EP0485839B1 - Primer zum Metallisieren von Substratoberflächen - Google Patents

Primer zum Metallisieren von Substratoberflächen Download PDF

Info

Publication number
EP0485839B1
EP0485839B1 EP91118731A EP91118731A EP0485839B1 EP 0485839 B1 EP0485839 B1 EP 0485839B1 EP 91118731 A EP91118731 A EP 91118731A EP 91118731 A EP91118731 A EP 91118731A EP 0485839 B1 EP0485839 B1 EP 0485839B1
Authority
EP
European Patent Office
Prior art keywords
weight
primer
parts
primer according
metallization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91118731A
Other languages
English (en)
French (fr)
Other versions
EP0485839A3 (en
EP0485839A2 (de
Inventor
Gerhard Dieter Dr. Wolf
Kirkor Dr. Sirinyan
Wolfgang Dr. Henning
Rudolf Dr. Merten
Ulrich Dr. Von Gizycki
Bruce Ing. Benda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer AG
Original Assignee
Bayer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer AG filed Critical Bayer AG
Publication of EP0485839A2 publication Critical patent/EP0485839A2/de
Publication of EP0485839A3 publication Critical patent/EP0485839A3/de
Application granted granted Critical
Publication of EP0485839B1 publication Critical patent/EP0485839B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/28Sensitising or activating

