EP0465686B1 - Oxydations- und korrosionsbeständige Legierung für Bauteile für einen mittleren Temperaturbereich auf der Basis von dotiertem Eisenaluminid Fe3Al - Google Patents

Oxydations- und korrosionsbeständige Legierung für Bauteile für einen mittleren Temperaturbereich auf der Basis von dotiertem Eisenaluminid Fe3Al Download PDF

Info

Publication number
EP0465686B1
EP0465686B1 EP90113008A EP90113008A EP0465686B1 EP 0465686 B1 EP0465686 B1 EP 0465686B1 EP 90113008 A EP90113008 A EP 90113008A EP 90113008 A EP90113008 A EP 90113008A EP 0465686 B1 EP0465686 B1 EP 0465686B1
Authority
EP
European Patent Office
Prior art keywords
fe3al
rest
alloys
oxidation
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90113008A
Other languages
English (en)
French (fr)
Other versions
EP0465686A1 (de
Inventor
Mohamed Dr. Nazmy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Asea Brown Boveri Ltd
ABB AB
Original Assignee
ABB Asea Brown Boveri Ltd
Asea Brown Boveri AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Asea Brown Boveri Ltd, Asea Brown Boveri AB filed Critical ABB Asea Brown Boveri Ltd
Priority to DE59007276T priority Critical patent/DE59007276D1/de
Priority to EP90113008A priority patent/EP0465686B1/de
Priority to US07/721,273 priority patent/US5158744A/en
Priority to JP16309891A priority patent/JP3229339B2/ja
Priority to PL91290941A priority patent/PL166845B1/pl
Priority to CS912067A priority patent/CZ282696B6/cs
Priority to SU915001206A priority patent/RU1839684C/ru
Priority to KR1019910011463A priority patent/KR100205263B1/ko
Publication of EP0465686A1 publication Critical patent/EP0465686A1/de
Application granted granted Critical
Publication of EP0465686B1 publication Critical patent/EP0465686B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium

Definitions

  • Alloys for the medium temperature range for thermal machines based on intermetallic compounds which are suitable for directional solidification, replace stainless steels and partly supplement the conventional nickel-based superalloys or replace other intermetallic compounds.
  • the invention relates to the further development and improvement of the alloys based on an intermetallic compound of the type iron aluminide Fe3Al with further additives which improve the mechanical properties (strength, toughness, ductility).
  • the invention relates to an oxidation and corrosion-resistant alloy for components for a medium temperature range on the basis of doped iron aluminide Fe3Al.
  • Nickel aluminides and titanium aluminides which partially supplement or replace classic nickel-based superalloys, are generally known.
  • the invention has for its object to provide a comparatively inexpensive alloy with high oxidation and corrosion resistance in the medium temperature range (300 to 700 ° C) and at the same time sufficient heat resistance and sufficient toughness at room temperature and in the lower temperature range, which is easy to cast and is also suitable for directional solidification.
  • the alloy is said to consist essentially of a comparatively high-melting intermetallic compound with further additives.
  • Fig. 1 is a graphical representation of the influence of V addition on the Vickers hardness (kg / mm2) of some alloys based on the intermetallic compound iron aluminide Fe3Al at room temperature.
  • the B addition ranged between 0.1 at.% And a maximum of 4 at.% At the expense of the Fe content.
  • Fig. 2 shows a graphical representation of the influence of B addition on the elongation at break ⁇ (%) of some alloys based on the intermetallic compound iron aluminide Fe3Al at room temperature.
  • the B addition ranged between 0.1 at.% And a maximum of 4 at.% At the expense of the Fe content.
  • An increase in the elongation at break was initially observed due to the addition of B, with a maximum occurring at approx. 2 at% each. If the B addition was increased further, the elongation at break decreased again due to embrittlement (boride excretions).
  • Fig. 3 is a graphical representation of the influence of Si addition on the Vickers hardness HV (kg / mm2) of some alloys based on the intermetallic compound iron aluminide Fe3Al at room temperature.
  • the Si addition ranged between 0.5 and a maximum of 2 at% at the expense of the Fe content.
  • Fig. 4 is a graphical representation of the influence of Nb addition on the Vickers hardness HV (kg / mm2) of some alloys based on the intermetallic compound iron aluminide Fe3Al at room temperature.
  • Nb ranged from 0.6 at.% To a maximum of 2 at.% At the expense of the Fe content.
  • the Vickers hardness decreased to a small extent in order to reach or exceed the original value of the Nb-free alloys again at approx. 1 at.% Nb.
  • Fig. 5 shows a graphical representation of the influence of Nb addition on the elongation at break ⁇ (%) of some alloys based on the intermetallic compound iron aluminide Fe3Al at room temperature.
  • Nb ranged from 0.5 at.% To a maximum of 2 at.% At the expense of the Fe content.
  • the individual elements with a purity of 99.99% served as the starting materials.
  • the melt was poured into a cast blank of approximately 60 mm in diameter and approximately 80 mm in height.
  • the blank was melted again under protective gas and also forced under solidification to solidify in the form of rods with a diameter of approximately 8 mm and a length of approximately 80 mm.
  • the bars were processed directly into pressure samples for short-term tests without subsequent heat treatment.
  • the mechanical properties achieved were measured as a function of the test temperature.
  • a further improvement of the mechanical properties through a suitable heat treatment is within the realm of possibility. There is also the possibility of improvement by directional solidification, for which the alloy is particularly suitable.
  • the melt was poured off analogously to embodiment 1, melted again under argon and forced to solidify in the form of a rod.
  • the dimensions of the rods corresponded to embodiment 1.
  • the rods were processed directly into pressure samples without subsequent heat treatment.
  • the values of the mechanical properties achieved as a function of the test temperature corresponded approximately to those of Example 1. These values can be further improved by heat treatment.
  • Example 2 The melt was poured off as in Example 1, melted again under argon and cast into prisms of square cross section (8 mm ⁇ 8 mm ⁇ 100 mm). Test specimens for pressure, hardness and impact tests were produced from these prisms. The mechanical properties corresponded approximately to those of the previous examples. Heat treatment resulted in a further improvement in these values.
  • Alloying the element Cr further increases the resistance to oxidation.
  • the influence on the mechanical properties seems to be different, depending on which other alloy components are still present and the type of crystal structure in detail.
  • the Cr seems to have a favorable effect with certain contents of further additional doping elements. Additions of more than 10 at.% Cr generally impair the mechanical properties again.
  • the element Nb increases hardness and strength in certain areas.
  • the ductility (elongation at break) passes through a maximum for certain alloys at 1 atom% Nb.
  • Alloying B generally attempts to increase ductility. However, its effects appear to be beneficial overall only when certain other elements are present. At low B contents, the hardness drops slightly in order to increase again at contents of more than 2 at%. At very high B levels, this appears to be due to the formation of hard borides. The elongation at break of certain alloys runs at 2 at% B through a characteristic maximum. B contents of more than 2 at.% Are therefore of little use. You can deal with max. Satisfy 1 at%.
  • Si improves the castability and has a favorable effect on the resistance to oxidation. It increases the hardness of practically all alloys and consistently compensates for the drop in strength caused by B additives.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Powder Metallurgy (AREA)

