EP0452799B1 - Verfahren und Vorrichtung zur automatischen Kalibrierung einer phasengesteuerten Gruppenantenne - Google Patents

Verfahren und Vorrichtung zur automatischen Kalibrierung einer phasengesteuerten Gruppenantenne Download PDF

Info

Publication number
EP0452799B1
EP0452799B1 EP91105723A EP91105723A EP0452799B1 EP 0452799 B1 EP0452799 B1 EP 0452799B1 EP 91105723 A EP91105723 A EP 91105723A EP 91105723 A EP91105723 A EP 91105723A EP 0452799 B1 EP0452799 B1 EP 0452799B1
Authority
EP
European Patent Office
Prior art keywords
output
antenna
signals
integral
aperture illumination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91105723A
Other languages
English (en)
French (fr)
Other versions
EP0452799A1 (de
Inventor
Peter Dr. Kölzer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcatel Lucent Deutschland AG
Original Assignee
Alcatel SEL AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19904012101 external-priority patent/DE4012101A1/de
Priority claimed from DE19904014320 external-priority patent/DE4014320A1/de
Application filed by Alcatel SEL AG filed Critical Alcatel SEL AG
Publication of EP0452799A1 publication Critical patent/EP0452799A1/de
Application granted granted Critical
Publication of EP0452799B1 publication Critical patent/EP0452799B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/267Phased-array testing or checking devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/2605Array of radiating elements provided with a feedback control over the element weights, e.g. adaptive arrays

Definitions

  • the invention relates to a method and a device for the automatic calibration of a phase-controlled group antenna, in particular group antennas for microwave landing systems.
  • the antennas used for the landing systems must be very well calibrated. This applies both to azimuth antennas (AZ antennas) and to the elevation antennas (EL antennas).
  • An integral monitor waveguide is used to obtain the aperture assignment of a phase-controlled group antenna. Signal components from each radiator element are coupled into an integral monitor waveguide via coupling holes, either shortly before the radiation or immediately after the radiation. The output signal of the integral monitor waveguide corresponds in a first approximation to the course of the far field of the antenna. The course of the far field and the aperture assignment of the antenna are linked by Fourier transformation. The complex aperture assignment of the antenna can therefore be determined from the output signal of the integral monitor waveguide.
  • the object of the invention is to provide a method and an apparatus for reproducibly calibrating phase-controlled group antennas and with an accuracy required for safety. This object is achieved by a method and a device with the combinations of features of the independent claims.
  • the dependent claims contain further developments and refinements of the invention.
  • the antenna can also be calibrated during operation. Another advantage can be seen in the fact that by choosing the Hilbert transformation to obtain the aperture assignment, only one mixer has to be used. This improves the signal-to-noise ratio of the useful signal.
  • 1 shows part of a phase-controlled group antenna.
  • 10 denotes an integral monitor waveguide, into which signal components from each radiator element are coupled via coupling holes.
  • the signal components overlap in the integral monitor waveguide to form a complex, time-dependent signal.
  • the signal components coupled into the integral monitor waveguide are either signal components shortly before the radiation (with azimuth antennas) or immediately after the radiation (with elevation antennas).
  • the signal present at the output 12 of the integral monitor waveguide 10 corresponds in a first approximation to the course of the far field diagram of the antenna. Because of the relationship between the aperture assignment of an antenna and the far field diagram of the same antenna given by the Fourier transformation, the complex aperture assignment can be calculated from the output signal of the integral monitor waveguide.
  • the output signal of the integral monitor waveguide is processed in a manner shown in FIG. 2.
  • Fig. 2 are designated 20 and 21 mixers, to which signals from hybrids 22 and 23 are supplied.
  • the Hybrid 22 is, for example, a 3 dB-0 o hybrid
  • the Hybrid 23 is a 3 dB-90 o hybrid.
  • a signal from a local oscillator is fed to the hybrid 23 via an input denoted by 24.
  • the Hybrid 22 is connected via an input labeled 25 Output signal of the integral monitor waveguide supplied.
  • 26 and 27 RF terminations are referred to, which are also called RF sump. They are used to complete components for high frequency without reflection.
  • the real part is then present at the output of the mixer 20, and the imaginary part of the signal at the input 25 is present at the output of the mixer 21.
  • the device described is called an I / Q converter, the output signals of the two mixers are called quadrature components.