Definitions

  • polymeric materials must be pretreated before chemical and subsequent electroplating, e.g. by etching the polymer surface with polluting chrome sulfuric acids.
  • EP-A 0 361 754 Pd-containing primers are proposed which require the additional use of chromosulfuric acid.
  • the object of the present invention was therefore to develop an economical, universally applicable process for chemical metallization, with which material surfaces based on glasses, metals and in particular plastics can be provided with a well-adhering, wet-chemically deposited metal coating without prior etching with oxidants.
  • substrate surfaces are coated with a special primer based on a polymeric organic film or matrix former which additionally contains an additive.
  • the lacquer systems to be used at room temperature such as alkyd resins, unsaturated polyester resins, polyurethane resins, epoxy resins, modified fats and oils, polymers or copolymers based on vinyl chloride, vinyl ethers, vinyl esters, styrene, acrylic acid, acrylonitrile or Acrylic esters, cellulose derivatives, or the stoving enamels that crosslink at higher temperatures, such as polyurethanes made of hydroxyl-containing polyethers, polyesters or polyacrylates and capped polyisocyanates, Melamine resins made from etherified melamine-formaldehyde resins and hydroxyl group-containing polyethers, polyesters or polyacrylates, epoxy resins from polyepoxides and polycarboxylic acids, carboxyl group-containing polyacrylates and carboxyl group-containing polyesters, stoving lacquers made from polyester, polyesterimides, polyesteramideimides, polyamideimides, polyamides, polyhydano
  • auxiliaries and additives which may also be used, are described, for example, in DE-A 2 732 292, pages 21-24.
  • the amount of film or matrix former used can be varied widely. As a rule, 3 to 30% by weight, preferably 4 to 20% by weight (based on the total formulation) are used.
  • Additives e) are organic and / or organometallic polymeric or prepolymeric compounds with a molecular weight of 500-20,000 with a total surface tension in the range from 45-65 mN / m, preferably 45-60 mN / m, particularly preferably 50-60 mN / m into consideration. Their amount can be varied widely between 0.1 and 15% by weight, based on the formulation, with 0.3-5% by weight being particularly preferred.
  • polymers based on oxazolines such as polyethyloxazoline, which is produced, for example, by cationic polymerization from methyl tosylate and methyloxazoline, are suitable.
  • Polymethyl, polypropyl and polybutyl oxazoline are also extremely suitable. Their amount can be varied widely between 0.1 and 15% by weight, based on the formulation, 0.3-5% by weight being particularly preferred.
  • Examples include oligomeric polymethacrylic acid or its esters, such as butyl, ethyl and methyl esters, polyamides based on adipic acid and hexamethylene diamine, polyethylene amines, amides, polyester types based on adipic acid, phthalic acid, butanediol, trimethylolpropane and polyacrylates, such as polyethyl and polybutyl acrylate , Polyalcohols, such as polyvinyl alcohol or mixtures thereof.
  • Polyester types and aliphatic polyamide types with a viscosity range of 10,000-35,000 cP at 20 ° C with a hydroxyl content of 5.5-0.15% or their isocyanate-modified derivatives are also well suited.
  • Polyamines based on, for example, ethylene, propylene and butylene diamine are also suitable.
  • Suitable noble metal complexes b) in the primers according to the invention are organometallic compounds of the 1st or 8th subgroups of the periodic table (in particular Pd, Pt, Au and Ag), as described, for example, in EP-A 34 485, 81 438, 131 195 become.
  • Organometallic compounds of palladium with olefins (dienes), with ⁇ , ⁇ -unsaturated carbonyl compounds, with crown ethers, with nitriles and with diketones such as pentadione-2,4 are particularly suitable.
  • Butadiene palladium dichloride bisacetonitrile palladium dichloride, bisbenzonitrile palladium dichloride, 4-cyclohexene-1,2-dicarboxylic acid anhydride palladium dichloride, mesityl oxide palladium chloride, 3-hepten-2-one-palladium chloride, 5-methyl-3-hexadione chloride, 5-methyl-3-hexadiene chloride 4-palladium.
  • O-valent complex compounds such as palladium (O) tetrakis (triphenylphosphine) are also suitable.
  • Suitable ionogenic noble metals are salts such as halides, acetates, nitrates, carbonates, sulfates, sulfides and hydroxides, such as PdS, Na2PdCl4, Na2PdCN4, H2PtCl6, AgNO3, Ag2SO4, Ag2S.
  • the amount of the noble metal can be varied widely in the range from 0.05 to 2.5% by weight, based on the overall formulation.
  • the preferred amount of noble metal is 0.1-1.0% by weight.
  • Suitable fillers c) are oxides of the elements Mn, Ti, Mg, Al, Bi, Cu, Ni, Sn, Zn and Si, as well as silicates, bentonites, talc and chalk. However, preference is given to using inorganic or organic fillers whose resistance is preferably between 0.01-10 ⁇ / cm.
  • the particularly preferred filler is conductive carbon black. Mixtures of such inorganic or organic fillers are also preferred.
  • the amount of the filler can be varied widely in the range from 0.5-35, preferably however 3-20, particularly preferably 5-15% by weight, based on the primer mass.
  • Suitable solvents d) in the primers according to the invention are substances known in printing or coating technology, such as aromatic and aliphatic hydrocarbons, for example toluene, xylene, gasoline, glycerol; Ketones, for example methyl ethyl ketone, cyclohexanone; Esters, for example butyl acetate, dioctyl phthalate, butyl glycolate; Glycol ethers, for example ethylene glycol monomethyl ether, diglyme, propylene glycol monomethyl ether; Esters of glycol ethers, for example ethylene glycol acetate, propylene glycol monomethyl ether acetate; Diacetone alcohol. Mixtures of these solvents and their blends with other solvents can of course also be used. The amounts used are 50-90% by weight, preferably 60-85% by weight.
  • the primer according to the invention is generally prepared by mixing the constituents.
  • the components can also be incorporated in separate steps.
  • the primer can be applied to the plastic surfaces using the usual methods such as printing, stamping, dipping, brushing, knife coating and spraying.
  • the layer thickness of the primer can be varied in the range of 0.1-200 ⁇ m, but preferably in the range of 5-30 ⁇ m.
  • primers according to the invention does not require swelling adhesive treatment of the plastic. This avoids the formation of stress cracks.
  • Plastics such as those used in the electrical, electronics and household sectors are particularly preferred.
  • polybrominated bisphenols and halogenated benzylphosphonates are used.
  • the surfaces modified in this way can then be sensitized by reduction.
  • the reducing agents customary in electroplating such as hydrazine hydrate, formaldehyde, hypophosphite or boranes, can preferably be used for this purpose. Of course, other reducing agents are also possible.
  • the reduction is preferably carried out in aqueous solution. However, other solvents such as alcohols, ethers, hydrocarbons can also be used. Of course, suspensions or slurries of the reducing agents can also be used.
  • the surfaces activated in this way can be used directly for electroless metallization. However, it may also be necessary to clean the surfaces by rinsing off residual reducing agents.
  • a very particularly preferred embodiment of the method according to the invention consists in that the reduction in the metallization bath is carried out immediately with the reducing agent of the electroless metallization.
  • This version represents a simplification of the electroless metallization.
  • This very simple embodiment only consists of the three work steps: immersing the substrate in the solution of the organic compound or applying or spraying on the primer, evaporating the solvent and immersing the surfaces activated in this way Metallization bath (reduction and metallization).
  • This embodiment is particularly suitable for nickel baths containing amine borane or copper baths containing formalin.
  • the metallization baths which can be used in the process according to the invention are preferably baths with nickel salts, cobalt salts, copper salts, gold and silver salts or mixtures thereof with one another or with iron salts.
  • Metallization baths of this type are known in the art of electroless metallization.
  • the process according to the invention has the advantage that, even without prior oxidative etching and / or swelling or treatment with solvents widening the polymer chain of the substrate surface, an adherent metal deposition is possible by means of the subsequent selective electroless metallization only with the aid of the primer surface.
  • the new process enables material-friendly and environmentally friendly, inexpensive, both full-area and partial metal deposition on material surfaces.
  • Materials metallized according to the new process are characterized by their excellent shielding against electromagnetic waves. These materials are used in the electrical, automotive, electronics and household sectors.
  • the good mechanical properties of the polymeric base material are not adversely affected by the painting or metallization process.
  • a 100 x 100 mm test plate made of a blend consisting of 60% of a polyester made of 4,4'-dihydroxydiphenyl-2,2-propane and carbonic acid and 40% acrylonitrile-butadiene-styrene copolymer with a Vicat temperature of approx. 90 ° C , was provided on one side with a 10 ⁇ m thick primer and dried at 80 ° C. in the course of 45 minutes.
  • the primer consisted of 53.7 parts by weight of polyurethane resin, 198 parts by weight of solvent mixture, consisting of toluene, diacetone alcohol and isopropanol (1: 1: 1); 14.7 parts by weight of titanium dioxide; 5.4 parts by weight of talc; 5.4 parts by weight of chalk; 7.2 parts by weight of carbon black; 20% in butyl acetate; 6.6 parts by weight of polyester with 4.3% OH groups with a surface tension> 45 mN / m, 20% solution in MEK (methyl ethyl ketone) and DAA (diacetone alcohol) (1: 1); 9 parts by weight of silicate-based suspension, 10% digestion in xylene and 0.35 parts by weight of bisbenzonitrile palladium-II dichloride.
  • test plate was then treated in a reduction bath consisting of 10 g of dimethylamine borane and 1.0 g of NaOH in 1 liter of water at 30 ° C. and then at Room temperature copper-plated in a chemical copper plating bath over the course of 30 minutes, washed with distilled water and then annealed at 80 ° C. for 30 minutes. A 1.5 ⁇ m thick copper layer was formed.
  • the metal coating had a peel strength according to DIN 53 494 of 25 N / 25 mm.
  • a polyphenylene oxide / polystyrene plate was made up with a primer 53.7 parts by weight of polyurethane resin 200 parts by weight of solvent mixture, consisting of toluene, diacetone alcohol and isopropanol (1: 1: 1) 15 parts by weight of titanium dioxide 6 parts by weight of talc 8 parts by weight of carbon black, 20% in butyl acetate 7 parts by weight of poly-2-ethyl-2-oxazoline, 20% solution in MEK 8 parts by weight of silicate-based floating agent, 10% digestion in xylene, 0.5 part by weight of 3-hexen-2-one-palladium chloride, provided on one side and dried at 80 ° C over 45 minutes.
  • solvent mixture consisting of toluene, diacetone alcohol and isopropanol
  • solvent mixture consisting of toluene, diacetone alcohol and isopropanol
  • 15 parts by weight of titanium dioxide 6 parts by weight of talc 8 parts by weight of carbon black 20% in butyl
  • the plate coated in this way was provided with a 2 ⁇ m thick Cu coating in a chemical copper plating bath over the course of 45 minutes.
  • This plate was well shielded from electromagnetic waves.
  • a 100 x 100 mm ABS plate was made with a primer consisting of 50 parts by weight of a polyol component. 88.76 parts by weight of a polyester polyol of molecular weight 2000 from adipic acid, ethylene glycol and 1,4-dihydroxybutane (molar ratio of the diols 70:30) 8.0 parts by weight of ethylene glycol 0.5 parts by weight of water 0.5 part by weight of triethylenediamine 0.55 part by weight of a commercially available polysiloxane stabilizer 1.25 parts by weight of Na2PdCl4 and 1.0 part by weight of tetrabutylammonium chloride, and 50 parts by weight of a polyisocyanate component 90.0 parts by weight of an NCO prepolymer from 65.0 parts by weight of 4,4'-diisocyanate diphenylmethane and 38.0 parts by weight of the polyester polyol used in the polyol component 250.0 parts by weight of solvent mixture consisting of toluene, diace
  • a 100 x 150 mm test plate made of a polycarbonate was provided with an approximately 15 ⁇ m thick primer layer and dried at 65 ° C. in the course of 30 minutes.
  • a 2 ⁇ m thick copper layer had formed which had a peel strength according to DIN 53 494 of 15 N / 25 mm.
  • This metallized plate had excellent shielding against electromagnetic waves.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Paints Or Removers (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Chemically Coating (AREA)
  • Details Of Measuring And Other Instruments (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Laminated Bodies (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Description