Description

    TECHNISCHES GEBIET
  • Legierungen für den mittleren Temperaturbereich für thermische Maschinen auf der Basis von intermetallischen Verbindungen, welche sich für gerichtete Erstarrung eignen, nichtrostende Stähle ersetzen und zum Teil die konventionellen Nickelbasis-Superlegierungen ergänzen oder andere intermetallische Verbindungen ersetzen.
  • Die Erfindung bezieht sich auf die Weiterentwicklung und Verbesserung der auf einer intermetallischen Verbindung des Typs Eisenaluminid Fe₃Al basierenden Legierungen mit weiteren, die mechanischen Eigenschaften (Festigkeit, Zähigkeit, Dehnbarkeit) verbessernden Zusätzen.
  • Im engeren Sinne betrifft die Erfindung eine oxydations- und korrosionsbeständige Legierung für Bauteile für einen mittleren Temperaturbereich auf der Basis von dotiertem Eisenaluminid Fe₃Al.
  • STAND DER TECHNIK
  • Intermetallische Verbindungen und von ihnen abgeleitete Legierungen gewinnen in letzter Zeit mehr und mehr an Bedeutung als einsatzfähige Werkstoffe im Gebiet mittlerer und höherer Temperaturen. Allgemein bekannt sind Nickelaluminide und Titanaluminide, welche zum Teil klassische Nickelbasis-Superlegierungen ergänzen bzw. ersetzen.
  • Seit längerer Zeit sind die verschiedenen Aluminide des Eisens, vor allem als oxydations- und zunderbeständige Schutzschichten auf Bauteilen aus Eisen und Stahl bekannt. Man hat diese durch Aufspritzen von Aluminium auf Körper aus Stahl und nachfolgendes Glühen hergestellten intermetallischen Verbindungen wegen ihrer verhältnismässigen Sprödheit jedoch kaum als Konstruktionsstoffe in Betracht gezogen. In letzter Zeit wurden jedoch vor allem die eisenreichen, in der Nähe der Phase Fe₃Al befindlichen Legierungen auf ihre Geeignetheit als Werkstoffe für den Temperaturbereich Raumtemperatur bis ca. 600 °C näher untersucht. Es wurde auch schon vorgeschlagen, ihre Eigenschaften durch Zulegieren weiterer Elemente zu verbessern. Derartige Werkstoffe könnten erfolgreich in Wettbewerb mit den klassischen korrosionsbeständigen Stählen im Temperaturbereich um ca. 500 °C herum treten. Im folgenden werden zum Stand der Technik die veröffentlichten Dokumente zitiert:
    • H. Thonye, "Effects of DO₃ transitions on the yield behaviour of Fe-Al Alloys", Metals and ceramics division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, Mat. Res. Soc. Symp. proc. Vol 39, 1985 Materials Research Society.
    • S.K. Ehlers and M.G. Mandiratta, "Tensile behaviour of polycrystalline Fe-31 at.-% Al Alloy", Systems Research Laboratories Inc., Dayton, OH 45440, TMS Annual Meeting February 1982, The Journal of Minerals, Metals and Materials Society.
  • Die bekannten, auf Fe₃Al basierenden Legierungen genügen den technischen Anforderungen noch nicht vollumfänglich. Es besteht daher ein Bedürfnis zu ihrer Weiterentwicklung.
  • DARSTELLUNG DER ERFINDUNG
  • Der Erfindung liegt die Aufgabe zugrunde, eine vergleichsweise preiswerte Legierung mit hoher Oxydations- und Korrosionsbeständigkeit im mittleren Temperaturbereich (300 bis 700 °C) und gleichzeitig hinreichender Warmfestigkeit und genügender Zähigkeit bei Raumtemperatur und im unteren Temperaturbereich anzugeben, die leicht vergiessbar ist und sich zudem für gerichtete Erstarrung eignet. Die Legierung soll im wesentlichen aus einer vergleichsweise hochschmelzenden intermetallischen Verbindung mit weiteren Zusätzen bestehen.
  • Diese Aufgabe wird dadurch gelöst, dass die Legierung die nachfolgende Zusammensetzung aufweist:
       Al = 24 - 28 At.-%
       Nb = 0,1 - 2 At.-%
       Cr = 0,1 - 10 At.-%
       B = 0,1 - 1 At.-%
       Si = 0,1 - 2 At.-%
       Fe = Rest
  • WEG ZUR AUSFÜHRUNG DER ERFINDUNG
  • Die Erfindung wird anhand der nachfolgenden, durch Figuren näher erläuterten Ausführungsbeispiele beschrieben.
  • Dabei zeigt:
  • Fig. 1
    eine graphische Darstellung des Einflusses von B-Zusatz auf die Vickershärte HV (kg/mm²) einiger Legierungen auf der Basis der intermetallischen Verbindung Eisenaluminid Fe₃Al bei Raumtemperatur,
    Fig. 2
    eine graphische Darstellung des Einflusses von B-Zusatz auf die Bruchdehnung δ (%) einiger Legierungen auf der Basis der intermetallischen Verbindung Eisenaluminid Fe₃Al bei Raumtemperatur,
    Fig. 3