  • the aperture assignment of the antenna is then determined in a further step by Fourier transformation.
  • the device just described needs two mixers to display the complex output signal of the integral monitor waveguide.
  • 3 shows the basic structure of a homodyne measuring system.
  • 30 denotes a mixer, to which signals are fed via lines 35 and 36.
  • the output of the mixer 30 is fed to a low-pass filter 31, at the output 37 of which the desired signal is present.
  • 32 designates a transmission element whose complex transfer function is to be determined using the arrangement shown.
  • 33 designates a high-frequency generator, the output signal of which is fed to mixer 30 via line 36. At the same time, the output signal of the generator 33 is coupled into the transmission element 32 via a coupler 34.
  • the aim of the entire arrangement is to obtain the real part of the complex transfer function of the transfer element 32 at the output 37. Assuming that the amount of the signal at input 35 is significantly smaller than the amount of the signal at input 36, that is, the mixer 30 works in linear mode, the following results:
  • a signal A M reaches the mixer 30 via the line 35.
  • the real part of the complex transfer function of the transfer element 32 is available at the output 37.
  • FIG. 4 shows an antenna of a microwave landing system (MLS system) in which the homodyne measuring method according to FIG. 3 is used to obtain the aperture assignment of the antenna.
  • the same reference numerals designate the same elements as in the other figures.
  • the elements mixer 30, low-pass 31, high-frequency signal source 33 and coupling element 34, which are already known from FIG. 3, are designated.
  • a monitor is designated by 40, for example designed as an integral monitor waveguide, as number 10 in FIG. 1.
  • a network is designated by 41, which distributes the electrical energy originating from the radio-frequency source 33 via phase shifters designated by 42 to antenna elements of the array antenna designated by 43. With 43 'the entirety of the emitter and the phase shifter is designated.
  • Signals are coupled from the antenna elements into the integral monitor waveguide 40.
  • the output signal of the integral monitor waveguide is fed to the mixer 30, into which the high-frequency signal coupled in with the aid of the coupler 34 also arrives.
  • the voltage U described in connection with FIG. 3 is available behind the low-pass filter 31. This voltage U is the real part of the output signal of the integral monitor waveguide 40.
  • the voltage U present at the output of the low pass 31 is digitized by means of a sample-and-hold element 44 and an analog / digital converter 45. A time- and value-discrete signal is thus available at the output of the analog / digital converter 45.
  • This discrete-time and value-discrete signal is converted with the aid of a signal processor 46 by means of the discrete Hilbert transformation to the still missing imaginary part of the output signal of the integral monitor waveguide 40 calculated. After this operation, the complete complex far field signal of the phased array antenna is available. Use of the discrete Fourier transform (DFT) or the fast Fourier transform (FFT) then provides the back transformation for the aperture assignment of the antenna.
  • DFT discrete Fourier transform
  • FFT fast Fourier transform
  • FIG. 5 now shows in more detail how the phase-controlled group antenna according to FIG. 4 is calibrated.
  • the same reference numerals designate the same elements as in FIG. 4.
  • the phase-controlled group antenna with its radiators 43 is provided here as a block with the reference numeral 43.
  • the phase shifters also appear as a block with the reference numeral 42.
  • 50 denotes a signal present at the output of the integral waveguide 40 which corresponds to the far field of the antenna.
  • This signal 50 corresponding to the far field of the antenna is subjected to an integral transformation in a computing unit denoted by 46 'in order to obtain the aperture assignment of the antenna.
  • a control device is designated, the Output signal of the computing device 46 'is supplied.
  • the nominal value for the phase adjustment of the phase shifter, designated 42, is entered via a line labeled 52, a sum point, designated 53.
  • the output signal of the control device 51 is subtracted from this nominal value via a line labeled 54.
  • the difference signal between the setpoint on line 52 and the output signal of the control device 51 reaches the phase shifter via line 54.
  • the computing device 46 ′ which is designated separately in FIG. 4, the control device 51, the summation point 53 and the line with the setpoints 52 can each be implemented as a program after execution in a signal processor. All of the steps required to carry out the method can be carried out, for example, in the signal processor 46 in FIG. 4. It is clear from FIG. 5 that a control circuit according to FIG.
  • the aperture assignment is obtained by Hilbert transformation of the output signal of an integral monitor waveguide.