  • Es ist bekannt, daß polymere Werkstoffe vor dem chemischen und dem nachfolgenden galvanischen Metallisieren vorbehandelt werden müssen, z.B. durch Ätzen der Polymeroberfläche mit umweltbelastenden Chromschwefelsäuren.
  • Aus EP-A 0 081 129 ist weiterhin bekannt, daß eine Aktivierung, die durch "quellende Haftbekeimung" erzielt wird, zu gut haftenden Metallauflagen führt. Dieses elegante Verfahren hat Jedoch den Nachteil, daß es bei kompliziert geformten Polymer-Spritzgußteilen zur Spannungsrißbildung führt. Ferner erfordert dieses Verfahren für jede Kunststoffart ein neues Quellaktivierungssystem und ist somit nicht universell anwendbar.
  • Aus US-A 3 560 257, US 4 368 281 und US 4 017 265 sowie DE-A 3 627 265 und DE-A 2 443 488 sind Verfahren zur Aktivierung bekannt, die haftvermittelnde Polymere enthaltende
    Aktivatorlösungen verwenden. Der Nachteil dieser Verfahren besteht darin, daß sie den Einsatz relativ großer Mengen an teueren Edelmetallaktivatoren erfordern. Ferner führen sie nur bei ganz bestimmten Kunststoffen zum gewünschten Erfolg und sind somit auch nur eingeschränkt anwendbar.
  • Aus diesem Grund werden in der EP-A 0 361 754 Pd-haltige Primer vorgeschlagen, die den zusätzlichen Einsatz von Chromschwefelsäure erfordern.
  • Ferner sind aus der DE-A 36 27 256 Pd-haltige Primer auf PU(Polyurethan)-Basis bekannt. Der Nachteil dieser eleganten Verfahren besteht darin, daß sie bei kompliziert geformten Kunststoff-Spritzgußteilen zur Spannungsrißbildung führen.
  • Schließlich können aus der DE-A 38 14 506 spezielle, haftvermittelnde Kunststoff-Lackierungen entnommen werden, die aber in einigen Fällen zur geometrieabhängigen Fremdabscheidung führen.
  • Aufgabe der vorliegenden Erfindung war daher die Entwicklung eines wirtschaftlichen, universell anwendbaren Verfahrens zur chemischen Metallisierung, mit dem ohne vorheriges Ätzen mit Oxidantien Werkstoffoberflächen auf der Basis von Gläsern, Metallen und insbesondere Kunststoffen mit einem gut haftenden, auf naßchemischem Weg abgeschiedenen Metallüberzug versehen werden können.
  • Die Aufgabe wird gemäß Anspruch 1 dadurch gelöst, daß man Substratoberflächen mit einem speziellen Primer auf der Basis eines polymeren organischen Film- bzw. Matrixbildners, welcher noch zusätzlich ein Additiv enthält, beschichtet.
  • Dieser Primer besteht im wesentlichen aus
    • a) einem Film- bzw. Matrixbildner in einer Menge von 3-30 Gew.-%,
    • b) einem ionogenen und/oder kolloidalen Edelmetall oder dessen organometallischer kovalenter Verbindung oder Komplexverbindung mit organischen Liganden in einer Menge von 0,05-2,5 Gew.-%, gerechnet als Metall,
    • c) organischen und/oder anorganischen Füllstoffen in einer Menge von 0,5-35 Gew.-% und
    • d) organischen Lösungsmitteln in einer Menge von 50-90 Gew.-%
    und ist gekennzeichnet durch den weiteren Gehalt an
    • e) einem organischen polymeren bzw. prepolymeren Additiv mit einer Molmasse von 500-20 000 aus der Gruppe der Polyoxazoline, Polymethacrylsäure bzw. deren Estern, Polyacrylate, Polyamide, Polyester, Polyalkohole und Polyamine in einer Menge von 0,1-15 Gew.-%,
    wobei alle Gewichtsangaben auf die Gesamtformulierung des Primers bezogen sind.
  • Als Film- bzw. Matrixbildner a) werden erfindungsgemäß die bei Raumtemperatur zu verwendenden Lacksysteme, wie z.B. Alkydharze, ungesättigte Polyesterharze, Polyurethanharze, Epoxidharze, modifizierte Fette und Öle, Polymerisate oder Copolymerisate auf Basis Vinylchlorid, Vinylether, Vinylester, Styrol, Acrylsäure, Acrylnitril oder Acrylester, Cellulosederivate, oder die bei höherer Temperatur vernetzenden Einbrennlacke wie z.B. Polyurethane aus hydroxylgruppenhaltigen Polyethern, Polyestern oder Polyacrylaten und verkappten Polyisocyanaten, Melaminharze aus veretherten Melamin-Formaldehydharzen und hydroxylgruppenhaltigen Polyethern, Polyestern oder Polyacrylaten, Epoxidharze aus Polyepoxiden und Polycarbonsäuren, carboxylgruppenhaltigen Polyacrylaten und carboxylgruppenhaltigen Polyestern, Einbrennlacke aus Polyester, Polyesterimiden, Polyesteramidimiden, Polyamidimiden, Polyamiden, Polyhydantoinen und Polyparabansäuren verwendet. Diese Einbrennlacke können in der Regel sowohl als Pulver als auch aus Lösung appliziert werden.
  • Film- bzw. Matrixbildner auf Basis von Polyurethansystemen, die aus folgenden Komponenten aufgebaut sind, sind besonders gut geeignet:
    • 1. Aliphatische, cycloaliphatische, araliphatische, aromatische und heterocyclische Polyisocyanate, wie sie z.B. von W. Siefken in Justus Liebigs Annalen der Chemie, 362, Seiten 75-136, beschrieben werden, beispielsweise solche der Formel



