EP0447886B1 - Turbine à gaz avec flux axiale - Google Patents

Turbine à gaz avec flux axiale Download PDF

Info

Publication number
EP0447886B1
EP0447886B1 EP91103525A EP91103525A EP0447886B1 EP 0447886 B1 EP0447886 B1 EP 0447886B1 EP 91103525 A EP91103525 A EP 91103525A EP 91103525 A EP91103525 A EP 91103525A EP 0447886 B1 EP0447886 B1 EP 0447886B1
Authority
EP
European Patent Office
Prior art keywords
turbine
rotor
compressor
cooling air
drum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91103525A
Other languages
German (de)
English (en)
Other versions
EP0447886A1 (fr
Inventor
Franz Kreitmeier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Asea Brown Boveri Ltd
ABB AB
Original Assignee
ABB Asea Brown Boveri Ltd
Asea Brown Boveri AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Asea Brown Boveri Ltd, Asea Brown Boveri AB filed Critical ABB Asea Brown Boveri Ltd
Publication of EP0447886A1 publication Critical patent/EP0447886A1/fr
Application granted granted Critical
Publication of EP0447886B1 publication Critical patent/EP0447886B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D3/00Machines or engines with axial-thrust balancing effected by working-fluid
    • F01D3/04Machines or engines with axial-thrust balancing effected by working-fluid axial thrust being compensated by thrust-balancing dummy piston or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • F01D5/081Cooling fluid being directed on the side of the rotor disc or at the roots of the blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • F01D5/081Cooling fluid being directed on the side of the rotor disc or at the roots of the blades
    • F01D5/084Cooling fluid being directed on the side of the rotor disc or at the roots of the blades the fluid circulating at the periphery of a multistage rotor, e.g. of drum type

Definitions

  • the invention relates to an axially flow-through gas turbine, consisting essentially of a multi-stage turbine which, among other things, drives a compressor arranged on a common shaft, according to the preamble of patent claim 1.
  • a gas turbine is known with an air chamber which comprises part of the rotor to be cooled and from which cooling ducts lead, which lead to hollow turbine blades.
  • the cooling air is introduced into the air chamber via nozzles, the nozzles accelerating the cooling air and thereby reducing the static cooling air temperature.
  • the invention tries to avoid the disadvantages mentioned above. Furthermore, it is based on the additional task of reducing the axial thrust in the case of axially flow-through gas turbines of the type mentioned at the outset, which have large rotor end faces on the turbine side.
  • this is achieved in that the rotor-side cooling air for the turbine is removed from the hub after the last run row of the compressor and is passed directly into the ring duct with the swirl adhering to it, and in that this cooling air is deflected within the ring duct in a swirl grille and up to close is accelerated to the speed of sound.
  • Swirl grids for the rotor cooling air which are located directly in front of the end face of a turbine rotor, are known per se from GB 2 189 845.
  • the cooling air on the rotor side is removed from the compressor after the last running row of the compressor and is passed into the ring channel with the swirl adhering to it. This ensures on the one hand that the heating of the rotor via the cooling air and thus the level of the transient voltages is as small as possible. In addition, the purest possible, almost dust-free air is introduced into the ring channel through the hub-side removal.
  • the labyrinth seal sealing against the drum cover is advantageously divided into segments on the rotor side to reduce the heat transfer coefficient. This prevents the effects of the usually extremely high ⁇ values in labyrinths.
  • the blade carrier is suspended in the turbine housing 5 .
  • the turbine housing 5 also includes the collecting space 6 for the compressed combustion air.
  • the combustion air enters the annular combustion chamber 7 from this collecting space, which in turn opens into the turbine inlet, ie upstream of the first guide row.
  • the compressed one arrives in the collecting room Air from the diffuser 8 of the compressor 9. Only the last stage 10 of the latter is shown, the guide blading of this last stage consisting of the actual guide row and the secondary guide row.
  • the blading of the compressor and the turbine sit on a common shaft 11, the part located between the turbine and the compressor being designed as a drum 12.
  • This drum is surrounded in its entire axial extent by a drum cover 13, which is fastened to the diffuser outer housing 15 of the compressor via ribs 14.
  • This drum cover forms the shroud on the compressor side for the blades of the last two compressor guide rows.
  • the drum cover together with the end face 16 of the turbine rotor, delimits a radially running wheel side space 17.
  • This space 17 forms the outlet-side end of an annular channel 18 which, starting from the hub behind the last row of compressor runs, runs between the drum cover and the drum.
  • the entire rotor-side cooling air is introduced into this ring duct.
  • the following must be observed because of the swirling flow prevailing therein: In order that the swirl flow along the drum does not become unstable, the normal and tangential velocity of the cooling air as well as the mean duct radius and duct height must be in a certain relationship to one another, as is apparent from the Swirl flow theory is known.
  • a labyrinth 19 sealing against the drum cover is arranged on the drum.
  • the labyrinth seals only indirectly against the drum cover. Its non-rotating part is fastened in a suitable manner in a labyrinth body 24.
  • the labyrinth is divided on the rotor side into a number of segments arranged on the drum surface.
  • the segmentation of the labyrinth 19 is shown in FIG.
  • there are axially directed hammer head grooves 21, which are worked into a collar 22 of the drum 12 are.
  • So-called heat accumulation segments 20 with appropriately configured feet 23 are suspended in these grooves.
  • Metal sealing strips (not shown in FIG. 3) act against the outer surfaces of the heat accumulation segments that protrude into the ring channel and can be caulked, for example, in the labyrinth body 24 or fastened in some other way.
  • the cooling air is now to be deflected in a swirl grille within the ring channel 18 and accelerated to the highest possible tangential speed.
  • This swirl grille 25 is provided in the ring channel in the form of swirl nozzles directly opposite the end face 16 of the turbine rotor, i.e. it opens directly into the wheel side space 17. For reasons to be explained later, it is advisable to arrange the swirl grille on the smallest possible radius.
  • the labyrinth body 24 In order to hold the labyrinth body 24 in its position, it is connected to the drum cover 13 via a plurality of flow-oriented support ribs 26 distributed around the circumference.
  • the cylinder section in FIG. 2 shows the blade plan over the labyrinth body 24 on an enlarged scale.
  • c means the absolute speed of the cooling air and u the peripheral speed of the rotor.
  • the ratio of pitch to chord is 1.2 for the support ribs 26 and 0.85 for the swirl nozzles 25.
  • the support ribs 26 are only flow ribs with a symmetrical profile in which the flow is not forced to change the speed or the direction. The flow leaves the support ribs at speed c and an angle of approx. 20 ° against the circumferential direction.
  • the swirl nozzles are an acceleration grille with a slight curvature of the skeleton line, which redirects the flow from now approx. 25 ° to approx. 10 ° and increases the speed from approx. 120 to approx. 420 m / sec.
  • the total cooling air required for rotor cooling i.e. Approx. 8% of the compressed air is taken from behind the last row in the area of the hub.
  • the swirling cooling air flows through the annular duct 18 up to the drum labyrinth 19.
  • the swirl given by the compressor ensures that, due to the low relative speed between the rotor surface and the cooling air, minimal heat transfer coefficients and the lowest possible adiabatic wall temperatures are achieved. This in turn results in low transient voltages and the lowest possible stationary temperatures in the area under consideration.
  • the main part of the rotor cooling air is guided into the swirl nozzles 25 via the flow-oriented support ribs 26 of the labyrinth body 24. In these, the cooling air is accelerated to close to the speed of sound with a slight deflection in the direction of rotor rotation.
  • the outflow the swirl grid is almost tangential, ie approx. 10 ° to the circumferential direction.
  • this high swirl has a positive effect on the heat transfer, as already described above.
  • Advantageous values can be achieved if the ratio of tangential speed to peripheral speed is around 1 at the entry of the cooling air into the rotor. This means that there is no work exchange when flowing into the rotor cooling duct, i.e. that no work is taken from or added to the rotor. In particular, the temperature of the cooling air is not increased by pumping.
  • the high speed level greatly reduces the static pressure at the outlet from the swirl grille. There is therefore a lower mean pressure in the wheel side space, as a result of which the axial thrust of the rotor is reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Claims (3)

  1. Turbine à gaz à écoulement axial, se composant essentiellement d'une turbine (1) à plusieurs étages, qui entraîne entre autres un compresseur (9) monté sur un arbre commun (11),
    - dans laquelle la partie d'arbre située entre la turbine et le compresseur est un tambour (12), qui est entouré par une enveloppe de tambour (13), et dans laquelle le canal annulaire (18) formé entre le tambour et l'enveloppe de tambour assure le guidage de l'air de refroidissement extrait du compresseur jusqu'à la face axiale (16) du rotor de la turbine et de là finalement jusqu'à ses canaux de refroidissement du côté du rotor,
    - et dans laquelle un joint à labyrinthe (19) est posé sur le tambour pour rendre étanche l'enveloppe de tambour, pour assurer l'étanchéité entre les niveaux de pression à la sortie du compres-seur et à l'entrée de l'air de refroidissement dans la turbine,
    - dans laquelle la totalité de l'air de refroidissement pour la turbine du côté du rotor est prélevé dans le compresseur dans la région de la sortie du compresseur,
    caractérisée en ce que
    - l'air de refroidissement pour la turbine du côté du rotor est prélevé après la dernière rangée mobile du compresseur, à proximité du moyeu de celui-ci, et est conduit immédiatement dans le canal annulaire (18) avec la rotation qu'il présente, et en ce que
    - cet air de refroidissement est dévié à l'intérieur du canal annulaire dans une grille de rotation (25) et est accéléré jusqu'à une vitesse proche de la vitesse du son.
  2. Turbine à gaz à écoulement axial suivant la revendication 1, carac-térisée en ce que le canal annulaire est formé du côté de la turbine par une chambre (17) latérale à la roue, qui est limitée d'une part par l'enveloppe de tambour et d'autre part par la face axiale (16) du rotor de la turbine.
  3. Turbine à gaz à écoulement axial suivant la revendication 1, caractérisée en ce que le joint à labyrinthe (19) assurant l'étanchéité par rapport à l'enveloppe de tambour est subdivisé en segments (20) du côté du rotor pour abaisser le coefficient de transfert thermique α.
EP91103525A 1990-03-23 1991-03-07 Turbine à gaz avec flux axiale Expired - Lifetime EP0447886B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH963/90 1990-03-23
CH96390 1990-03-23

Publications (2)

Publication Number Publication Date
EP0447886A1 EP0447886A1 (fr) 1991-09-25
EP0447886B1 true EP0447886B1 (fr) 1994-07-13

Family

ID=4199266

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91103525A Expired - Lifetime EP0447886B1 (fr) 1990-03-23 1991-03-07 Turbine à gaz avec flux axiale

Country Status (4)

Country Link
US (1) US5189874A (fr)
EP (1) EP0447886B1 (fr)
JP (1) JP3105277B2 (fr)
DE (1) DE59102139D1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11846237B2 (en) 2017-01-19 2023-12-19 Rtx Corporation Gas turbine engine with intercooled cooling air and dual towershaft accessory gearbox

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2707698B1 (fr) * 1993-07-15 1995-08-25 Snecma Turbomachine munie d'un moyen de soufflage d'air sur un élément de rotor.
DE4433289A1 (de) 1994-09-19 1996-03-21 Abb Management Ag Axialdurchströmte Gasturbine
US5555721A (en) * 1994-09-28 1996-09-17 General Electric Company Gas turbine engine cooling supply circuit
JP4088368B2 (ja) * 1998-06-04 2008-05-21 三菱重工業株式会社 低圧蒸気タービンのグランド部変形防止構造
US6234746B1 (en) * 1999-08-04 2001-05-22 General Electric Co. Apparatus and methods for cooling rotary components in a turbine
CN1329662C (zh) * 2001-12-17 2007-08-01 乐金电子(天津)电器有限公司 涡旋式压缩机
EP1418319A1 (fr) 2002-11-11 2004-05-12 Siemens Aktiengesellschaft Turbine à Gaz
DE102005025244A1 (de) * 2005-05-31 2006-12-07 Rolls-Royce Deutschland Ltd & Co Kg Luftführungssystem zwischen Verdichter und Turbine eines Gasturbinentriebwerks
EP2011963B1 (fr) * 2007-07-04 2018-04-04 Ansaldo Energia Switzerland AG Procédé de fonctionnement d'une turbine à gaz à poussée axiale compensée
AU2009216831B2 (en) * 2008-02-20 2014-11-20 General Electric Technology Gmbh Gas turbine
US8935926B2 (en) 2010-10-28 2015-01-20 United Technologies Corporation Centrifugal compressor with bleed flow splitter for a gas turbine engine
DE102013220844B4 (de) 2013-10-15 2019-03-21 MTU Aero Engines AG Verdichter und Gasturbine mit einem derartigen Verdichter
US10731560B2 (en) 2015-02-12 2020-08-04 Raytheon Technologies Corporation Intercooled cooling air
US10371055B2 (en) 2015-02-12 2019-08-06 United Technologies Corporation Intercooled cooling air using cooling compressor as starter
US11808210B2 (en) 2015-02-12 2023-11-07 Rtx Corporation Intercooled cooling air with heat exchanger packaging
US10830148B2 (en) 2015-04-24 2020-11-10 Raytheon Technologies Corporation Intercooled cooling air with dual pass heat exchanger
US10221862B2 (en) 2015-04-24 2019-03-05 United Technologies Corporation Intercooled cooling air tapped from plural locations
US10480419B2 (en) 2015-04-24 2019-11-19 United Technologies Corporation Intercooled cooling air with plural heat exchangers
US10100739B2 (en) 2015-05-18 2018-10-16 United Technologies Corporation Cooled cooling air system for a gas turbine engine
US10794288B2 (en) 2015-07-07 2020-10-06 Raytheon Technologies Corporation Cooled cooling air system for a turbofan engine
US10443508B2 (en) 2015-12-14 2019-10-15 United Technologies Corporation Intercooled cooling air with auxiliary compressor control
US10669940B2 (en) 2016-09-19 2020-06-02 Raytheon Technologies Corporation Gas turbine engine with intercooled cooling air and turbine drive
US10550768B2 (en) 2016-11-08 2020-02-04 United Technologies Corporation Intercooled cooled cooling integrated air cycle machine
US10794290B2 (en) 2016-11-08 2020-10-06 Raytheon Technologies Corporation Intercooled cooled cooling integrated air cycle machine
US10961911B2 (en) 2017-01-17 2021-03-30 Raytheon Technologies Corporation Injection cooled cooling air system for a gas turbine engine
US10577964B2 (en) 2017-03-31 2020-03-03 United Technologies Corporation Cooled cooling air for blade air seal through outer chamber
US10711640B2 (en) 2017-04-11 2020-07-14 Raytheon Technologies Corporation Cooled cooling air to blade outer air seal passing through a static vane
US10738703B2 (en) 2018-03-22 2020-08-11 Raytheon Technologies Corporation Intercooled cooling air with combined features
US10808619B2 (en) 2018-04-19 2020-10-20 Raytheon Technologies Corporation Intercooled cooling air with advanced cooling system
US10830145B2 (en) 2018-04-19 2020-11-10 Raytheon Technologies Corporation Intercooled cooling air fleet management system
US10718233B2 (en) 2018-06-19 2020-07-21 Raytheon Technologies Corporation Intercooled cooling air with low temperature bearing compartment air
US11255268B2 (en) 2018-07-31 2022-02-22 Raytheon Technologies Corporation Intercooled cooling air with selective pressure dump

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2647684A (en) * 1947-03-13 1953-08-04 Rolls Royce Gas turbine engine
US2951337A (en) * 1957-05-28 1960-09-06 Gen Motors Corp Turbine air system
US3565545A (en) * 1969-01-29 1971-02-23 Melvin Bobo Cooling of turbine rotors in gas turbine engines
US3826084A (en) * 1970-04-28 1974-07-30 United Aircraft Corp Turbine coolant flow system
US3989410A (en) * 1974-11-27 1976-11-02 General Electric Company Labyrinth seal system
US4236869A (en) * 1977-12-27 1980-12-02 United Technologies Corporation Gas turbine engine having bleed apparatus with dynamic pressure recovery
US4332133A (en) * 1979-11-14 1982-06-01 United Technologies Corporation Compressor bleed system for cooling and clearance control
GB2108202B (en) * 1980-10-10 1984-05-10 Rolls Royce Air cooling systems for gas turbine engines
US4456427A (en) * 1981-06-11 1984-06-26 General Electric Company Cooling air injector for turbine blades
US4462204A (en) * 1982-07-23 1984-07-31 General Electric Company Gas turbine engine cooling airflow modulator
DE3424139C2 (de) * 1984-06-30 1996-02-22 Bbc Brown Boveri & Cie Gasturbinenrotor
US4674955A (en) * 1984-12-21 1987-06-23 The Garrett Corporation Radial inboard preswirl system
US4650395A (en) * 1984-12-21 1987-03-17 United Technologies Corporation Coolable seal segment for a rotary machine
GB2189845B (en) * 1986-04-30 1991-01-23 Gen Electric Turbine cooling air transferring apparatus
DE3736836A1 (de) * 1987-10-30 1989-05-11 Bbc Brown Boveri & Cie Axial durchstroemte gasturbine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11846237B2 (en) 2017-01-19 2023-12-19 Rtx Corporation Gas turbine engine with intercooled cooling air and dual towershaft accessory gearbox

Also Published As

Publication number Publication date
US5189874A (en) 1993-03-02
JPH04224234A (ja) 1992-08-13
DE59102139D1 (de) 1994-08-18
EP0447886A1 (fr) 1991-09-25
JP3105277B2 (ja) 2000-10-30

Similar Documents

Publication Publication Date Title
EP0447886B1 (fr) Turbine à gaz avec flux axiale
EP0313826B1 (fr) Turbine à gaz avec flux axial
EP0581978B1 (fr) Diffuseur à zones multiples pour turbomachine
EP0536575B1 (fr) Bande de recouvrement pour roue de turbine axiale
DE60318792T2 (de) Zapfluft-Gehäuse für einen Verdichter
EP0690206B1 (fr) Diffuseur pour une turbomachine
EP1111189B1 (fr) Chemin d'air de refroidissement pour le rotor d'une turbine à gaz
EP0528138B1 (fr) Anneau d'aube de turbine axiale
DE69114051T2 (de) Verbesserungen an Ummantelungen von Turbinenrotoren.
EP0591565B1 (fr) Fixation d'aube statorique pour turbomachine à écoulement axial
EP0417433B1 (fr) Turbine axiale
EP0799973A1 (fr) Contour de paroi pour une turbomachine axiale
DE2356721B2 (de) Kühleinrichtung für hohle Laufschaufeln einer axial durchströmten Turbine
DE102005025244A1 (de) Luftführungssystem zwischen Verdichter und Turbine eines Gasturbinentriebwerks
DE3825744A1 (de) Fluiddichtungs- und gasturbinenanordnung sowie verfahren zum verhindern des entweichens von arbeitsfluid aus einer turbomaschine
DE2507182A1 (de) Axialgasturbinenanlage
DE2633291B2 (de) Gasturbinenananlage mit Kühlung durch zwei unabhängige Kühlluftströme
DE3315914C2 (fr)
EP0702129A2 (fr) Refroidissement du rotor d'une turbine à gaz axiale
CH663251A5 (de) Einrichtung zur kuehlung der rotoren von dampfturbinen.
EP2725203B1 (fr) Conduite d'air froid dans une structure de boîtier d'une turbomachine
DE1942346A1 (de) Vorrichtung zur Abdichtung des Rotors gegenueber dem Stator bei einer zu einem Gasturbinentriebwerk gehoerigen Turbine
EP1001138B1 (fr) Dispositif d'étanchéité pour les extrémités des aubes de turbine
DE3424141A1 (de) Luftspeicher-gasturbine
DE2004761A1 (de) Turbomaschine mit gekühltem Rotor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI

17P Request for examination filed

Effective date: 19920306

17Q First examination report despatched

Effective date: 19930315

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI

REF Corresponds to:

Ref document number: 59102139

Country of ref document: DE

Date of ref document: 19940818

ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940916

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: ASEA BROWN BOVERI AG TRANSFER- ALSTOM

Ref country code: CH

Ref legal event code: NV

Representative=s name: GIACOMO BOLIS C/O ALSTOM (SWITZERLAND) LTD CHSP IN

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: FR

Ref legal event code: CA

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20100218

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20100318

Year of fee payment: 20

Ref country code: IT

Payment date: 20100317

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100208

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100331

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59102139

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20110306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20110306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20110307