    eine graphische Darstellung des Einflusses von Si-Zusatz auf die Vickershärte HV (kg/mm²) einiger Legierungen auf der Basis der intermetallischen Verbindung Eisenaluminid Fe₃Al bei Raumtemperatur,
    Fig. 4
    eine graphische Darstellung des Einflusses von Nb-Zusatz auf die Vickershärte HV (kg/mm²) einiger Legierungen auf der Basis der intermetallischen Verbindung Eisenaluminid Fe₃Al bei Raumtemperatur,
    Fig. 5
    eine graphische Darstellung des Einflusses von Nb-Zusatz auf die Bruchdehnung δ (%) einiger Legierungen auf der Basis der intermetallischen Verbindung Eisenaluminid Fe₃Al bei Raumtemperatur,
    Fig. 6
    eine graphische Darstellung der Fliessgrenze σ0,2 (MPA) in Funktion der Temperatur für eine Gruppe von Legierungen auf der Basis der intermetallischen Verbindung Eisenaluminid Fe₃Al.
  • Fig. 1 ist eine graphische Darstellung des Einflusses von V-Zusatz auf die Vickershärte (kg/mm²) einiger Legierungen auf der Basis der intermetallischen Verbindung Eisenaluminid Fe₃Al bei Raumtemperatur.
  • Es wurden folgende Grundlegierungen untersucht:
  • Kurve 1:
    Al = 28 At.-%
    Nb = 1 At.-%
    Cr = 5 At.-%
    Fe = Rest.
  • Der B-Zusatz bewegte sich zwischen 0,1 At.-% und maximal 3 At.-% auf Kosten des Fe-Gehalts.
  • Kurve 2:
    Al = 28 At.-%
    Nb = 1 At.-%
    Cr = 5 At.-%
    Si = 2 At.-%
    Fe = Rest.
  • Der B-Zusatz bewegte sich zwischen 0,1 At.-% und maximal 4 At.-% auf Kosten des Fe-Gehalts.
  • Bei kleinen B-Zusätzen konnte zunächst ein geringer Abfall der Vickershärte festgestellt werden, woraus sich bereits auf eine gewisse Duktilisierung schliessen liess. Bei B-Gehalten von über ca. 1,5 At.-% nahm die Vickershärte wieder zu, was warscheinlich auf die Ausscheidung harter Boride zurückzuführen ist.
  • Fig. 2 zeigt eine graphische Darstellung des Einflusses von B-Zusatz auf die Bruchdehnung δ (%) einiger Legierungen auf der Basis der intermetallischen Verbindung Eisenaluminid Fe₃Al bei Raumtemperatur.
  • Es wurden folgende Grundlegierungen untersucht:
  • Kurve 3:
    Al = 28 At.-%
    Nb = 1 At.-%
    Cr = 5 At.-%
    Fe = Rest.
  • Der B-Zusatz bewegte sisch zwischen 0,1 At.-% und maximal 3 At.-% auf Kosten des Fe-Gehaltes.
  • Kurve 4:
    Al = 28 At.-%
    Nb = 1 At.-%
    Cr = 5 At.-%
    Si = 2 At.-%
    Fe = Rest.
  • Der B-Zusatz bewegte sich zwischen 0,1 At.-% und maximal 4 At.-% auf Kosten des Fe-Gehalts.
    Durch den B-Zusatz konnte zunächst eine Steigerung der Bruchdehnung beobachtet werden, wobei bei ca. 2 At.-% je ein Maximum auftrat. Bei weiterer Erhöhung des B-Zusatzes nahm die Bruchdehnung zufolge Versprödung (Borid-Ausscheidungen) wieder ab.
  • In Fig. 3 ist eine graphische Darstellung des Einflusses von Si-Zusatz auf die Vickershärte HV (kg/mm₂) einiger Legierungen auf der Basis der intermetallischen Verbindung Eisenaluminid Fe₃Al bei Raumtemperatur wiedergegeben.
  • Es wurden folgende Grundlegierungen untersucht:
  • Kurve 5:
    Al = 28 At.-%
    Nb = 1 At.-%
    Cr = 5 At.-%
    Fe = Rest.
  • Der Si-Zusatz bewegte sich zwischen 0,5 und maximal 2 At.-% auf Kosten des Fe-Gehalts.
  • Kurve 6:
    Al = 28 At.-%
    Nb = 1 At.-%
    Cr = 5 At.-%
    B = 0,1 At.-%
    Fe = Rest.
  • Der Si-Zusatz bewegte sich zwischen 0,5 und maximal 2 At.-% auf Kosten des Fe-Gehalts.
  • Kurve 1:
    Al = 28 At.-%
    Nb = 1 At.-%
    Cr = 5 At.-%
    B = 1 At.-%
    Fe = Rest.
  • Der Si-Zusatz bewegte sich zwischen 0,5 und maximal 2 At.-% auf Kosten des Fe-Gehalts.
  • Der Si-Zusatz bewirkte eine Steigerung der Vickershärte in allen Legierungen.
  • Dabei konnte beobachtet werden, dass der durch ca. 1 At.-% B-Zugabe bewirkte Härteverlust durch Si-Zusatz mehr als wettgemacht werden konnte.
  • Fig. 4 ist eine graphische Darstellung des Einflusses von Nb-Zusatz auf die Vickershärte HV (kg/mm²) einiger Legierungen auf der Basis der intermetallischen Verbindung Eisenaluminid Fe₃Al bei Raumtemperatur.
  • Es wurden folgende Grundlegierungen untersucht:
  • Kurve 8:
    Al = 28 At.-%
    Cr = 5 At.-%
    Fe = Rest.
  • Der Nb-Zusatz bewegte sich zwischen 0,5 At.-% und maximal 2 At.-% auf Kosten des Fe-Gehalts.
  • Kurve 9:
    Al = 28 At.-%
    Cr = 5 At.-%
    Si = 2 At.-%
    Fe = Rest.
  • Der Nb-Zusatz bewegte sich zwischen 0,6 At.-% und maximal 2 At.-% auf Kosten des Fe-Gehalts.