              Q(NCO)n,



      in der
      n = 2 bis 4, vorzugsweise 2 bis 3
      und
      Q einen aliphatischen Kohlenwasserstoffrest mit 2 bis 18, vorzugsweise 6 bis 10 C-Atomen,
         einen cycloaliphatischen Kohlenwasserstoffrest mit 4 bis 15, vorzugsweise 5 bis 10 C-Atomen,
         einen aromatischen Kohlenwasserstoffrest mit 6 bis 15, vorzugsweise 6 bis 13 C-Atomen,
         oder einen araliphatischen Kohlenwasserstoffrest mit 8 bis 15, vorzugsweise 8 bis 13 C-Atomen
      bedeuten, z.B. solche Polyisocyanate, wie sie in der DE-A 2 832 253, Seiten 10 bis 11, beschrieben werden. Besonders bevorzugt werden in der Regel die technisch leicht zugänglichen Polyisocyanate, z.B. das 2,4- und 2,6-Toluylendiisocyanat, sowie beliebige Gemische dieser Isomeren ("TDI"); Polyphenyl-polymethylen-polyisocyanate, wie sie durch Anilin-Formaldehyd-Kondensation und anschließende Phosgenierung hergestellt werden ("rohes MDI") und Carbodiimidgruppen, Urethangruppen, Allophanatgruppen, Isocyanuratgruppen, Harnstoffgruppen oder Biuretgruppen aufweisende Polyisocyanate ("modifizierte Polyisocyanate"), insbesondere solche modifizierten Polyisocyanate, die sich vom 2,4-und/oder 2,6-Toluylendiisocyanat bzw. vom 4,4'- und/oder 2,4'-Diphenylmethandiisocyanat ableiten.
    • 2. Verbindungen mit mindestens zwei gegenüber Isocyanaten reaktionsfähigen Wasserstoffatomen von einem Molekulargewicht in der Regel von 400 bis 10.000. Hierunter versteht man neben Aminogruppen, Thiolgruppen oder Carboxylgruppen aufweisenden Verbindungen insbesondere zwei bis acht Hydroxylgruppen aufweisende Verbindungen, speziell solche vom Molekulargewicht 1000 bis 6000, vorzugsweise 2000 bis 6000, z.B. mindestens zwei, in der Regel zwei bis acht, vorzugsweise aber 2 bis 6, Hydroxylgruppen aufweisende Polycarbonate und Polyesteramide, wie sie für die Herstellung von homogenen und von zellförmigen Polyurethanen an sich bekannt sind und wie sie z.B. in der DE-A 2 832 253, Seiten 11-18, beschrieben werden.
    • 3. Gegebenenfalls Verbindungen mit mindestens zwei gegenüber Isocyanaten reaktionsfähigen Wasserstoffatomen und einem Molekulargewicht von 32 bis 399. Auch in diesem Fall versteht man hierunter Hydroxylgruppen und/oder Thiolgruppen und/oder Aminogruppen und/oder Carboxylgruppen aufweisende Verbindungen, vorzugsweise Hydroxylgruppen und/oder Aminogruppen aufweisende Verbindungen, die als Kettenverlängerungsmittel oder Vernetzungsmittel dienen. Diese Verbindungen weisen in der Regel 2 bis 8, vorzugsweise 2 bis 4, gegenüber Isocyanaten reaktionsfähige Wasserstoffatome auf. Beispiele hierfür werden in der DE-A 2 832 253, Seiten 19-20, beschrieben.
    • 4. Gegebenenfalls kann der Film- bzw. Matrixbildner Hilfs- und Zusatzmittel, wie
      • α) Katalysatoren der an sich bekannten Art,
      • β) oberflächenaktive Zusatzstoffe, wie Emulgatoren und Stabilisatoren,
      • γ) Reaktionsverzögerer, z.B. sauer reagierende Stoffe, wie Salzsäure oder organische Säurehalogenide, ferner Zellregler - der an sich bekannten Art -, wie Paraffine oder Fettalkohole oder Dimethylpolysiloxane, sowie Pigmente oder Farbstoffe und Flammschutzmittel - der an sich bekannten Art - , z.B. Trischlorethylphosphat, Trikresylphosphat, ferner Stabilisatoren gegen Alterungs- und Witterungseinflüsse, Weichmacher und fungistatisch und bakteriostatisch wirkende Substanzen, enthalten.
  • Diese gegebenenfalls mitzuverwendenden Hilfs- und Zusatzmittel werden beispielsweise in der DE-A 2 732 292, Seiten 21-24, beschrieben.
  • Die eingesetzte Menge des Film- bzw. Matrixbildners kann breit variiert werden. Es werden in der Regel 3 - 30 Gew.-%, vorzugsweise 4 - 20 Gew.-%, (bezogen auf die Gesamtformulierung) eingesetzt.
  • Als Additive e) kommen organische und/oder metallorganische polymere bzw. prepolymere Verbindungen mit der Molmasse 500-20 000 mit einer Gesamtoberflächenspannung im Bereich von 45-65 mN/m, vorzugsweise 45-60 mN/m, besonders bevorzugt 50-60 mN/m in Betracht. Ihre Menge kann zwischen 0,1 und 15 Gew.-% bezogen auf die Formulierung breit variiert werden, wobei 0,3-5 Gew.-% ganz besonders zu bevorzugen sind.
  • Es kommen beispielsweise Polymere auf Basis von Oxazolinen wie Polyethyloxazolin, welches beispielsweise durch kationische Polymerisation aus Methyltosylat und Methyloxazolin hergestellt wird, in Betracht. Ferner sind Polymethyl-, Polypropyl- und Polybutyloxazolin hervorragend geeignet. Ihre Menge kann zwischen 0,1 und 15 Gew.-%, bezogen auf die Formulierung breit variiert werden, wobei 0,3-5 Gew.-% besonders zu bevorzugen sind.
  • Beispielhaft seien oligomere Polymethacrylsäure bzw. deren Ester, wie Butyl-, Ethyl- und Methylester, Polyamide auf Basis von Adipinsäure und Hexamethylendiamin, Polyethylenamine, -amide, Polyestertypen auf Basis von Adipinsäure, Phthalsäure, Butandiol, Trimethylolpropan und Polyacrylate, wie Polyethyl- und Polybutylacrylat, Polyalkohole, wie Polyvinylalkohol bzw. deren Mischungen untereinander genannt. Polyestertypen und aliphatische Polyamidtypen des Viskositätsbereichs von 10 000-35 000 cP bei 20°C mit Hydroxylgehalt 5,5-0,15 % bzw. deren isocyanatmodifizierte Derivate sind ebenfalls gut geeignet. Ferner kommen Polyamine auf Basis beispielsweise von Ethylen-, Propylen- und Butylendiamin in Betracht.
  • Als Edelmetallkomplexe b) kommen in den erfindungsgemäßen Primern organometallische Verbindungen der 1. oder 8. Nebengruppen des Periodensystems (insbesondere Pd, Pt, Au und Ag) in Betracht, wie sie beispielsweise in den EP-A 34 485, 81 438, 131 195 beschrieben werden. Besonders geeignet sind organometallische Verbindungen des Palladiums mit Olefinen (Dienen), mit α, β-ungesättigten Carbonylverbindungen, mit Kronenethern, mit Nitrilen und mit Diketonen wie Pentadion-2,4. Ganz besonders geeignet sind Butadienpalladiumdichlorid, Bisacetonitrilpalladiumdichlorid, Bisbenzonitrilpalladiumdichlorid, 4-Cyclohexen-1,2-dicarbonsäureanhydridpalladiumdichlorid, Mesityloxidpalladiumchlorid, 3-Hepten-2-on-palladiumchlorid, 5-Methyl-3-hexen-2-on-palladiumchlorid und Bispentadion-2,4-palladium.
