EP0489192B1 (de) 1990-12-05 1990-12-05 Wassergekühlter Kondensator

Publications (2)

Publication Number Publication Date
EP0489192A1 EP0489192A1 (de) 1992-06-10
EP0489192B1 true EP0489192B1 (de) 1994-02-23

Family

ID=8204798

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90123310A Expired - Lifetime EP0489192B1 (de) 1990-12-05 1990-12-05 Wassergekühlter Kondensator

Country Status (6)

Country Link
US (1) US5181559A (de)
EP (1) EP0489192B1 (de)
AU (1) AU651632B2 (de)
CA (1) CA2056094A1 (de)
DE (1) DE59004704D1 (de)
ES (1) ES2052142T3 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5518066A (en) * 1994-05-27 1996-05-21 Connell Limited Partnership Heat exchanger
JP3653050B2 (ja) * 2002-02-14 2005-05-25 三菱重工業株式会社 熱交換器用管板ユニットの構造及び管板ユニットの交換方法
EP1577632A1 (de) * 2004-03-16 2005-09-21 Urea Casale S.A. Vorrichtung zur Behandlung von Hochkorrosiven medien
EP3223926B1 (de) 2014-11-25 2021-09-08 Ecodyst, Inc. Destillations- und rotationsverdampfungsvorrichtungen und systeme
JP6633657B2 (ja) 2015-06-11 2020-01-22 エコディスト インコーポレイテッド チラー、及び、チラーシステム
USD803276S1 (en) 2015-12-04 2017-11-21 Ecodyst, Inc. Compact chiller and condenser
US10941706B2 (en) 2018-02-13 2021-03-09 General Electric Company Closed cycle heat engine for a gas turbine engine
US11143104B2 (en) 2018-02-20 2021-10-12 General Electric Company Thermal management system
US11015534B2 (en) 2018-11-28 2021-05-25 General Electric Company Thermal management system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE538769C (de) * 1930-07-13 1931-11-25 Bbc Brown Boveri & Cie Flanschverschraubung fuer Kondensatorboeden
JPS5257556A (en) * 1975-11-07 1977-05-12 Hitachi Ltd All titanium-pipe heat exchanger
US4252182A (en) * 1979-03-20 1981-02-24 Ecolaire Incorporated Tube sheet shield
CH664626A5 (de) * 1983-04-28 1988-03-15 Bbc Brown Boveri & Cie Wassergekuehlter kondensator.
US4570701A (en) * 1983-11-14 1986-02-18 Wf Roberts Dual purpose closure for heat exchangers
ATE51442T1 (de) * 1986-11-13 1990-04-15 Hamon Sobelco Sa Zusammenbauen durch flansche von rohrplatten in waermetauschern, die rohrplatten aus massivem titan enthalten.
ATE51701T1 (de) * 1986-11-13 1990-04-15 Hamon Sobelco Sa Zusammenbau durch schweissen von rohrplatten in waermetauschern, die rohrplatten aus gediegenem titan enthalten.
US4825942A (en) * 1987-05-05 1989-05-02 The Dow Chemical Company Heat exchanger with novel seal for tube sheet

Also Published As

Publication number Publication date
CA2056094A1 (en) 1992-06-06
ES2052142T3 (es) 1994-07-01
US5181559A (en) 1993-01-26
DE59004704D1 (de) 1994-03-31
EP0489192A1 (de) 1992-06-10
AU651632B2 (en) 1994-07-28
AU8806591A (en) 1992-06-11

Similar Documents

Publication Publication Date Title
DE2901418C3 (de) Thermisch isolierte Anordnung zur Zuführung eines Fluids in einen Druckbehälter, insbesondere in einen Wärmeaustauscher
DE2511069A1 (de) Rohrverbindung
EP0489192B1 (de) Wassergekühlter Kondensator
DE3317061A1 (de) Flanschverbindungsanordnung
EP0123940B1 (de) Wassergekühlter Kondensator
DE2124530C3 (de) Einrichtung zum Verschließen schadhafter Wärmetauseherrohre
DE2743380C2 (de) Kühlplatte für metallurgische, mit einer feuerfesten Auskleidung versehene Öfen, wie Hochöfen
DE1464490A1 (de) Waermetauscher,insbesondere fuer Kernreaktoren
DE2618345A1 (de) Austrittsstutzen- und eintrittsleitungs-kombination fuer einen kernreaktor- druckbehaelter
EP2295730A2 (de) Turbinengehäuse mit wärmeabschirmender Wandverkleidung
DE2909467C2 (de) Absperrschieber für Rohrleitungen
DE2300794A1 (de) Kernreaktor
DE1285809B (de) Flanschverbindung fuer Wandteile von Druckgefaessen grossen Durchmessers
DE684736C (de) Roehrenwaermeaustauscher mit zwei im Abstand voneinander angeordneten Abdichtungsrohrboeden
DE3138355C2 (de)
DE2261862A1 (de) Befestigung von rohren in dicken rohrboeden
DE3030789C2 (de)
DE2206792A1 (de) Korrosionsbestaendige dichtung
DE1576597A1 (de) Aufschrumpf-Einspritz-Vorrichtung
EP1712867B1 (de) Verfahren zur Verbindung eines Rohres mit einer Rohrplatte
DE2412029A1 (de) Loesbares abdichtsystem von rohren an starkwandigen rohrboeden
EP0916889B1 (de) Verfahren zum Stabilisieren eines Rohres und stabilisiertes Rohr
AT209272B (de) Injektionsverschluß für Druckschacht- und Druckstollenpanzerungen aus hochfesten Baustählen
DE1103944B (de) Waermeaustauscher, insbesondere aus hochlegiertem Stahl mit in den Rohrboeden eingeschweissten Rohren
DE2259584C3 (de) Vorrichtung zum Durchführen eines Rohrbündels durch eine Behälterwand

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

RBV Designated contracting states (corrected)

Designated state(s): BE CH DE ES FR LI NL

17P Request for examination filed

Effective date: 19921113

17Q First examination report despatched

Effective date: 19930215

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE ES FR LI NL

REF Corresponds to:

Ref document number: 59004704

Country of ref document: DE

Date of ref document: 19940331

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2052142

Country of ref document: ES

Kind code of ref document: T3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19941209

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19951122

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19951231

Ref country code: CH

Effective date: 19951231

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19970701

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19970701

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19991123

Year of fee payment: 10

Ref country code: DE

Payment date: 19991123

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19991216

Year of fee payment: 10

Ref country code: BE

Payment date: 19991216

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001231

BERE Be: lapsed

Owner name: ASEA BROWN BOVERI A.G.

Effective date: 20001231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010831

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011206

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20020112