  • Bis zu einem Gehalt von ca. 1 At.-% Nb nahm die Vickershärte in geringem Mass ab, um bei ca. 1 At.-% Nb den ursprünglichen Wert der Nb-freien Legierungen wieder zu erreichen bzw. zu überschreiten.
  • Fig. 5 zeigt eine graphische Darstellung des Einflusses von Nb-Zusatz auf die Bruchdehnung δ (%) einiger Legierungen auf der Basis der intermetallischen Verbindung Eisenaluminid Fe₃Al bei Raumtemperatur.
  • Es wurden folgende Grundlegierungen untersucht:
  • Kurve 10:
    Al = 28 At.-%
    Cr = 5 At.-%
    Fe = Rest.
  • Der Nb-Zusatz bewegte sich zwischen 0,5 At.-% und maximal 2 At.-% auf Kosten des Fe-Gehalts.
  • Kurve 11:
    Al = 28 At.-%
    Cr = 5 At.-%
    Si = 2 At.-%
    Fe = Rest.
  • Der Nb-Zusatz bewegte sich zwischen 0,5 At.-% und maximal 2 At.-% auf Kosten des Fe-Gehalts.
  • Die Bruchdehnung der Legierung nach Kurve 10 durchlief bei ca. 1 At.-% Nb ein ausgeprägtes Maximum, um bei höheren Nb-Gehalten wieder abzufallen. Dieses Verhalten konnte bei der Si-haltigen Legierung nach Kurve 11 nicht beobachtet werden. Ausserdem blieben die Bruchdehnungswerte beträchtlich unter denjenigen der Legierung gemäss Kurve 10.
  • Fig. 6 ist eine graphische Darstellung der Fliessgrenze σo,2 (MPa) in Funktion der Temperatur T (°C) für eine Gruppe von Legierungen auf der Basis der intermetallischen Verbindung Eisenaluminid Fe₃Al. Als Vergleich ist die Fliessgrenze für das reine Eisenaluminid Fe₃Al mit 25 At.-% Al dargestellt. Damit kann der Einfluss der weiteren Legierungselemente überblickt werden.
  • Kurve 12:
    25 At.-% Al, Rest Fe
    Kurve 13:
    28 At.-% Al, 1 At.-% Nb, 5 At.-% Cr, 1 At.-% B, Rest Fe
    Kurve 14:
    28 At.-% Al, 1 At.-% Nb, 5 At.-% Cr, 1 At.-% B, 2 At.-% Si, Rest Fe.
    Kurve 15:
    28 At.-% Al, 1 At.-% Nb, 2 At.-% Cr, Rest Fe.
    Kurve 16:
    28 At.-% Al, 2 At.-% Nb, 4 At.-% Cr, Rest Fe.
    Kurve 17:
    28 At.-% Al, 2 At.-% Nb, 4 At.-% Cr, 0,2 At.-% B, 2 At.-% Si, Rest Fe.
  • Alle Kurven zeigen ein ähnliches Verhalten des Werkstoffs. Bis zu einer Temperatur von ca. 400 °C nimmt die Fliessgrenze zunächst stärker, dann weniger stark auf ca. 50 % des Wertes bei Raumtemperatur ab. Hier durchläuft die Fliessgrenze ein Minimum und steigt bis zu einer Temperatur von ca. 550 °C wieder vergleichsweise steil auf ca. 65 % des Wertes bei Raumtemperatur an. Dieses Maximum ist typisch für das Verhalten der intermetallischen Verbindungen des Typs Fe₃Al. Nach diesem Maximum fällt die Fliessgrenze zu niedrigen Werten steil ab. Die höchsten Festigkeitswerte wurden bei mit Nb und Cr dotierten Legierungen beobachtet.
  • Ausführungsbeispiel 1:
  • In einem Lichtbogenofen wurde unter Argon als Schutzgas eine Legierung der nachfolgenden Zusammensetzung erschmolzen:
       Al = 28 At.-%
       Nb = 1 At.-%
       Cr = 5 At.-%
       Fe = Rest.
  • Als Ausgangsmaterialien dienten die einzelnen Elemente mit einem Reinheitsgrad von 99,99 %. Die Schmelze wurde zu einem Gussrohling von ca. 60 mm Durchmesser und ca. 80 mm Höhe abgegossen. Der Rohling wurde unter Schutzgas wieder aufgeschmolzen und ebenfalls unter Schutzgas zur Erstarrung in Form von Stäben mit ca. 8 mm Durchmesser und ca. 80 mm Länge gezwungen.
  • Die Stäbe wurden ohne anschliessende Wärmebehandlung direkt zu Druckproben für Kurzzeitversuche verarbeitet. Die damit erreichten mechanischen Eigenschaften wurden in Funktion der Prüftemperatur gemessen.
  • Eine weitere Verbesserung der mechanischen Eigenschaften durch eine geeignete Wärmebehandlung liegt im Bereich des Möglichen. Ausserdem besteht die Möglichkeit zur Verbesserung durch gerichtete Erstarrung, wofür sich die Legierung besonders eignet.
  • Ausführungsbeispiel 2:
  • Analog Beispiel 1 wurde die nachfolgende Legierung unter Argon erschmolzen:
       Al = 28 At.-%
       Nb = 1 At.-%
       Cr = 5 At.-%
       B = 0,1 At.-%
       Si = 2 At.-%
       Fe = Rest.
  • Die Schmelze wurde analog zum Ausführungsbeispiel 1 abgegossen, unter Argon wieder aufgeschmolzen und in Stabform zur Erstarrung gezwungen. Die Dimensionen der Stäbe entsprachen dem Ausführungsbeispiel 1. Die Stäbe wurden ohne anschliessende Wärmebehandlung direkt zu Druckproben verarbeitet. Die damit erreichten Werte der mechanischen Eigenschaften in Funktion der Prüftemperatur entsprachen annähernd denjenigen von Beispiel 1. Diese Werte können durch eine Wärmebehandlung weiter verbessert werden.