  • Ferner kommen O-wertige Komplexverbindungen wie Palladium(O)-tetrakis-(triphenylphosphin) in Betracht. Als ionogene Edelmetalle kommen Salze, wie Halogenide, Acetate, Nitrate, Carbonate, Sulfate, Sulfide und Hydroxide, wie beispielsweise PdS, Na₂PdCl₄, Na₂PdCN₄, H₂PtCl₆, AgNO₃, Ag₂SO₄, Ag₂S in Betracht.
  • Als kolloidale Edelmetallsysteme sei auf Pd-Mohr, Pd auf Kohle, Pd auf Al₂O₃, Pd auf BaSO₄ und Pd auf A-Kohle hingewiesen.
  • Die Menge des Edelmetalls kann im Bereich 0,05 - 2,5 Gew.-%, bezogen auf die gesamte Formulierung, breit variiert werden. Die bevorzugte Edelmetallmenge liegt bei 0,1 - 1,0 Gew.-%.
  • Als Füllstoffe c) kommen Oxide der Elemente Mn, Ti, Mg, Al, Bi, Cu, Ni, Sn, Zn und Si, ferner Silikate, Bentonite, Talkum und Kreide in Betracht. Vorzugsweise jedoch werden solche anorganischen bzw. organischen Füllstoffe eingesetzt, deren Widerstand vorzugsweise zwischen 0,01-10⁴Ω/cm liegt. Der besonders bevorzugte Füllstoff ist Leitruß. In weiterhin bevorzugter Weise kommen Mischungen aus solchen anorganischen oder organischen Füllstoffen in Betracht.
  • Die Menge des Füllstoffes kann im Bereich von 0,5-35, vorzugsweise jedoch 3-20, besonders bevorzugt 5-15 Gew.-%, bezogen auf Primermasse, breit variiert werden.
  • Als Lösungsmittel d) in den erfindungsgemäßen Primern kommen in der Druck- bzw. Lackiertechnik bekannte Substanzen in Betracht wie aromatische und aliphatische Kohlenwasserstoffe, beispielsweise Toluol, Xylol, Benzin, Glyzerin; Ketone, beispielsweise Methylethylketon, Cyclohexanon; Ester, beispielsweise Essigsäurebutylester, Phthalsäuredioctylester, Glykolsäurebutylester; Glykolether, beispielsweise Ethylenglykolmonomethylether, Diglyme, Propylenglykolmonomethylether; Ester von Glykolethern, beispielsweise Ethylenglykolacetat, Propylenglykolmonomethyletheracetat; Diacetonalkohol. Selbstverständlich können auch Gemische dieser Lösungsmittel und ihre Verschnitte mit anderen Lösungsmitteln eingesetzt werden. Die eingesetzten Mengen betragen 50-90 Gew.-%, vorzugsweise 60-85 Gew.-%.
  • Die Herstellung des erfindungsgemäßen Primers geschieht im allgemeinen durch Vermischen der Bestandteile. Das Einarbeiten der Komponenten kann auch in getrennten Schritten durchgeführt werden.
  • Der Primer kann nach den üblichen Methoden wie Bedrucken, Bestempeln, Tauchen, Streichen, Rakeln und Besprühen auf die Kunststoffoberflächen aufgebracht werden.
  • Die Schichtdicke des Primers kann im Bereich von 0,1-200 µm, vorzugsweise jedoch im Bereich von 5-30 µm, variiert werden.
  • In diesem Zusammenhang sei ausdrücklich erwähnt, daß durch Einsatz von erfindungsgemäßen Primern eine quellende Haftbehandlung des Kunstoffes nicht erforderlich ist. Dadurch wird die Bildung von Spannungsrissen vermieden.
  • Als Substrate für das erfindungsgemäße Verfahren eignen sich Werkstücke auf Basis von anorganischen Gläsern, Metallen und insbesondere Kunstoffen. Besonders bevorzugt sind Kunststoffe, wie sie im Elektro-, Elektronik- und Haushaltsbereich eingesetzt werden. In diesem Zusammenhang sei auf ABS-, PC-(Polycarbonat) bzw. deren Mischungen und flammfest ausgerüsteten Typen wie z.B Bayblend® FR-90, 1441, 1439 und 1448, Polyamid-, Polyestertypen, PVC, Polyethylen und Polypropylen hingewiesen. Flammfestes Ausrüsten von Kunststoffen ist bekannt. Hierzu werden beispielsweise polybromierte Bisphenole und halogenierte Benzylphosphonate (GB-A 2 126 231, DE-A 4 007 242) eingesetzt.
  • Die so modifizierten Oberflächen können anschließend durch Reduktion sensibilisiert werden. Dazu können bevorzugt die in der Galvanotechnik üblichen Reduktionsmittel, wie Hydrazinhydrat, Formaldehyd, Hypophosphit oder Borane verwendet werden. Natürlich sind auch andere Reduktionsmittel möglich. Bevorzugt wird die Reduktion in wäßriger Lösung durchgeführt. Es sind aber auch andere Lösungsmittel wie Alkohole, Ether, Kohlenwasserstoffe einsetzbar. Selbstverständlich können auch Suspensionen oder Aufschlämmungen der Reduktionsmittel verwendet werden.
  • Die so aktivierten Oberflächen können direkt zur stromlosen Metallisierung eingesetzt werden. Es kann aber auch erforderlich sein, die Oberflächen durch Spülen von Reduktionsmittelresten zu reinigen.
  • Eine ganz besonders bevorzugte Ausführungsform des erfindungsgemäßen Verfahrens besteht darin, daß die Reduktion im Metallisierungsbad gleich mit dem Reduktionsmittel der stromlosen Metallisierung durchgeführt wird. Diese Ausführung stellt eine Vereinfachung der stromlosen Metallisierung dar. Diese ganz einfache Ausführungsform besteht nur noch aus den drei Arbeitsgängen: Eintauchen des Substrats in die Lösung der organischen Verbindung bzw. Aufbringen oder Aufsprühen des Primers, Verdampfen des Lösungsmittels und Eintauchen der so aktivierten Oberflächen in das Metallisierungsbad (Reduktion und Metallisierung).
  • Diese Ausführungsform ist ganz besonders für aminboranhaltige Nickelbäder oder formalinhaltige Kupferbäder geeignet.
  • Als in dem erfindungsgemäßen Verfahren einsetzbare Metallisierungsbäder kommen bevorzugt Bäder mit Nickelsalzen, Kobaltsalzen, Kupfersalzen, Gold- und Silbersalzen oder deren Gemische untereinander oder mit Eisensalzen in Betracht. Derartige Metallisierungsbäder sind in der Technik der stromlosen Metallisierung bekannt.
  • Das erfindungsgemäße Verfahren hat den Vorteil, daß es auch ohne vorheriges oxidatives Ätzen und/oder Quellen bzw. Behandeln mit Polymerketten aufweitenden Lösungsmitteln der Substratoberfläche, eine haftfeste Metallabscheidung durch die nachfolgende selektive stromlose Metallisierung nur mit Hilfe der Primeroberfläche ermöglicht.
  • Somit ermöglicht das neue Verfahren eine materialschonende und umweltfreundliche, kostengünstige, sowohl ganzflächige als auch partielle Metallabscheidung auf Werkstoffoberflächen. Nach dem neuen Verfahren metallisierte Werkstoffe zeichnen sich durch ihre hervorragende Abschirmung gegenüber elektromagnetischen Wellen aus. Diese Werkstoffe finden Verwendung im Elektro-, Automobil-, Elektronik- und Haushaltsbereich.