Description

  • Die Erfindung betrifft eine Verfahren und eine Vorrichtung zur automatischen Kalibrierung einer phasengesteuerten Gruppenantenne, insbesondere von Gruppenantennen für Mikrowellenlandesysteme.
  • An die Genauigkeit von Landehilfen in der Luftfahrt, insbesondere an die Genauigkeit von Mikrowellenlandesystemen, werden sehr hohe Anforderungen gestellt. Um diesen Anforderungen gerecht werden zu können, müssen die für die Landesysteme verwendeten Antennen sehr gut kalibriert sein. Dies gilt sowohl für Azimutantennen (AZ-Antennen), als auch für die Elevations-Antennen (EL-Antennen).
  • Aus der US-4,520,361 ist ein Verfahren zur Kalibrierung einer phasengesteuerten Gruppenantenne bekannt, bei dem jeder Phasenschieber einzeln, unter Abschaltung aller anderen Phasenschieber betrieben und sein Anteil am Gesamtstrahlungsfeld dem Ausgang eines Integralmonitorhohlleiters entnommen und zur Kalibrierung benutzt wird. Eine Kalibrierung aller Strahler der gesamten Antenne ist damit aber nur nacheinander, unter Außerdienstnahme der Antenne möglich.
  • Es ist ferner bekannt, zur Kalibrierung einer Gruppenantenne eine Messung der Ausgangssignale einzelner Hohlleiterstrahler mit Hilfe von in diese eingeführten Testsonden vorzunehmen.
  • Es hat sich jedoch gezeigt, daß die Reproduzierbarkeit der Messungen mit Hilfe von Testsonden bei phasengesteuerten Gruppenantennen mit 6-Bit-Auflösung keine zufriedenstellenden Ergebnisse liefert. Eine solche Antenne ließe sich besser kalibrieren, kennte man ihre Aperturbelegung nach Betrag und Phase. Zur Gewinnung der Aperturbelegung einer phasengesteuerten Gruppenantenne bedient man sich eines Integralmonitorhohlleiters. In einen Integralmonitorhohlleiter werden über Koppellöcher Signalanteile aus jedem Strahlerelement entweder kurz vor der Abstrahlung oder unmittelbar nach der Abstrahlung eingekoppelt. Das Ausgangssignal des Integralmonitorhohlleiters entspricht in erster Näherung dem Verlauf des Fernfeldes der Antenne. Der Verlauf des Fernfeldes und die Aperturbelegung der Antenne sind durch Fourier-Transformation miteinander verknüpft. Aus dem Ausgangssignal des Integralmonitorhohlleiters kann daher die komplexe Aperturbelegung der Antenne ermittelt werden. Bekannte Verfahren benutzen dazu die Quadraturmethode. (I/Q-Konverter). Bei dieser Methode wird das Signal eines lokalen Oszillators mit dem Ausgangssignal des Integralmonitorhohlleiters einmal unter einem Winkel von 0°, und ein zweites Mal mit einer Phasenverschiebung von 90° gemischt. Die Mischung mit 0° Phasenverschiebung liefert den Realteil des Ausgangssignales, die Mischung unter 90° Phasenverschiebung den Imaginärteil des Ausgangssignales des Integralmonitorhohlleiters. Anschließende Fourier-Transformation von Real- und Imaginärteil des Ausgangssignales liefert die Aperturbelegung der Antenne. Nachteilig an diesem Verfahren ist die Verwendung von zwei Mischern.
  • Aufgabe der Erfindung ist es, ein Verfahren und eine Vorrichtung anzugeben, um phasengesteuerte Gruppenantennen reproduzierbar und mit einer für die Sicherheit erforderlichen Genauigkeit zu kalibrieren. Diese Aufgabe wird gelöst durch ein Verfahren und eine Vorrichtung mit den Merkmalskombinationen der unabhängigen Ansprüche. Die abhängigen Ansprüche enthalten Weiterbildungen und Ausgestaltungen der Erfindung.
  • Die Vorteile des erfindungsgemäßen Verfahrens und der erfindungsgemäßen Vorrichtung liegen darin, daß die Antenne auch während des Betriebes kalibriert werden kann. Ein weiterer Vorteil ist darin zu sehen, daß durch die Wahl der Hilbert-Transformation zur Gewinnung der Aperturbelegung nur ein Mischer verwendet werden muß. Dadurch verbessert sich das Signal-/Rauschverhältnis des Nutzsignales.
  • Ein Ausführungsbeispiel der Erfindung wird anhand der Figuren 1 bis 5 näher erläutert. Es zeigen:
  • Fig. 1
    Prinzip einer Gruppenantenne mit Integralmonitorhohlleiter,