  • Ausführungsbeispiel 3:
  • Genau gleich wie in Beispiel 1 wurde die folgende Legierung unter Argonatmosphäre erschmolzen:
       Al = 28 At.-%
       Nb = 1 At.-%
       Cr = 5 At.-%
       B = 1 At.-%
       Si = 2 At.-%
       Fe = Rest.
  • Die Schmelze wurde analog Beispiel 1 abgegossen, unter Argon wieder aufgeschmolzen und zu Prismen von quadratischem Querschnitt (8 mm x 8 mm x 100 mm) vergossen. Aus diesen Prismen wurden Probekörper für Druck-, Härte- und Schlagproben hergestellt. Die mechanischen Eigenschaften entsprachen ungefähr denjenigen der vorangegangenen Beispiele. Eine Wärmebehandlung ergab eine weitere Verbesserung dieser Werte.
  • Ausführungsbeispiel 4:
  • Unter Argon wurde die nachfolgende Legierung erschmolzen:
       Al = 28 At.-%
       Nb = 1 At.-%
       Cr = 5 At.-%
       Fe = Rest.
  • Es wurde genau gleich wie unter Beispiel 1 verfahren.
  • Ausführungsbeispiel 5:
  • Es wurde unter Argon folgende Legierung erschmolzen:
       Al = 28 At.-%
       Nb = 0,5 At.-%
       Cr = 6 At.-%
       B = 0,5 At.-%
       Si = 1,5 At.-%
       Fe = Rest.
  • Das Vorgehen war analog zu Beispiel 1.
  • Ausführungsbeispiel 6:
  • Unter Argon wurde folgende Legierung erschmolzen:
       Al = 28 At.-%
       Nb = 1,5 At.-%
       Cr = 3 At.-%
       B = 0,7 At.-%
       Si = 1 At.-%
       Fe = Rest.
  • Das Verfahren entsprach demjenigen von Beispiel 1.
  • Ausführungsbeispiel 7:
  • Es wurde folgende Legierung erschmolzen:
       Al = 26 At.-%
       Nb = 2 At.-%
       Cr = 1 At.-%
       B = 1 At.-%
       Si = 0,5 At.%
       Fe = Rest.
  • Es wurde gemäss Beispiel 1 vorgegangen.
  • Ausführungsbeispiel 8:
  • Unter Argonatmosphäre wurde im Induktionsofen folgende Legierung erschmolzen:
       Al = 24 At.-%
       Nb = 1 At.-%
       Cr = 10 At.-%
       B = 0,5 At.-%
       Si = 2 At.-%
       Fe = Rest.
  • Die Verfahrensweise entsprach derjenigen von Beispiel 1.
  • Ausführungsbeispiel 9:
  • Es wurde unter Argon folgende Legierung erschmolzen:
       Al = 28 At.-%
       Nb = 0,8 At.-%
       Cr = 5 At.-%
       B = 0,8 At.-%
       Si = 1 At.-%
       Fe = Rest.
  • Es wurde wie unter Beispiel 1 angegeben verfahren.
  • Wirkung der Elemente:
  • Durch Zulegieren des Elements Cr wird der Oxydationswiderstand weiter erhöht. Der Einfluss auf die mechanischen Eigenschaften (Festigkeit, Duktilität, Zähigkeit, Warmhärte) scheint unterschiedlich zu sein, je nachdem welche weiteren Legierungskomponenten noch vorhanden sind und welcher Art die Kristallstruktur im Detail angehört. Im Verein mit Nb scheint bei gewissen Gehalten an weiteren zusätzlichen Dotierelementen das Cr eine günstige Wirkung zu haben. Zugaben von mehr als 10 At.-% Cr verschlechtern im allgemeinen die mechanischen Eigenschaften wieder.
  • Das Element Nb erhöht in gewissen Bereichen die Härte und die Festigkeit. Die Dehnbarkeit (Bruchdehnung) durchläuft für gewisse Legierungen bei 1 At.-% Nb ein Maximum.
  • Durch Zulegieren von B wird allgemein versucht, die Duktilität zu erhöhen. Doch scheint seine Wirkung nur bei Anwesenheit bestimmter anderer Elemente insgesamt vorteilhaft zu sein. Bei niedrigen B-Gehalten geht die Härte leicht zurück, um bei Gehalten von über 2 At.-% wieder anzusteigen. Bei sehr hohen B-Gehalten scheint dies auf die Bildung harter Boride zurückzuführen zu sein. Die Bruchdehnung gewisser Legierungen läuft bei 2 At.-% B durch ein charakteristisches Maximum. B-Gehalte von mehr als 2 At.-% sind daher wenig sinnvoll. Man kann sich mit max. 1 At.-% begnügen.
  • Si verbessert die Giessbarkeit und wirkt sich günstig auf die Oxydationsbeständigkeit aus. Es wirkt in praktisch allen Legierungen härtesteigernd und kompensiert durchweg den durch B-Zusätze hervorgerufene Festigkeitsabfall wieder.
  • Ganz allgemein weist die oxydations- und korrosionsbeständige Legierung für Bauteile für einen mittleren Temperaturbereich auf der Basis von Eisenaluminid Fe₃Al die nachfolgende Zusammensetzung auf:
       Al = 24 - 28 At.-%
       Nb = 0,1 - 2 At.-%
       Cr = 0,1 - 10 At.-%
       B = 0,1 - 1 At.-%
       Si = 0,1 - 2 At.-%
       Fe = Rest.