  • Die guten mechanischen Eigenschaften des polymeren Basismaterials wie Schlagzähigkeit, Kerbschlagzähigkeit, Biegefestigkeit und Randfaserdehnung werden durch den Lackierungs-, bzw. Metallisierungsvorgang nicht negativ beeinflußt.
  • Bei den in nachfolgenden Beispielen genannten Produktnamen handelt es sich zum Teil um eingetragene Warenzeichen.
  • Beispiel 1
  • Eine 100 x 100 mm große Testplatte aus einem Blend, bestehend aus 60 % eines Polyesters aus 4,4'-Dihydroxydiphenyl-2,2-propan und Kohlensäure und 40 % Acrylnitril-Butadien-Styrol-Copolymerisat mit einer Vicattemperatur von ca 90°C, wurde mit einem 10 µm starken Primer einseitig versehen und bei 80°C im Verlauf von 45 Minuten getrocknet.
  • Der Primer bestand aus
       53,7 Gew.-Teilen Polyurethanharz,
       198 Gew.-Teilen Lösemittelgemisch, bestehend aus Toluol, Diacetonalkohol und Isopropanol (1:1:1);
       14,7 Gew.-Teilen Titandioxid;
       5,4 Gew.-Teilen Talkum;
       5,4 Gew.-Teilen Kreide;
       7,2 Gew.-Teilen Ruß; 20 %ig in Butylacetat;
       6,6 Gew.-Teilen Polyester mit 4,3 % OH-Gruppen mit einer Oberflächenspannung > 45 mN/m, 20 %ige Lösung in MEK (Methylethylketon) und DAA (Diacetonalkohol) (1:1);
       9 Gew.-Teilen Schwebemittel auf Silikatbasis, 10 %iger Aufschluß in Xylol und
       0,35 Gew.-Teilen Bisbenzonitrilpalladium-II-dichlorid.
  • Dann wurde die Testplatte in einem Reduktionsbad, bestehend aus 10 g Dimethylaminboran und 1,0 g NaOH in 1 Liter Wasser, bei 30°C behandelt und anschließend bei Raumtemperatur in einem chemischen Verkupferungsbad im Verlaufe von 30 Minuten verkupfert, mit destilliertem Wasser gewaschen und anschließend bei 80°C 30 Minuten getempert. Dabei bildete sich eine 1,5 µm starke Kupferschicht.
  • Man bekam eine einseitig metallisierte Platte. Diese Platte war gegenüber elektromagnetischen Wellen abschirmend.
  • Die Metallauflage haftete an der Primeroberfläche so gut, daß sie sowohl den Tesafilmtest nach DIN 53 151, als auch den Wärmeschocktest sehr gut bestand.
  • Ferner wies die Metallauflage eine Abzugsfestigkeit nach DIN 53 494 von 25 N/25 mm auf.
  • Beispiel 2
  • Eine Polyphenylenoxid/Polystyrol-Platte wurde mit einem Primer, bestehend aus
       53,7 Gew.-Teilen Polyurethanharz
       200 Gew.-Teilen Lösemittelgemisch, bestehend aus Toluol, Diacetonalkohol und Isopropanol (1:1:1)
       15 Gew.-Teilen Titandioxid
       6 Gew.-Teilen Talkum
       8 Gew.-Teilen Ruß, 20 %ig in Butylacetat
       7 Gew.-Teilen Poly-2-ethyl-2-oxazolin, 20 %ige Lösung in MEK
       8 Gew.-Teilen Schwebemittel auf Silikatbasis, 10 %iger Aufschluß in Xylol,
       0,5 Gew.-Teilen 3-Hexen-2-on-palladiumchlorid,
    einseitig versehen und bei 80°C im Verlaufe von 45 Minuten getrocknet.
  • Die so lackierte Platte wurde in einem chemischen Verkupferungsbad im Verlaufe von 45 Minuten mit einer 2 µm starken Cu-Auflage versehen.
  • Man bekam eine einseitig metallisierte Kunststoff-Platte mit einer sehr guten Metallhaftung.
  • Diese Platte war gegenüber elektromagnetischen Wellen gut abschirmend.
  • Beispiel 3
  • Eine 100 x 100 mm große Testplatte aus einem Blend, bestehend aus ca. 70 % eines Polyesters aus 4,4'-Dihydroxydiphenyl-2,2-propan und Kohlensäure und ca, 30 % Acrylnitril-Butadien-Styrol-Copolymerisat mit einer Vicattemperatur von ca, 110°C, wurde nach Beispiel 1 mit einer Lackauflage und dann mit einer Metallauflage versehen. Man bekam eine gegenüber elektromagnetischen Wellen gut abschirmende Platte mit einer guten Metallhaftung.
  • Beispiel 4
  • Eine 100 x 100 mm große ABS-Platte wurde mit einem Primer, bestehend aus 50 Gew.-Teilen einer Polyolkomponente aus.
       88,76 Gew.-Teilen eines Polyesterpolyols des Molekulargewichts 2000 aus Adipinsäure, Ethylenglykol und 1,4-Dihydroxybutan (Molverhältnis der Diole 70:30)
       8,0 Gew.-Teilen Ethylenglykol
       0,5 Gew.-Teilen Wasser
       0,5 Gew.-Teilen Triethylendiamin
       0,55 Gew.-Teilen eines handelsüblichen Polysiloxanstabilisators
       1,25 Gew.-Teilen Na₂PdCl₄ und
       1,0 Gew.-Teil Tetrabutylammoniumchlorid,
    und 50 Gew.-Teilen einer Polyisocyanat-Komponente aus
       90,0 Gew.-Teilen eines NCO-Prepolymeren aus 65,0 Gew.-Teilen 4,4'-Diisocyanatdiphenylmethan und 38,0 Gew.-Teilen des in Polyolkomponente verwendeten Polyesterpolyols
       250,0 Gew.-Teilen Lösemittelgemisch, bestehend aus Toluol, Diacetonalkohol und Isopropanol (1:1:1)
       15,0 Gew.-Teilen Kreide
       8,0 Gew.-Teilen Ruß, 20 %ig in Butylacetat
       10,0 Gew.-Teilen Polyester mit 3,2 % OH-Gruppen mit einer Oberflächenspannung > 48 mN/m, 20 %ige Lösung in Methylethylketon und Diacetonalkohol (1:1),
    mittels Roboter 15 µm stark einseitig beschichtet, dann nach Beispiel 1 verkupfert und bei 70°C 20 Minuten getempert. Man bekam eine gegenüber elektromagnetischen Wellen abgeschirmende Kunststoffplatte mit guter Metallhaftung. Die Haftung der Metallauflage betrug 20 N/25 mm.
  • Beispiel 5
  • Eine 100 x 150 mm große Testplatte aus einem Polycarbonat wurde mit einer ca. 15 µm dicken Primerschicht versehen und bei 65°C im Verlauf von 30 Minuten getrocknet.
  • Der Primer bestand aus
       50 Gew.-Teilen eines physikalisch trocknenden 1-K.-Polyurethanharzes;
       750 Gew.-Teilen Lösungsmittelgemisch, bestehend aus Toluol, Diacetonalkohol und Isopropanol (1:1:1);
       55 Gew.-Teilen Titandioxid;
       25 Gew.-Teilen Talkum
       25 Gew.-Teilen Kreide
       50 Gew.-Teilen des Polyamidschmelzklebers der Fa. Schering des Typs Eurolen 2140, 20 %ige Lösung in MEK : DAA = 1:1
       4 Gew.-Teilen Silbernitrat
    Nach dem Trocknen wurde die Testplatte in einem chemischen Verkupferungsbad im Verlaufe von 30 Minuten verkupfert, mit Wasser gewaschen und anschließend bei Raumtemperatur getrocknet.
  • Es hatte sich eine 2 µm starke Kupferschicht gebildet, die eine Abzugsfestigkeit nach DIN 53 494 von 15 N/25 mm aufwies.
  • Diese metallisierte Platte wies gegenüber elektromagnetischen Wellen eine hervorragende Abschirmung auf.