    Fig. 2
    einen I/Q-Konverter,
    Fig. 3
    den prinzipiellen Aufbau eines homodynen Meßsystemes,
    Fig. 4
    eine Überwachungseinrichtung für eine phasengesteuerte Gruppenantenne.
    Fig. 5
    eine Regeleinrichtung zur Kalibrierung einer phasengesteuerten Gruppenantenne.
  • In Fig. 1 ist ein Teil einer phasengesteuerten Gruppenantenne dargestellt. Mit 11 sind Strahler der Antenne bezeichnet. Mit 10 ist ein Integralmonitorhohlleiter bezeichnet, in den über Koppellöcher Signalanteile von jedem Strahlerelement eingekoppelt werden. Die Signalanteile überlagern sich im Integralmonitorhohlleiter zu einem komplexen, zeitabhängigen Signal. Bei den in den Integralmonitorhohlleiter eingekoppelten Signalanteilen handelt es sich entweder um Signalanteile kurz vor der Abstrahlung (bei Azimuth-Antennen) oder unmittelbar nach der Abstrahlung (bei Elevations-Antennen). Das am Ausgang 12 des Integralmonitorhohlleiters 10 anstehende Signal entspricht in erster Näherung dem Verlauf des Fernfelddiagrammes der Antenne. Wegen des durch die Fourier-Transformation gegebenen Zusammenhanges zwischen Aperturbelegung einer Antenne und dem Fernfelddiagramm derselben Antenne kann die komplexe Aperturbelegung aus dem Ausgangssignal des Integralmonitorhohlleiters berechnet werden.
  • Bei bekannten Einrichtungen wird dazu das Ausgangssignal des Integralmonitorhohlleiters in einer nach Fig. 2 dargestellten Weise aufbereitet. In Fig. 2 sind mit 20 und 21 Mischer bezeichnet, denen Signale aus Hybriden 22 und 23 zugeführt werden. Beim Hybrid 22 handelt es sich beispielsweise um ein 3 dB-0o-Hybrid, beim Hybrid 23 um ein 3 dB-90o-Hybrid. Über einen mit 24 bezeichneten Eingang wird dem Hybrid 23 ein Signal eines lokalen Oszillators zugeführt. Über einen mit 25 bezeichneten Eingang wird dem Hybrid 22 das Ausgangssignal des Integralmonitorhohlleiters zugeführt. Mit 26 und 27 sind HF-Abschlüsse bezeichnet, die man auch HF-Sumpf nennt. Sie dienen dazu, Bauelemente für Hochfrequenz reflexionsfrei abzuschließen. Am Ausgang des Mischers 20 steht dann der Realteil, am Ausgang des Mischers 21 der Imaginärteil des am Eingang 25 liegenden Signales an. Die beschriebene Einrichtung nennt man I/Q-Konverter, die Ausgangssignale der beiden Mischer heißen Quadraturkomponenten. Durch Fourier-Transformation wird dann in einem weiteren Schritt die Aperturbelegung der Antenne ermittelt. Die soeben beschriebene Einrichtung braucht zur Darstellung des komplexen Ausgangssignales des Integralmonitorhohlleiters zwei Mischer.
  • In Fig. 3 ist der prinzipielle Aufbau eines homodynen Meßsystems dargestellt. Mit 30 ist ein Mischer bezeichnet, dem über Leitungen 35 und 36 Signale zugeführt werden. Der Ausgang des Mischers 30 wird einem Tiefpaß 31 zugeführt, an dessen Ausgang 37 das gewünschte Signal ansteht. Mit 32 ist ein Übertragungselement bezeichnet, dessen komplexe Übertragungsfunktion mit der gezeigten Anordnung bestimmt werden soll. Mit 33 ist ein Hochfrequenzgenerator bezeichnet, dessen Ausgangssignal dem Mischer 30 über die Leitung 36 zugeführt wird. Gleichzeitig wird das Ausgangssignal des Generators 33 über einen Koppler 34 in das Übertragungselement 32 eingekoppelt. Ziel der gesamten Anordnung ist es, den Realteil der komplexen Übertragungsfunktion des Übertragungselementes 32 am Ausgang 37 zu erhalten. Setzt man voraus, daß der Betrag des Signales am Eingang 35 wesentlich kleiner als der Betrag des Signales am Eingang 36 ist, das heißt, daß der Mischer 30 im linearen Betrieb arbeitet, so ergibt sich folgendes:
  • Über die Leitung 35 gelangt ein Signal A M an den Mischer 30. Über die Leitung 36 gelangt ein Signal A R ebenfalls an den Mischer 30. Mit
    ψM = ω₀ t + αM + φ(t): Phase des Monitorsignales
    ψR = ω₀ t + αR: Phase des Referenzsignales
    φ(t): allgemeine Phasenfunktion des Systems 32 Δα = α M - α R
    Figure imgb0001

    gilt für eine Spannung U am Ausgang 37 die Beziehung:
    Figure imgb0002
  • Wie oben bereits erwähnt, steht am Ausgang 37 der Realteil der komplexen Übertragungsfunktion des Übertragungselementes 32 zur Verfügung.
  • Real- und Imaginärteil des Spektrums komplexer, kausaler Zeitfunktionen hängen über eine Integraltransformation, die sogenannte Hilbert-Transformation, zusammen. Das heißt mit anderen Worten, daß es ausreicht, den Realteil solcher Funktionen zu messen, da der Imaginärteil vermöge der Hilbert-Transformation berechnet werden kann.
  • Fig. 4 zeigt eine Antenne eines Mikrowellenlandesystems (MLS-System), bei der zur Gewinnung der Aperturbelegung der Antenne das homodyne Meßverfahren nach Fig. 3 benutzt wird. Im folgenden bezeichnen gleiche Bezugszeichen die gleichen Elemente wie in den anderen Figuren. In Fig. 4 sind die bereits aus Fig. 3 bekannten Elemente Mischer 30, Tiefpaß 31, Hochfrequenzsignalquelle 33 und Koppelelement 34 bezeichnet. Mit 40 ist ein Monitor bezeichnet, beispielsweise ausgeführt als Integralmonitorhohlleiter, wie Nummer 10 in Fig. 1. Mit 41 ist ein Netzwerk bezeichnet, das die aus der Hochfrequenzquelle 33 stammende elektrische Energie über mit 42 bezeichnete Phasenschieber auf mit 43 bezeichnete Antennenelemente der Gruppenantenne verteilt. Mit 43′ ist die Gesamtheit der Strahler und der Phasenschieber bezeichnet. Aus den Antennenelementen werden Signale in den Integralmonitorhohlleiter 40 übergekoppelt. Das Ausgangssignal des Integralmonitorhohlleiters wird dem Mischer 30 zugeführt, in den gleichzeitig auch das mit Hilfe des Kopplers 34 eingekoppelte Hochfrequenzsignal gelangt. Hinter dem Tiefpaß 31 steht die im Zusammenhang mit Fig. 3 beschriebene Spannung U zur Verfügung. Bei dieser Spannung U handelt es sich um den Realteil des Ausgangssignales des Integralmonitorhohlleiters 40. Die am Ausgang des Tiefpasses 31 anstehende Spannung U wird mittels eines sample-und-hold-Gliedes 44 und eines Analog/Digital-Wandlers 45 digitalisiert. Am Ausgang des Analog/Digital-Wandlers 45 steht damit ein zeit- und wertdiskretes Signal zur Verfügung. Aus diesem zeit- und wertdiskretem Signal wird mit Hilfe eines Signalprozessors 46 vermöge der diskreten Hilbert-Transformation der noch fehlende Imaginärteil des Ausgangssignales des Integralmonitorhohlleiters 40 berechnet. Nach dieser Operation steht das vollständige komplexe Fernfeldsignal der phasengesteuerten Gruppenantenne zur Verfügung. Anwendung der diskreten Fourier-Transformation (DFT) oder der schnellen Fourier-Transformation (FFT) liefert dann die Rücktransformation zur Aperturbelegung der Antenne.
  • Zur Ausführung der diskreten Hilbert-Transformation oder der diskreten Fourier-Transformation und der schnellen Fourier-Transformation sei der Fachmann auf dem Gebiet der Signalverarbeitung auf eine Fülle fachspezifischer Literatur zu diesem Thema verwiesen, wie z.B. auf den Artikel "Quadrature Sampling with High Dynamic Range", erschienen in den IEEE Transactions on Aerospace and Electronic Systems, Vol. AES-18. No. 4, November 1982, Seiten 736 bis 739.
  • In Fig. 5 wird nun näher ausgeführt, in welcher Weise die phasengesteuerte Gruppenantenne nach Fig. 4 kalibriert wird. Gleiche Bezugszeichen bezeichnen gleiche Elemente wie in Fig. 4. Die phasengesteuerte Gruppenantenne mit ihren Strahlern 43 ist hier als Block mit dem Bezugszeichen 43 versehen. Ebenfalls als Block erscheinen die Phasenschieber mit dem Bezugszeichen 42. Mit 50 ist ein am Ausgang des Integralhohlleiters 40 anstehendes Signal bezeichnet, das dem Fernfeld der Antenne entspricht. Dieses dem Fernfeld der Antenne entsprechende Signal 50 wird in einer mit 46′ bezeichneten Recheneinheit einer Integraltransformation unterworfen, um die Aperturbelegung der Antenne zu gewinnen. Mit 51 ist eine Regeleinrichtung bezeichnet, der das Ausgangssignal der Recheneinrichtung 46′ zugeführt wird. Über eine mit 52 bezeichnete Leitung wird einem mit 53 bezeichneten Summenpunkt der Sollwert für die Phaseneinstellung des mit 42 bezeichneten Phasenschiebers eingegeben. Über eine mit 54 bezeichnete Leitung wird von diesem Sollwert das Ausgangssignal der Regeleinrichtung 51 subtrahiert. Damit gelangt auf den Phasenschieber das Differenzsignal zwischen dem Sollwert auf Leitung 52 und dem Ausgangssignal der Regeleinrichtung 51 über Leitung 54. Die in Fig. 4 gesondert bezeichnete Recheneinrichtung 46′, die Regeleinrichtung 51, der Summenpunkt 53 und die Leitung mit den Sollwerten 52 können je nach Ausführung in einem Signalprozessor als Programm realisiert sein. Alle die zur Durchführung des Verfahrens erforderlichen Schritte können beispielsweise im Signalprozessor 46 in Fig. 4 ausgeführt werden. Aus Fig. 5 wird deutlich, daß jedem einzelnen Strahler 43 der phasengesteuerten Gruppenantenne ein Regelkreis nach Fig. 5 zugeordnet ist. Zum Abgleich der Antenne wird in einem ersten Schritt ein Vergleich zwischen Soll- und Istwert der Aperturbelegung durchgeführt. Gleichzeitig werden von der Regeleinrichtung Korrekturwerte erzeugt. Sollte mit diesen Korrekturwerten eine vollständige Übereinstimmung zwischen Soll- und Istwerten nicht erreicht werden können, werden die Regelparameter verändert (adaptiver Regelkreis) und das eben beschriebene Verfahren wird wiederholt. Das Verfahren wird insgesamt so lange wiederholt, bis Soll- und Istwert der Aperturbelegung nur noch innerhalb vorgeschriebener Toleranzbereiche voneinander abweichen. Bei der Durchführung des Verfahrens muß die Abtastrate des Monitorsignales so hoch sein, daß unmittelbare Aliasing-Effekte in der rekonstruierten Belegungsfunktion vernachlässigbar klein werden, also deutlich über der Nyquist-Rate.
  • Die Aperturbelegung wird durch Hilbert-Transformation des Ausgangssignals eines Integralmonitorhohlleiters gewonnen.