Claims (10)

  1. Oxydations- und korrosionsbeständige Legierung für Bauteile für einen mittleren Temperaturbereich auf der Basis von dotiertem Eisenaluminid Fe₃Al, dadurch gekennzeichnet, dass sie die folgende Zusammensetzung aufweist:
       Al = 24 - 28 At.-%
       Nb = 0,1 - 5 At.-%
       Cr = 0,1 - 5 At.-%
       B = 0,1 - 1 At.-%
       Si = 0,1 - 2 At.-%
       Fe = Rest
  2. Legierung nach Anspruch 1, dadurch gekennzeichnet, dass sie die folgende Zusammensetzung aufweist:
       Al = 28 At.-%
       Nb = 1 At.-%
       Cr = 5 At.-%
       B = 0,1 At.-%
       Si = 2 At.-%
       Fe = Rest
  3. Legierung nach Anspruch 1, dadurch gekennzeichnet, dass sie die folgende Zusammensetzung aufweist:
       Al = 28 At.-%
       Nb = 1 At.-%
       Cr = 5 At.-%
       B = 0,1 At.-%
       Si = 2 At.-%
       Fe = Rest
  4. Legierung nach Anspruch 1, dadurch gekennzeichnet, dass sie die folgende Zusammensetzung aufweist:
       Al = 28 At.-%
       Nb = 1 At.-%
       Cr = 5 At.-%
       B = 1 At.-%
       Si = 2 At.-%
       Fe = Rest
  5. Legierung nach Anspruch 1, dadurch gekennzeichnet, dass sie die folgende Zusammensetzung aufweist:
       Al = 28 At.-%
       Nb = 2 At.-%
       Cr = 4 At.-%
       B = 0,2 At.-%
       Si = 2 At.-%
       Fe = Rest
  6. Legierung nach Anspruch 1, dadurch gekennzeichnet, dass sie die folgende Zusammensetzung aufweist:
       Al = 26 At.-%
       Nb = 0,5 At.-%
       Cr = 6 At.-%
       B = 0,5 At.-%
       Si = 1,5 At.-%
       Fe = Rest
  7. Legierung nach Anspruch 1, dadurch gekennzeichnet, dass sie die folgende Zusammensetzung aufweist:
       Al = 26 At.-%
       Nb = 1,5 At.-%
       Cr = 3 At.-%
       B = 0,7 At.-%
       Si = 1 At.-%
       Fe = Rest
  8. Legierung nach Anspruch 1, dadurch gekennzeichnet, dass sie die folgende Zusammensetzung aufweist:
       Al = 26 At.-%
       Nb = 2 At.-%
       Cr = 1 At.-%
       B = 1 At.-%
       Si = 0,5 At.-%
       Fe = Rest
  9. Legierung nach Anspruch 1, dadurch gekennzeichnet, dass sie die folgende Zusammensetzung aufweist:
       Al = 24 At.-%
       Nb = 1 At.-%
       Cr = 10 At.-%
       B = 0,5 At.-%
       Si = 2 At.-%
       Fe = Rest
  10. Legierung nach Anspruch 1, dadurch gekennzeichnet, dass sie die folgende Zusammensetzung aufweist:
       Al = 24 At.-%
       Nb = 0,8 At.-%
       Cr = 5 At.-%
       B = 0,8 At.-%
       Si = 1 At.-%
       Fe = Rest
EP90113008A 1990-07-07 1990-07-07 Oxydations- und korrosionsbeständige Legierung für Bauteile für einen mittleren Temperaturbereich auf der Basis von dotiertem Eisenaluminid Fe3Al Expired - Lifetime EP0465686B1 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
DE59007276T DE59007276D1 (de) 1990-07-07 1990-07-07 Oxydations- und korrosionsbeständige Legierung für Bauteile für einen mittleren Temperaturbereich auf der Basis von dotiertem Eisenaluminid Fe3Al.
EP90113008A EP0465686B1 (de) 1990-07-07 1990-07-07 Oxydations- und korrosionsbeständige Legierung für Bauteile für einen mittleren Temperaturbereich auf der Basis von dotiertem Eisenaluminid Fe3Al
US07/721,273 US5158744A (en) 1990-07-07 1991-06-26 Oxidation- and corrosion-resistant alloy for components for a medium temperature range based on doped iron aluminide, Fe3 Al
JP16309891A JP3229339B2 (ja) 1990-07-07 1991-07-03 添加された鉄アルミニドFe3Alをベースにした中間温度領域で使用する部材に対する耐酸化性で耐腐食性の合金
PL91290941A PL166845B1 (pl) 1990-07-07 1991-07-04 Stop odporny na utlenianie i korozje o snowie glinku zelaza PL PL
CS912067A CZ282696B6 (cs) 1990-07-07 1991-07-04 Slitina odolná proti oxydaci a korozi pro konstrukční součásti pro střední teplotní rozsah na bázi dotovaného aluminidu železa Fe3Al
SU915001206A RU1839684C (ru) 1990-07-07 1991-07-05 Коррозионно-стойкий конструкционный сплав дл деталей термических машин
KR1019910011463A KR100205263B1 (ko) 1990-07-07 1991-07-06 도핑 Fe3AL 기재의, 중간 온도 범위용 부품용의 내산화성 및 내식성 합금