Claims (10)

  1. Primer zum Abscheiden von haftfesten Metallauflagen auf Substratoberflächen durch gegebenenfalls Sensibilisieren und anschließende stromlose naßchemische Metallisierung, bestehend im wesentlichen aus
    a) einem Film- bzw. Matrixbildner in einer Menge von 3-30 Gew.-%,
    b) einem ionogenen und/oder kolloidalen Edelmetall oder dessen organometallischer kovalenter Verbindung oder Komplexverbindung mit organischen Liganden in einer Menge von 0,05-2,5 Gew.-%, gerechnet als Metall,
    c) organischen und/oder anorganischen Füllstoffen in einer Menge von 0,5-35 Gew.-% und
    d) organischen Lösemitteln in einer Menge von 50-90 Gew.-%,
    sowie
    e) einem organischen polymeren bzw. prepolymeren Additiv mit einer Molmasse von 500-20 000 aus der Gruppe der Polyoxazoline, Polymethacrylsäure bzw. deren Estern, Polyacrylate, Polyamide, Polyester, Polyalkohole und Polyamine in einer Menge von 0,1-15 Gew.-%,
    wobei alle Gewichtsangaben auf die Gesamtformulierung des Primers bezogen sind.
  2. Primer nach Anspruch 1, dadurch gekennzeichnet, daß der Filmbildner aus einem Polyurethan besteht.
  3. Primer nach Anspruch 1, dadurch gekennzeichnet, daß er Additive e) in Mengen von 0,3 bis 5 Gew.-%, bezogen auf Primermasse, enthält.
  4. Primer nach Anspruch 1 und 3, dadurch gekennzeichnet, daß das Additiv e) ein aliphatischer Polyester und/oder Polyamid und/oder Polyoxazolin ist.
  5. Primer nach Anspruch 1, dadurch gekennzeichnet, daß er Komplexverbindungen oder anorganische Salze der Elemente Cu, Au, Ag, Pt, Pd oder Ru in 0,05-2,5 Gew.-%, bezogen auf die Primermasse, enthält.
  6. Primer nach Anspruch 1, dadurch gekennzeichnet, daß er Füllstoffe in 0,5-35 Gew.-%, bezogen auf die Primermasse, enthält.
  7. Primer nach Anspruch 1 und 6, dadurch gekennzeichnet, daß er als Füllstoff Silikate und/oder Leitruße enthält.
  8. Verfahren zur Beschichtung von Substratoberflächen für deren stromlose Metallisierung, dadurch gekennzeichnet, daß diese mit einem Primer gemäß Anspruch 1 behandelt werden.
  9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß vor der naßchemischen Metallisierung eine Sensibilisierung mit Reduktionsmitteln wie Formalin, Dimethylaminoboran oder Hydrazin vorgenommen wird.
  10. Verwendung des Verfahrens nach Anspruch 8 zur Herstellung von metallisierten Formkörpern für die Abschirmung elektromagnetischer Wellen.
EP91118731A 1990-11-16 1991-11-04 Primer zum Metallisieren von Substratoberflächen Expired - Lifetime EP0485839B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4036591A DE4036591A1 (de) 1990-11-16 1990-11-16 Primer zum metallisieren von substratoberflaechen
DE4036591 1990-11-16

Publications (3)

Publication Number Publication Date
EP0485839A2 EP0485839A2 (de) 1992-05-20
EP0485839A3 EP0485839A3 (en) 1993-02-24
EP0485839B1 true EP0485839B1 (de) 1995-01-04

Family

ID=6418415

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91118731A Expired - Lifetime EP0485839B1 (de) 1990-11-16 1991-11-04 Primer zum Metallisieren von Substratoberflächen

Country Status (5)

Country Link
US (1) US5378268A (de)
EP (1) EP0485839B1 (de)
JP (1) JPH04365872A (de)
CA (1) CA2055352C (de)
DE (2) DE4036591A1 (de)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5411795A (en) * 1992-10-14 1995-05-02 Monsanto Company Electroless deposition of metal employing thermally stable carrier polymers
DE4319759A1 (de) * 1993-06-15 1994-12-22 Bayer Ag Pulvermischungen zum Metallisieren von Substratoberflächen
DE19736093A1 (de) * 1997-08-20 1999-02-25 Bayer Ag Herstellung dreidimensionaler Leiterplatten
DE19812880A1 (de) 1998-03-24 1999-09-30 Bayer Ag Formteil und flexible Folie mit geschützter Leiterbahn und Verfahren zu ihrer Herstellung
JP2002001880A (ja) * 2000-06-20 2002-01-08 Inoac Corp 導電性プラスチック成形品およびその製造方法
DE10243132B4 (de) * 2002-09-17 2006-09-14 Biocer Entwicklungs Gmbh Antiinfektiöse, biokompatible Titanoxid-Beschichtungen für Implantate sowie Verfahren zu deren Herstellung
US20050241951A1 (en) * 2004-04-30 2005-11-03 Kenneth Crouse Selective catalytic activation of non-conductive substrates
US7255782B2 (en) 2004-04-30 2007-08-14 Kenneth Crouse Selective catalytic activation of non-conductive substrates
JP4859232B2 (ja) * 2004-09-10 2012-01-25 Jx日鉱日石金属株式会社 無電解めっき前処理剤及びフレキシブル基板用銅張り積層体
GB0422386D0 (en) * 2004-10-08 2004-11-10 Qinetiq Ltd Active filler particles in inks
JP2008007849A (ja) * 2006-06-01 2008-01-17 Nippon Paint Co Ltd 無電解めっき用プライマー組成物及び無電解めっき方法
US7909977B2 (en) * 2008-03-27 2011-03-22 Intel Corporation Method of manufacturing a substrate for a microelectronic device, and substrate formed thereby
JP2012516912A (ja) * 2009-01-30 2012-07-26 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 光学密度が増大したインクジェットインク
GB2549222B (en) * 2014-02-19 2018-06-20 Golden Mark Water color paint system
EP3675733A1 (de) 2017-08-28 2020-07-08 DSM IP Assets B.V. Synthetische membranzusammensetzung mit einem fluorierten polyurethan
KR102573462B1 (ko) * 2017-08-28 2023-09-04 디에스엠 아이피 어셋츠 비.브이. 폴리우레탄과 폴리옥사졸린을 포함하는 합성 멤브레인 조성물
CN109694685B (zh) * 2018-12-31 2021-07-13 苏州思德新材料科技有限公司 一种阻燃型单组份泡沫填缝剂及其制备方法
CN114958169B (zh) * 2022-05-11 2022-12-02 电子科技大学 一种用于制备图形化金属层的交联催化剂