Claims (8)

  1. Iteratives Verfahren zur Kalibrierung einer mittels Phasenschiebern (42) gesteuerten Gruppenantenne (43′), insbesondere für Mikrowellenlandesysteme (MLS), bei dem dem Fernfeld der Gruppenantenne entsprechende erste Signale aus einem Integralmonitorhohlleiter (10, 40) abgeleitet und durch Integral-Transformation in zweite Signale transformiert werden, die der Aperturbelegung der Antenne entsprechen,
    dadurch gekennzeichnet, daß die zweiten Signale mit in Speichermitteln abgespeicherten dritten Signalen verglichen werden und ein der Abweichung der zweiten Signale von den dritten Signalen entsprechendes Differenzsignal erzeugt wird, das einer Regeleinrichtung (51) zugeführt wird, deren Ausgangssignal auf die mit der Gruppenantenne verbundenen Phasenschieber wirkt.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die ersten, zweiten und dritten Signale zeitdiskrete Signale sind.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß zur Erzeugung der Aperturbelegung die diskrete Fourier-Transformation oder die schnelle Fourier-Transformation (Fast Fourier Transformation (FFT)) benutzt wird.
  4. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß zur Gewinnung einer komplexen Aperturbelegung eine homodyne Detektion des Realteiles des Ausgangssignales des Integralmonitorhohlleiters erfolgt und der Imaginärteil dieses Signales über eine Hilbert-Transformation ermittelt wird.
  5. Verfahren nach Anspruch 4, gekennzeichnet durch die Anwendung der diskreten Hilbert-Transformation.
  6. Vorrichtung zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 5 zur Kalibrierung einer mittels Phasenschieber (42) gesteuerten Gruppenantenne (43′), insbesondere für Mikrowellenlandesysteme (MLS), mit einem Integralmonitorhohlleiter (10, 40); bei der dem Fernfeld der Gruppenantenne (43′) entsprechende Ausgangssignale aus dem Integralmonitorhohlleiter (10, 40) abgeleitet werden und, mit ersten Mitteln (30, 31, 33, 41, 45, 46), die die Ausgangssignale des Integralmonitorhohlleiters (10, 40) durch Integral-Transformation in eine Aperturbelegung der Gruppenantenne (43′) umwandeln, gekennzeichnet durch Speichermittel zur Speicherung einer Soll-Aperturbelegung, durch Vergleichsmittel, die die Soll-Aperturbelegung mit der Aperturbelegung der Gruppenantenne vergleichen, und durch Regelmittel (51), die jeden einzelnen elektronischen Phasenschieber (42) abhängig von der Abweichung zwischen der Soll-Aperturbelegung und der Aperturbelegung der Antenne beeinflussen.
  7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, daß als Regel- und Vergleichsmittel ein Mikroprozessor oder ein Personal Computer (PC) vorgesehen ist.
  8. Vorrichtung nach Anspruch 6 oder 7, dadurch gekennzeichnet, daß die ersten Mittel eine Hochfrequenzquelle (33) einer Frequenz fo, ein die Hochfrequenzenergie auf die Antennenelemente verteilendes Netzwerk (41), Mittel (30) zum Multiplizieren des Ausgangssignales des Integralmonitorhohlleiters mit dem Ausgangssignal der Hochfrequenzquelle, einen den Mulipliziermitteln nachgeschalteten Tiefpaß (31) und einen über einen A/D-Wandler (45) an den Ausgang des Tiefpasses angeschalteten Signalprozessor (46) umfassen, der das Ausgangssignal des A/D-Wandlers einer Hilbert-Transformation unterwirft.
EP91105723A 1990-04-14 1991-04-11 Verfahren und Vorrichtung zur automatischen Kalibrierung einer phasengesteuerten Gruppenantenne Expired - Lifetime EP0452799B1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE4012101 1990-04-14
DE19904012101 DE4012101A1 (de) 1990-04-14 1990-04-14 Verfahren und vorrichtung zur gewinnung der aperturbelegung von phasengesteuerten gruppenantennen
DE4014320 1990-05-04
DE19904014320 DE4014320A1 (de) 1990-05-04 1990-05-04 Verfahren und vorrichtung zur automatischen kalibrierung einer phasengesteuerten gruppenantenne

Publications (2)

Publication Number Publication Date
EP0452799A1 EP0452799A1 (de) 1991-10-23
EP0452799B1 true EP0452799B1 (de) 1994-10-19

Family

ID=25892241

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91105723A Expired - Lifetime EP0452799B1 (de) 1990-04-14 1991-04-11 Verfahren und Vorrichtung zur automatischen Kalibrierung einer phasengesteuerten Gruppenantenne

Country Status (10)

Country Link
US (1) US5187486A (de)
EP (1) EP0452799B1 (de)
JP (1) JPH05333075A (de)
CN (1) CN1020831C (de)
AU (1) AU641742B2 (de)
CA (1) CA2040292C (de)
CS (1) CS101991A2 (de)
DE (1) DE59103257D1 (de)
NO (1) NO177475C (de)
RU (1) RU2037161C1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2495449C2 (ru) * 2011-11-15 2013-10-10 Федеральное государственное унитарное предприятие "Ростовский-на-Дону научно-исследовательский институт радиосвязи" (ФГУП "РНИИРС") Устройство формирования диаграммы направленности активной фазированной антенной решетки

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4227857A1 (de) * 1992-08-22 1994-02-24 Sel Alcatel Ag Einrichtung zur Gewinnung der Aperturbelegung einer phasengesteuerten Gruppenantenne
US5254998A (en) * 1992-11-02 1993-10-19 Allied-Signal Inc. Executive monitor for microwave landing system
US6113702A (en) 1995-09-01 2000-09-05 Asm America, Inc. Wafer support system
DE19711655A1 (de) * 1997-03-20 1998-09-24 Alsthom Cge Alcatel Integralmonitornetzwerk, Antennenanlage und Sendeanlage für ein Instrumentenlandesystem (ILS)
US6046697A (en) * 1997-09-05 2000-04-04 Northern Telecom Limited Phase control of transmission antennas
US6982670B2 (en) * 2003-06-04 2006-01-03 Farrokh Mohamadi Phase management for beam-forming applications
US7042388B2 (en) * 2003-07-15 2006-05-09 Farrokh Mohamadi Beacon-on-demand radar transponder
US7439905B2 (en) * 2004-09-13 2008-10-21 Fujitsu Ten Limited Radar apparatus
EP1804334A1 (de) * 2005-12-27 2007-07-04 Nederlandse Organisatie voor Toegepast-Natuuurwetenschappelijk Onderzoek TNO Phasengesteuerte Gruppenantenne
EP2372837B1 (de) * 2010-03-18 2016-01-06 Alcatel Lucent Kalibrierung von aktiven Antennenanordnungen für mobile Telekommunikation
CN101964449A (zh) * 2010-08-27 2011-02-02 中国科学院上海微系统与信息技术研究所 一种星载相控阵发射天线的在轨校正装置
JP5246250B2 (ja) * 2010-12-09 2013-07-24 株式会社デンソー フェーズドアレイアンテナの位相校正方法及びフェーズドアレイアンテナ
JP5104938B2 (ja) * 2010-12-09 2012-12-19 株式会社デンソー フェーズドアレイアンテナの位相校正方法及びフェーズドアレイアンテナ
US8686896B2 (en) * 2011-02-11 2014-04-01 Src, Inc. Bench-top measurement method, apparatus and system for phased array radar apparatus calibration
RU2467346C1 (ru) * 2011-07-04 2012-11-20 Федеральное государственное унитарное предприятие "Ростовский-на-Дону научно-исследовательский институт радиосвязи" (ФГУП "РНИИРС") Способ калибровки активной фазированной антенной решетки
US9019153B1 (en) * 2011-12-20 2015-04-28 Raytheon Company Calibration of large phased arrays using fourier gauge
WO2013123496A1 (en) * 2012-02-16 2013-08-22 Src, Inc. System and method for antenna pattern estimation
US9130271B2 (en) * 2012-02-24 2015-09-08 Futurewei Technologies, Inc. Apparatus and method for an active antenna system with near-field radio frequency probes
US9209523B2 (en) 2012-02-24 2015-12-08 Futurewei Technologies, Inc. Apparatus and method for modular multi-sector active antenna system
DE102012204174B4 (de) * 2012-03-16 2022-03-10 Rohde & Schwarz GmbH & Co. Kommanditgesellschaft Verfahren, System und Kalibrierobjekt zur automatischen Kalibrierung einer bildgebenden Antennenanordnung
US10720702B2 (en) * 2016-01-08 2020-07-21 National Chung Shan Institute Of Science And Technology Method and device for correcting antenna phase
RU2641615C2 (ru) * 2016-05-04 2018-01-18 Федеральное государственное бюджетное военное образовательное учреждение высшего образования "Военно-космическая академия имени А.Ф. Можайского" Министерства обороны Российской Федерации Способ и устройство для калибровки приемной активной фазированной антенной решетки
CN106443211B (zh) * 2016-07-29 2019-03-26 西安空间无线电技术研究所 一种适用于不同有源阵列天线的一体化校正系统及校正方法
RU2655655C1 (ru) * 2017-07-13 2018-05-30 Федеральное государственное унитарное предприятие "Ростовский-на-Дону научно-исследовательский институт радиосвязи" (ФГУП "РНИИРС") Способ коррекции амплитудно-фазового распределения раскрываемой антенной решетки космического аппарата на орбите
DE102018112092A1 (de) * 2018-01-10 2019-07-11 Infineon Technologies Ag Integrierte mehrkanal-hf-schaltung mit phasenerfassung
US11722211B1 (en) 2020-02-13 2023-08-08 Ast & Science, Llc AOCS system to maintain planarity for space digital beam forming using carrier phase differential GPS, IMU and magnet torques on large space structures

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US488155A (en) * 1892-12-13 Elevated railway
US4453164A (en) * 1982-07-26 1984-06-05 Rca Corporation Method of determining excitation of individual elements of a phase array antenna from near-field data
US4488155A (en) * 1982-07-30 1984-12-11 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method and apparatus for self-calibration and phasing of array antenna
US4520361A (en) * 1983-05-23 1985-05-28 Hazeltine Corporation Calibration of a system having plural signal-carrying channels
US4926186A (en) * 1989-03-20 1990-05-15 Allied-Signal Inc. FFT-based aperture monitor for scanning phased arrays