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP90113008A EP0465686B1 (de) 1990-07-07 1990-07-07 Oxydations- und korrosionsbeständige Legierung für Bauteile für einen mittleren Temperaturbereich auf der Basis von dotiertem Eisenaluminid Fe3Al

Publications (2)

Publication Number Publication Date
EP0465686A1 EP0465686A1 (de) 1992-01-15
EP0465686B1 true EP0465686B1 (de) 1994-09-21

Family

ID=8204184

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90113008A Expired - Lifetime EP0465686B1 (de) 1990-07-07 1990-07-07 Oxydations- und korrosionsbeständige Legierung für Bauteile für einen mittleren Temperaturbereich auf der Basis von dotiertem Eisenaluminid Fe3Al

Country Status (8)

Country Link
US (1) US5158744A (de)
EP (1) EP0465686B1 (de)
JP (1) JP3229339B2 (de)
KR (1) KR100205263B1 (de)
CZ (1) CZ282696B6 (de)
DE (1) DE59007276D1 (de)
PL (1) PL166845B1 (de)
RU (1) RU1839684C (de)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE166112T1 (de) * 1992-09-16 1998-05-15 Sulzer Innotec Ag Herstellung von eisenaluminid-werkstoffen
US5328527A (en) * 1992-12-15 1994-07-12 Trw Inc. Iron aluminum based engine intake valves and method of making thereof
DE4303316A1 (de) * 1993-02-05 1994-08-11 Abb Management Ag Oxidations- und korrosionsbeständige Legierung auf der Basis von dotiertem Eisenaluminid und Verwendung dieser Legierung
CN1036077C (zh) * 1993-12-30 1997-10-08 北京科技大学 改善轧态铁三铝基金属间化合物合金中温持久性能的方法
US6436163B1 (en) * 1994-05-23 2002-08-20 Pall Corporation Metal filter for high temperature applications
US5595706A (en) * 1994-12-29 1997-01-21 Philip Morris Incorporated Aluminum containing iron-base alloys useful as electrical resistance heating elements
US5620651A (en) * 1994-12-29 1997-04-15 Philip Morris Incorporated Iron aluminide useful as electrical resistance heating elements
US5653032A (en) * 1995-12-04 1997-08-05 Lockheed Martin Energy Systems, Inc. Iron aluminide knife and method thereof
US6280682B1 (en) 1996-01-03 2001-08-28 Chrysalis Technologies Incorporated Iron aluminide useful as electrical resistance heating elements
CN1059713C (zh) * 1996-01-22 2000-12-20 东南大学 铁铝基高电阻电热合金
US6033623A (en) * 1996-07-11 2000-03-07 Philip Morris Incorporated Method of manufacturing iron aluminide by thermomechanical processing of elemental powders
US6030472A (en) 1997-12-04 2000-02-29 Philip Morris Incorporated Method of manufacturing aluminide sheet by thermomechanical processing of aluminide powders
US6143241A (en) * 1999-02-09 2000-11-07 Chrysalis Technologies, Incorporated Method of manufacturing metallic products such as sheet by cold working and flash annealing
US6506338B1 (en) * 2000-04-14 2003-01-14 Chrysalis Technologies Incorporated Processing of iron aluminides by pressureless sintering of elemental iron and aluminum
KR101853332B1 (ko) 2015-08-03 2018-05-02 (주)홍익기술단 하폐수 처리용 미생물 담체 제조방법
CN113528926A (zh) * 2021-06-11 2021-10-22 南京理工大学 一种定向FeAl基合金及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1990650A (en) * 1932-06-25 1935-02-12 Smith Corp A O Heat resistant alloy
US3026197A (en) * 1959-02-20 1962-03-20 Westinghouse Electric Corp Grain-refined aluminum-iron alloys
FR1323724A (fr) * 1962-03-02 1963-04-12 Commissariat Energie Atomique Procédé de préparation d'un alliage fer-aluminium
US4961903A (en) * 1989-03-07 1990-10-09 Martin Marietta Energy Systems, Inc. Iron aluminide alloys with improved properties for high temperature applications