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3560257A (en) * 1967-01-03 1971-02-02 Kollmorgen Photocircuits Metallization of insulating substrates

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3900320A (en) * 1971-09-30 1975-08-19 Bell & Howell Co Activation method for electroless plating
US4017265A (en) * 1972-02-15 1977-04-12 Taylor David W Ferromagnetic memory layer, methods of making and adhering it to substrates, magnetic tapes, and other products
DE2443488A1 (de) * 1973-10-25 1975-04-30 Akad Wissenschaften Ddr Metallisierte koerper und verfahren zu deren herstellung
US4368281A (en) * 1980-09-15 1983-01-11 Amp Incorporated Printed circuits
DE3148280A1 (de) * 1981-12-05 1983-06-09 Bayer Ag, 5090 Leverkusen Verfahren zur aktivierung von substratoberflaechen fuer die stromlose metallisierung
US4701351A (en) * 1986-06-16 1987-10-20 International Business Machines Corporation Seeding process for electroless metal deposition
DE3627256A1 (de) * 1986-08-12 1988-02-18 Bayer Ag Verfahren zur verbesserung der haftfestigkeit von stromlos abgeschiedenen metallschichten auf kunststoffoberflaechen
DE3743780A1 (de) * 1987-12-23 1989-07-06 Bayer Ag Verfahren zur verbesserung der haftfestigkeit von stromlos abgeschiedenen metallschichten auf polyimidoberflaechen
DE3814506A1 (de) * 1988-04-29 1989-11-09 Bayer Ag Verfahren zum metallisieren von substratoberflaechen
US5053280A (en) * 1988-09-20 1991-10-01 Hitachi-Chemical Co., Ltd. Adhesive composition for printed wiring boards with acrylonitrile-butadiene rubber having carboxyl groups and 20 ppm or less metal ionic impurities; an alkyl phenol resin; an epoxy resin; palladium catalyst, and coupling agent

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3560257A (en) * 1967-01-03 1971-02-02 Kollmorgen Photocircuits Metallization of insulating substrates

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Römpps Chemie Lexikon, Band 1, 8. Auflage, 1979, Seiten 64-65 *
Römpps Chemie Lexikon, Band 4, 8. Auflage, 1985, Seiten 2866-2867 *

Also Published As

Publication number Publication date
EP0485839A3 (en) 1993-02-24
CA2055352A1 (en) 1992-05-17
US5378268A (en) 1995-01-03
JPH04365872A (ja) 1992-12-17
DE59104146D1 (de) 1995-02-16
DE4036591A1 (de) 1992-05-21
EP0485839A2 (de) 1992-05-20
CA2055352C (en) 1999-10-26

Similar Documents

Publication Publication Date Title
EP0485839B1 (de) Primer zum Metallisieren von Substratoberflächen
EP0082438B1 (de) Verfahren zur Aktivierung von Substratoberflächen für die stromlose Metallisierung
US7842636B2 (en) Catalyst composition and deposition method
EP0920033B1 (de) Beschichtete nicht-leitende Erzeugnisse und Verfahren zur Herstellung
EP0503351B1 (de) Hydroprimer zum Metallisieren von Substratoberflächen
EP0256395B1 (de) Verfahren zur Verbesserung der Haftfestigkeit von stromlos abgeschiedenen Metallschichten auf Kunststoffoberflächen
EP0340513B1 (de) Verfahren zum Metallisieren von Substratoberflächen
EP0255012A2 (de) Verfahren zur Verbesserung der Haftfestigkeit von stromlos abgeschiedenen Metallschichten auf Kunststoffoberflächen
DE112018003567T5 (de) Zusammensetzung zur bildung einer grundierung zum stromlosen plattieren
US5200272A (en) Process for metallizing substrate surfaces
EP0132677A1 (de) Verfahren zum Aktivieren von Substratoberflächen für die direkte partielle Metallisierung von Trägermaterialien
DE10002102A1 (de) Primer für die Metallisierung von Substratoberflächen
EP0093279A2 (de) Metallisierte Polymergranulate, ihre Herstellung und Verwendung
EP0508265B1 (de) Formulierung zum Aktivieren von Substratoberflächen für deren stromlose Metallisierung
DE4015717A1 (de) Formulierung zum aktivieren von substratoberflaechen fuer deren stromlose metallisierung
WO1999009794A1 (de) Herstellung dreidimensionaler leiterplatten
EP0110172B1 (de) Verfahren zur Herstellung von Verbundwerkstoffen
DE4041472A1 (de) Formulierung zum aktivieren von substratoberflaechen fuer deren stromlose metallisierung
DE69120355T2 (de) Stromlose Plattierung von Materialien mit elektrophiler Polarität
EP0633298A1 (de) Pulvermischungen zum Metallisieren von Substratoberflächen
DE4202705A1 (de) Aktivprimer zum metallisieren von substratoberflaechen
DE4041473A1 (de) Formulierung zum aktivieren von substratoberflaechen fuer deren stromlose metallisierung
DE4142762A1 (de) Pulvermischungen zum metallisieren von substratoberflaechen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE CH DE FR GB IT LI NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): BE CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19930618

17Q First examination report despatched

Effective date: 19940310

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE FR GB IT LI NL SE

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950117

ITF It: translation for a ep patent filed
REF Corresponds to:

Ref document number: 59104146

Country of ref document: DE

Date of ref document: 19950216

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20031016

Year of fee payment: 13

Ref country code: CH

Payment date: 20031016

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20031120

Year of fee payment: 13

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041130

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041130

BERE Be: lapsed

Owner name: *BAYER A.G.

Effective date: 20041130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050601

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20050601

BERE Be: lapsed

Owner name: *BAYER A.G.

Effective date: 20041130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20071019

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20071018

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20081121

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20081124

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20081113

Year of fee payment: 18

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20081104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081105

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091104