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2495449C2 (ru) * 2011-11-15 2013-10-10 Федеральное государственное унитарное предприятие "Ростовский-на-Дону научно-исследовательский институт радиосвязи" (ФГУП "РНИИРС") Устройство формирования диаграммы направленности активной фазированной антенной решетки

Also Published As

Publication number Publication date
DE59103257D1 (de) 1994-11-24
CA2040292C (en) 1995-12-05
US5187486A (en) 1993-02-16
AU641742B2 (en) 1993-09-30
NO177475C (no) 1995-09-20
NO911250D0 (no) 1991-03-27
CN1020831C (zh) 1993-05-19
CN1055836A (zh) 1991-10-30
JPH05333075A (ja) 1993-12-17
AU7423491A (en) 1991-10-17
CA2040292A1 (en) 1991-10-15
NO177475B (no) 1995-06-12
NO911250L (no) 1991-10-15
CS101991A2 (en) 1991-12-17
RU2037161C1 (ru) 1995-06-09
EP0452799A1 (de) 1991-10-23

Similar Documents

Publication Publication Date Title
EP0452799B1 (de) Verfahren und Vorrichtung zur automatischen Kalibrierung einer phasengesteuerten Gruppenantenne
DE69627777T2 (de) Pulsbasiertes Impedanz-Messgerät
DE3917003C2 (de)
DE3535463C2 (de) Antennensystem für die NMR-Bilddarstellung oder NMR-Spektroskopie sowie Verfahren zum Betrieb eines solchen Antennensystems
DE10165055B4 (de) Korrelationsfunktions-Messverfahren und -Vorrichtung
DE102012006195A1 (de) Vektorieller Netzwerkanalysator
DE2110175A1 (de) Verfahren und Vorrichtung zur automatischen Phasenkontrolle bei einer Fourier-Analyse von abgelesenen Impulsresonanzdaten
EP0061559B1 (de) Prüfvorrichtung für ein Radargerät mit synthetischer Apertur
DE102020115709B3 (de) Automobilradaranordnung und verfahren zur objektdetektion durch ein fahrzeugradar
DE102013226170A1 (de) Verfahren und Vorrichtung zur räumlichen Homogenisierung der Feldstärke von Hochfrequenzpulsen einer Sendeantenne eines Magnetresonanztomographiegerätes
DE102020008040A1 (de) Radarempfangssystem und verfahren zur kompensation eines phasenfehlers zwischen radarempfangsschaltungen
DE19750349C2 (de) Netzwerk-Analysator
DE1909205A1 (de) Zylinderfoermiges Antennensystem mit elektronischer Rotation des Strahlungsdiagrammes
EP1913408B1 (de) Messvorrichtung, insbesondere vektorieller netzwerkanalysator, mit phasenregelung
DE3301625C1 (de) Verfahren und Vorrichtung zum Vermindern der Leistung von Störsignalen, die aus den Nebenkeulen der Antenne eines frequenzagilen Radargeräts empfangen werden
DE4012101A1 (de) Verfahren und vorrichtung zur gewinnung der aperturbelegung von phasengesteuerten gruppenantennen
DE4207045C2 (de) Digitales Frequenzerzeugungsgerät
DE102019128204B4 (de) Verfahren zum Kalibrieren eines Mikrowellenmoduls, Kalibriersystem, Mikrowellenmodul sowie Gargerät
DE102019131585A1 (de) Radarsystem sowie verfahren zum bestimmen zumindest eines kalibrationsparameters für ein radarsystem
DE2505697C1 (de) Stroerschutzverfahren fuer eine Antenne mit elektronischer Strahlschwenkung und Antenne zur Anwendung des Verfahrens
WO2006084628A1 (de) Verfahren und anordnung zur korrektur der rückwirkung elektrischer messwandler auf das messobjekt
EP1267442B1 (de) Verfahren zur Rekonstruktion der Amplituden/Phasendiagramme der Sende-Empfangs-Module einer phasengesteuerten Gruppenantenne
DE102010046903B4 (de) Messsystem und Messverfahren zur EMV-Messung
DE4404046C2 (de) Verfahren zum Kalibrieren eines zwei Meßtore aufweisenden Netzwerk-Analysators
DE4014320A1 (de) Verfahren und vorrichtung zur automatischen kalibrierung einer phasengesteuerten gruppenantenne

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19911118

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALCATEL SEL AKTIENGESELLSCHAFT

17Q First examination report despatched

Effective date: 19940309

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REF Corresponds to:

Ref document number: 59103257

Country of ref document: DE

Date of ref document: 19941124

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19941103

ITF It: translation for a ep patent filed

Owner name: DOTT. ANTONIO SERGI

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100325

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20100521

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100430

Year of fee payment: 20

Ref country code: IT

Payment date: 20100420

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59103257

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20110410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20110410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20110411