Also Published As

Publication number Publication date
EP0465686A1 (de) 1992-01-15
JP3229339B2 (ja) 2001-11-19
PL166845B1 (pl) 1995-06-30
JPH04308061A (ja) 1992-10-30
RU1839684C (ru) 1993-12-30
CS206791A3 (en) 1992-03-18
KR100205263B1 (ko) 1999-07-01
KR920002814A (ko) 1992-02-28
DE59007276D1 (de) 1994-10-27
CZ282696B6 (cs) 1997-09-17
PL290941A1 (en) 1992-02-10
US5158744A (en) 1992-10-27

Similar Documents

Publication Publication Date Title
EP0465686B1 (de) Oxydations- und korrosionsbeständige Legierung für Bauteile für einen mittleren Temperaturbereich auf der Basis von dotiertem Eisenaluminid Fe3Al
DE69400848T2 (de) Titanaluminid-Legierungen mit guter Kriechfestigkeit
EP0455005A1 (de) Hochtemperaturlegierung für Maschinenbauteile auf der Basis von dotiertem Titanaluminid
DE102012011162A1 (de) Nickel-Chrom-Legierung mit guter Verarbeitbarkeit, Kriechfestigkeit und Korrosionsbeständigkeit
DE2458213C2 (de) Verwendung eines oxidationsbeständigen austenitischen rostfreien Stahls
DE69108821T2 (de) Rasch erstarrte Eisen-Chrom-Aluminium-Legierungsfolien mit hoher Oxydationsbeständigkeit.
WO2015010956A1 (de) Hochwarmfeste aluminiumgusslegierung und gussteil für verbrennungsmotoren gegossen aus einer solchen legierung
DE2456857C3 (de) Verwendung einer Nickelbasislegierung für unbeschichtete Bauteile im Heißgasteil von Turbinen
EP3553193A1 (de) Al - reiche hochtemperatur - tial - legierung
DE60310316T2 (de) Gegen Schwefelsäure und Nassverfahrensphosphorsäure resistente Ni-Cr-Mo-Cu-Legierungen
EP0570072B1 (de) Verfahren zur Herstellung einer Legierung auf Chrombasis
EP1645647B1 (de) Kaltaushärtende Aluminiumgusslegierung und Verfahren zur Herstellung eines Aluminiumgussteils
DE1967005B2 (de) Verfahren zum herstellen eines nickel-chrom-kobalt-werkstoffs
DE1219236B (de) Verfahren zur Herstellen von Gussstuecken, insbesondere von Gasturbinenlaeufern mit an die Nabe angegossenen Schaufeln, aus einer Nickel-Chrom-Legierung
EP0609682B1 (de) Oxidations- und korrosionsbeständige Legierung auf der Basis von dotiertem Eisenaluminid und Verwendung dieser Legierung
DE2653936A1 (de) Gusstueck mit gerichtetem gefuege
EP0552479B1 (de) Verfahren zur Verbesserung der Biegewechselfestigkeit von Halbzeug aus Kupferlegierungen
DE69112165T2 (de) Aluminium enthaltender rostfreier ferritischer Stahl mit hoher Beständigkeit gegen Hochtemperatursoxydation und hoher Zähigkeit.
EP0425972B1 (de) Oxydations- und korrosionsbeständige Hochtemperaturlegierung auf der Basis einer intermetallischen Verbindung
EP0302255B1 (de) Verwendung einer Kupferlegierung als Werkstoff für Stranggiesskokillen
EP1213365A1 (de) Legierung auf der Basis von Titanaluminiden
DE1650028C2 (de) Kolbenring aus Grauguß
DE1929301C3 (de) Verfahren zum Herstellen eines Nickel-Chrom-Werkstoffs
EP1195445B1 (de) Ti Al-Legierung mit Bor, Wolfram und Silizium
DE19933633A1 (de) Hochtemperaturlegierung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

RBV Designated contracting states (corrected)

Designated state(s): CH DE GB LI

17P Request for examination filed

Effective date: 19920711

17Q First examination report despatched

Effective date: 19931001

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE GB LI

REF Corresponds to:

Ref document number: 59007276

Country of ref document: DE

Date of ref document: 19941027

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19941205

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010614

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20010618

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010713

Year of fee payment: 12

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020707

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL