EP0447886B1 - Axial flow gas turbine - Google Patents

Axial flow gas turbine Download PDF

Info

Publication number
EP0447886B1
EP0447886B1 EP91103525A EP91103525A EP0447886B1 EP 0447886 B1 EP0447886 B1 EP 0447886B1 EP 91103525 A EP91103525 A EP 91103525A EP 91103525 A EP91103525 A EP 91103525A EP 0447886 B1 EP0447886 B1 EP 0447886B1
Authority
EP
European Patent Office
Prior art keywords
turbine
rotor
compressor
cooling air
drum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91103525A
Other languages
German (de)
French (fr)
Other versions
EP0447886A1 (en
Inventor
Franz Kreitmeier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Asea Brown Boveri Ltd
ABB AB
Original Assignee
ABB Asea Brown Boveri Ltd
Asea Brown Boveri AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Asea Brown Boveri Ltd, Asea Brown Boveri AB filed Critical ABB Asea Brown Boveri Ltd
Publication of EP0447886A1 publication Critical patent/EP0447886A1/en
Application granted granted Critical
Publication of EP0447886B1 publication Critical patent/EP0447886B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D3/00Machines or engines with axial-thrust balancing effected by working-fluid
    • F01D3/04Machines or engines with axial-thrust balancing effected by working-fluid axial thrust being compensated by thrust-balancing dummy piston or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • F01D5/081Cooling fluid being directed on the side of the rotor disc or at the roots of the blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • F01D5/081Cooling fluid being directed on the side of the rotor disc or at the roots of the blades
    • F01D5/084Cooling fluid being directed on the side of the rotor disc or at the roots of the blades the fluid circulating at the periphery of a multistage rotor, e.g. of drum type

Definitions

  • the invention relates to an axially flow-through gas turbine, consisting essentially of a multi-stage turbine which, among other things, drives a compressor arranged on a common shaft, according to the preamble of patent claim 1.
  • a gas turbine is known with an air chamber which comprises part of the rotor to be cooled and from which cooling ducts lead, which lead to hollow turbine blades.
  • the cooling air is introduced into the air chamber via nozzles, the nozzles accelerating the cooling air and thereby reducing the static cooling air temperature.
  • the invention tries to avoid the disadvantages mentioned above. Furthermore, it is based on the additional task of reducing the axial thrust in the case of axially flow-through gas turbines of the type mentioned at the outset, which have large rotor end faces on the turbine side.
  • this is achieved in that the rotor-side cooling air for the turbine is removed from the hub after the last run row of the compressor and is passed directly into the ring duct with the swirl adhering to it, and in that this cooling air is deflected within the ring duct in a swirl grille and up to close is accelerated to the speed of sound.
  • Swirl grids for the rotor cooling air which are located directly in front of the end face of a turbine rotor, are known per se from GB 2 189 845.
  • the cooling air on the rotor side is removed from the compressor after the last running row of the compressor and is passed into the ring channel with the swirl adhering to it. This ensures on the one hand that the heating of the rotor via the cooling air and thus the level of the transient voltages is as small as possible. In addition, the purest possible, almost dust-free air is introduced into the ring channel through the hub-side removal.
  • the labyrinth seal sealing against the drum cover is advantageously divided into segments on the rotor side to reduce the heat transfer coefficient. This prevents the effects of the usually extremely high ⁇ values in labyrinths.
  • the blade carrier is suspended in the turbine housing 5 .
  • the turbine housing 5 also includes the collecting space 6 for the compressed combustion air.
  • the combustion air enters the annular combustion chamber 7 from this collecting space, which in turn opens into the turbine inlet, ie upstream of the first guide row.
  • the compressed one arrives in the collecting room Air from the diffuser 8 of the compressor 9. Only the last stage 10 of the latter is shown, the guide blading of this last stage consisting of the actual guide row and the secondary guide row.
  • the blading of the compressor and the turbine sit on a common shaft 11, the part located between the turbine and the compressor being designed as a drum 12.
  • This drum is surrounded in its entire axial extent by a drum cover 13, which is fastened to the diffuser outer housing 15 of the compressor via ribs 14.
  • This drum cover forms the shroud on the compressor side for the blades of the last two compressor guide rows.
  • the drum cover together with the end face 16 of the turbine rotor, delimits a radially running wheel side space 17.
  • This space 17 forms the outlet-side end of an annular channel 18 which, starting from the hub behind the last row of compressor runs, runs between the drum cover and the drum.
  • the entire rotor-side cooling air is introduced into this ring duct.
  • the following must be observed because of the swirling flow prevailing therein: In order that the swirl flow along the drum does not become unstable, the normal and tangential velocity of the cooling air as well as the mean duct radius and duct height must be in a certain relationship to one another, as is apparent from the Swirl flow theory is known.
  • a labyrinth 19 sealing against the drum cover is arranged on the drum.
  • the labyrinth seals only indirectly against the drum cover. Its non-rotating part is fastened in a suitable manner in a labyrinth body 24.
  • the labyrinth is divided on the rotor side into a number of segments arranged on the drum surface.
  • the segmentation of the labyrinth 19 is shown in FIG.
  • there are axially directed hammer head grooves 21, which are worked into a collar 22 of the drum 12 are.
  • So-called heat accumulation segments 20 with appropriately configured feet 23 are suspended in these grooves.
  • Metal sealing strips (not shown in FIG. 3) act against the outer surfaces of the heat accumulation segments that protrude into the ring channel and can be caulked, for example, in the labyrinth body 24 or fastened in some other way.
  • the cooling air is now to be deflected in a swirl grille within the ring channel 18 and accelerated to the highest possible tangential speed.
  • This swirl grille 25 is provided in the ring channel in the form of swirl nozzles directly opposite the end face 16 of the turbine rotor, i.e. it opens directly into the wheel side space 17. For reasons to be explained later, it is advisable to arrange the swirl grille on the smallest possible radius.
  • the labyrinth body 24 In order to hold the labyrinth body 24 in its position, it is connected to the drum cover 13 via a plurality of flow-oriented support ribs 26 distributed around the circumference.
  • the cylinder section in FIG. 2 shows the blade plan over the labyrinth body 24 on an enlarged scale.
  • c means the absolute speed of the cooling air and u the peripheral speed of the rotor.
  • the ratio of pitch to chord is 1.2 for the support ribs 26 and 0.85 for the swirl nozzles 25.
  • the support ribs 26 are only flow ribs with a symmetrical profile in which the flow is not forced to change the speed or the direction. The flow leaves the support ribs at speed c and an angle of approx. 20 ° against the circumferential direction.
  • the swirl nozzles are an acceleration grille with a slight curvature of the skeleton line, which redirects the flow from now approx. 25 ° to approx. 10 ° and increases the speed from approx. 120 to approx. 420 m / sec.
  • the total cooling air required for rotor cooling i.e. Approx. 8% of the compressed air is taken from behind the last row in the area of the hub.
  • the swirling cooling air flows through the annular duct 18 up to the drum labyrinth 19.
  • the swirl given by the compressor ensures that, due to the low relative speed between the rotor surface and the cooling air, minimal heat transfer coefficients and the lowest possible adiabatic wall temperatures are achieved. This in turn results in low transient voltages and the lowest possible stationary temperatures in the area under consideration.
  • the main part of the rotor cooling air is guided into the swirl nozzles 25 via the flow-oriented support ribs 26 of the labyrinth body 24. In these, the cooling air is accelerated to close to the speed of sound with a slight deflection in the direction of rotor rotation.
  • the outflow the swirl grid is almost tangential, ie approx. 10 ° to the circumferential direction.
  • this high swirl has a positive effect on the heat transfer, as already described above.
  • Advantageous values can be achieved if the ratio of tangential speed to peripheral speed is around 1 at the entry of the cooling air into the rotor. This means that there is no work exchange when flowing into the rotor cooling duct, i.e. that no work is taken from or added to the rotor. In particular, the temperature of the cooling air is not increased by pumping.
  • the high speed level greatly reduces the static pressure at the outlet from the swirl grille. There is therefore a lower mean pressure in the wheel side space, as a result of which the axial thrust of the rotor is reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

Technisches GebietTechnical field

Die Erfindung betrifft eine axialdurchströmte Gasturbine, im wesentlichen bestehend aus einer mehrstufigen Turbine, welche unter anderm einen auf einer gemeinsamen Welle angeordneten Verdichter antreibt, gemäss Oberbegriff des Patentanspruchs 1.The invention relates to an axially flow-through gas turbine, consisting essentially of a multi-stage turbine which, among other things, drives a compressor arranged on a common shaft, according to the preamble of patent claim 1.

Stand der TechnikState of the art

Derartige Gasturbinen sind bekannt. Die gesamte rotorseitige Kühlluft wird aus dem Sammelraum zwischen Verdichter und Turbine entnommen; der überwiegende Teil davon strömt direkt über ein Beschleunigungsgitter in die Rotorkühlkanäle ein. Hierbei befindet sich das Beschleunigungsgitter in der Regel auf dem gleichen Radius wie die Rotorkühlkanäle an der Stirnseite des Turbinenrotors. Der kleinere Anteil Kühlluft, d.h. die zur Kühlung der letzten Verdichterscheibe sowie der Trommel und der ersten Turbinenscheibe notwendige Luft muss zur Wahrnehmung der Kühlfunktion in einem Kühler rückgekühlt werden, bevor er drallfrei in den Ringkanal eingeleitet wird. Diese Lösung hat eine Reihe von Unzulänglichkeiten zur Folge.

  • Zum einen hat die Kühlluft, da aus dem Sammelraum entnommen, nicht die höchstmögliche und erwünschte Reinheit, wie es insbesondere die feinen Schaufelkühlkanäle verlangen.
  • Zum andern wird ein separater, kostspieliger Apparat für die Rückkühlung benötigt.
  • Ferner wird dieser kleinere, rückgekühlte Luftanteil infolge der konvektiven Aufheizung auf seinem Weg bis zum Eintritt in den Ringkanal wiederum stark aufgeheizt, wodurch die Kühlwirkung reduziert wird.
  • Zudem bewirkt die drallfreie Einführung der Luft eine zusätzliche Erhöhung der adiabaten Wandtemperatur in den betroffenen Bereichen
  • Schliesslich bewirkt die drallfreie Einführung der Kühlluft in den Ringkanal ausserdem eine hohe Wärmeübergangszahl α im ganzen beaufschlagten Rotorbereich, was zusammen mit der erwähnten erhöhten Kühllufttemperatur hohe transiente Spannungen verursachen kann.
  • Ueberdies ergeben sich im Bereich des Trommellabyrinthes extrem hohe α-Zahlen mit den bekannten Nachteilen.
  • Bei diesen bekannten Gasturbinen wird bewusst eine Rückströmung, d.h. eine Einströmung von rückgekühlter Luft aus dem Ringkanal in den Hauptkanal des Verdichters hinter dessen letzte Laufreihe in Kauf genommen. Es versteht sich, dass durch diese Massnahme eine nicht unbeträchtliche Störung des Hauptströmung erfolgt.
  • Dadurch, dass die Einströmung in die Rotorkühlkanäle zwangsläufig mit geringen Drall erfolgt, muss der Rotor Pumparbeit leisten, was die Kühllufttemperatur weiterhin anhebt.
Such gas turbines are known. The entire rotor-side cooling air is taken from the plenum between the compressor and the turbine; the majority of it flows directly into the rotor cooling ducts via an acceleration grid. The accelerating grille is usually located on the same radius as the rotor cooling channels on the front side of the turbine rotor. The smaller proportion of cooling air, ie the air required to cool the last compressor disk and the drum and the first turbine disk, must be recooled in a cooler to perform the cooling function before it is introduced into the ring channel without swirl. This solution has a number of shortcomings.
  • On the one hand, the cooling air, since it is removed from the collecting space, does not have the highest possible and desired purity, as required in particular by the fine blade cooling channels.
  • Secondly, a separate, costly apparatus for recooling is required.
  • Furthermore, this smaller, recooled air portion is strongly heated again as a result of the convective heating on its way up to the entry into the ring channel, which reduces the cooling effect.
  • In addition, the swirl-free introduction of air causes an additional increase in the adiabatic wall temperature in the affected areas
  • Finally, the swirl-free introduction of the cooling air into the ring channel also causes a high heat transfer coefficient α in the entire rotor area under load, which together with the increased cooling air temperature mentioned can cause high transient voltages.
  • In addition, extremely high α numbers result in the area of the drum labyrinth with the known disadvantages.
  • In these known gas turbines, a backflow, ie an inflow of recooled air from the annular duct into the main duct of the compressor behind its last row of runs, is accepted. It goes without saying that this measure causes a not inconsiderable disturbance of the main flow.
  • Because the inflow into the rotor cooling channels inevitably takes place with little swirl, the rotor has to do pumping work, which further increases the cooling air temperature.

Aus der DE 2 003 947 ist eine Gasturbine bekannt mit einer Luftkammer, die einen Teil des zu kühlenden Rotors umfasst und von der Kühlkanäle ausgehen, die zu hohlen Turbinenschaufeln führen. Die Kühlluft wird über Düsen in die Luftkammer eingeleitet, wobei die Düsen die Kühlluft beschleunigen und dadurch eine Verringerung der statischen Kühllufttemperatur bewirken sollen.From DE 2 003 947 a gas turbine is known with an air chamber which comprises part of the rotor to be cooled and from which cooling ducts lead, which lead to hollow turbine blades. The cooling air is introduced into the air chamber via nozzles, the nozzles accelerating the cooling air and thereby reducing the static cooling air temperature.

Darstellung der ErfindungPresentation of the invention

Die Erfindung versucht die obengenannten Nachteile zu vermeiden. Desweiteren liegt ihr noch die zusätzliche Aufgabe zugrunde, bei axial durchströmten Gasturbinen der eingangs genannten Art, welche turbinenseitig grossdimensionierte Rotorstirnflächen aufweisen, den Axialschub zu verringern.The invention tries to avoid the disadvantages mentioned above. Furthermore, it is based on the additional task of reducing the axial thrust in the case of axially flow-through gas turbines of the type mentioned at the outset, which have large rotor end faces on the turbine side.

Erfindungsgemäss wird dies dadurch erreicht, dass die rotorseitige Kühlluft für die Turbine nach der letzten Laufreihe des Verdichters an dessen Nabe entnommen und mit dem ihr anhaftenden Drall unmittelbar in den Ringkanal geleitet wird, und dass diese Kühlluft innerhalb des Ringkanals in einem Drallgitter umgelenkt und bis nahe an die Schallgeschwindigkeit beschleunigt wird.According to the invention, this is achieved in that the rotor-side cooling air for the turbine is removed from the hub after the last run row of the compressor and is passed directly into the ring duct with the swirl adhering to it, and in that this cooling air is deflected within the ring duct in a swirl grille and up to close is accelerated to the speed of sound.

Drallgitter für die Rotorkühlluft, die sich unmittelbar vor der Stirnseite eines Turbinenrotors befinden, sind an sich bekannt aus der GB 2 189 845.Swirl grids for the rotor cooling air, which are located directly in front of the end face of a turbine rotor, are known per se from GB 2 189 845.

Die Vorteile der Erfindung sind unter anderem im Wegfall des bisher üblichen aufwendigen Kühlers einerseits und der geringen transienten Spannungen im umspülten Wellenbereich andererseits zu sehen.The advantages of the invention can be seen, inter alia, in the elimination of the previously required complex cooler on the one hand and the low transient voltages in the washed-around wave range on the other.

Es ist besonders zweckmässig, wenn die rotorseitige Kühlluft nach der letzten Laufreihe des Verdichters an dessen Nabe entnommen wird und mit dem ihr anhaftenden Drall in den Ringkanal geleitet wird. Hierdurch wird zum einen gewährleistet, dass die Aufheizung des Rotors über die Kühlluft und somit das Niveau der transienten Spannungen kleinstmöglich ist. Darüberhinaus wird durch die nabenseitige Entnahme reinstmögliche, nahezu staubfreie Luft in den Ringkanal eingeleitet.It is particularly expedient if the cooling air on the rotor side is removed from the compressor after the last running row of the compressor and is passed into the ring channel with the swirl adhering to it. This ensures on the one hand that the heating of the rotor via the cooling air and thus the level of the transient voltages is as small as possible. In addition, the purest possible, almost dust-free air is introduced into the ring channel through the hub-side removal.

Schliesslich wird mit Vorteil die gegen die Trommelabdeckung dichtende Labyrinthdichtung zur Senkung der Wärmeübergangszahl α rotorseitig in Segmente unterteilt. Dadurch wird die Wirkung der in Labyrinthen üblicherweise extrem hohen α-Werte unterbunden.Finally, the labyrinth seal sealing against the drum cover is advantageously divided into segments on the rotor side to reduce the heat transfer coefficient. This prevents the effects of the usually extremely high α values in labyrinths.

Kurze Beschreibung der ZeichnungBrief description of the drawing

In der Zeichnung ist ein Ausführungsbeispiel der Erfindung anhand einer einwelligen axialdurchströmten Gasturbine dargestellt.
Es zeigen:

Fig.1
einen Teillängsschnitt der Gasturbine;
Fig.2
die teilweise Abwicklung eines Zylinderschnittes auf mittlerem Durchmesser des durchströmten Ringkanals;
Fig.3
einen Teilquerschnitt durch die Trommel in der Ebene des Labyrinthes.
In the drawing, an embodiment of the invention is shown using a single-shaft gas turbine with axial flow.
Show it:
Fig. 1
a partial longitudinal section of the gas turbine;
Fig. 2
the partial development of a cylindrical section on the medium diameter of the flow through the annular channel;
Fig. 3
a partial cross section through the drum in the plane of the labyrinth.

Es sind nur die für das Verständnis der Erfindung wesentlichen Elemente gezeigt. Nicht dargestellt sind von der Anlage beispielsweise das Abgasgehäuse der Gasturbine mit Abgasrohr und Kamin sowie die Eintrittspartien des Verdichterteils. Die Strömungsrichtung der Arbeitsmittel ist mit Pfeilen bezeichnet.Only the elements essential for understanding the invention are shown. The system does not show, for example, the exhaust gas casing of the gas turbine with the exhaust pipe and chimney, and the inlet parts of the compressor part. The direction of flow of the work equipment is indicated by arrows.

Weg zur Ausführung der ErfindungWay of carrying out the invention

Die Turbine 1, von der in Fig.1 lediglich die erste axialdurchströmte Stufe 2 in Form einer Leit- und einer Laufreihe dargestellt ist, besteht im wesentlichen aus dem beschaufelten Rotor 3 und dem mit Leitschaufeln bestückten Schaufelträger 4. Der Schaufelträger ist im Turbinengehäuse 5 eingehängt. Im dargestellten Fall umfasst das Turbinengehäuse 5 ebenfalls den Sammelraum 6 für die verdichtete Brennluft. Aus diesem Sammelraum gelangt die Brennluft in die Ringbrennkammer 7, welche ihrerseits in den Turbineneinlass, d.h. stromaufwärts der ersten Leitreihe mündet. In den Sammelraum gelangt die verdichtete Luft aus dem Diffusor 8 des Verdichters 9. Von letzterem ist lediglich die letzte Stufe 10 dargestellt, wobei die Leitbeschaufelung dieser letzten Stufe aus der eigentlichen Leitreihe und der Nachleitreihe besteht. Die Laufbeschaufelung des Verdichters und der Turbine sitzen auf einer gemeinsamen Welle 11, wobei der zwischen Turbine und Verdichter befindliche Teil als Trommel 12 ausgebildet ist.
Diese Trommel ist in ihrer ganzen axialen Erstreckung von einer Trommelabdeckung 13 umgeben, welche über Rippen 14 mit dem Diffusoraussengehäuse 15 des Verdichters befestigt ist. Diese Trommelabdeckung bildet verdichterseitig das Deckband für die Schaufeln der beiden letzten Verdichterleitreihen. Turbinenseitig begrenzt die Trommelabdeckung zusammen mit der Stirnseite 16 des Turbinenrotors einen radial verlaufenden Radseitenraum 17.
The turbine 1, of which only the first axially flow-through stage 2 is shown in the form of a guide and a rotor row, essentially consists of the bladed rotor 3 and the blade carrier 4 equipped with guide blades. The blade carrier is suspended in the turbine housing 5 . In the illustrated case, the turbine housing 5 also includes the collecting space 6 for the compressed combustion air. The combustion air enters the annular combustion chamber 7 from this collecting space, which in turn opens into the turbine inlet, ie upstream of the first guide row. The compressed one arrives in the collecting room Air from the diffuser 8 of the compressor 9. Only the last stage 10 of the latter is shown, the guide blading of this last stage consisting of the actual guide row and the secondary guide row. The blading of the compressor and the turbine sit on a common shaft 11, the part located between the turbine and the compressor being designed as a drum 12.
This drum is surrounded in its entire axial extent by a drum cover 13, which is fastened to the diffuser outer housing 15 of the compressor via ribs 14. This drum cover forms the shroud on the compressor side for the blades of the last two compressor guide rows. On the turbine side, the drum cover, together with the end face 16 of the turbine rotor, delimits a radially running wheel side space 17.

Dieser Raum 17 bildet das austrittsseitige Ende eines Ringkanals 18, welcher, ausgehend von der Nabe hinter der letzten Verdichterlaufreihe, zwischen Trommelabdeckung und Trommel verläuft. In diesen Ringkanal wird die gesamte rotorseitige Kühlluft eingeleitet. Bei der Dimensionierung des Ringkanals 18 ist wegen der darin herrschenden drallbehafteten Strömung folgendes zu beachten: Damit die Drallströmung entlang der Trommel nicht instabil wird, müssen Normal- und Tangentialgeschwindigkeit der Kühlluft sowie mittlerer Kanalradius und Kanalhöhe in einer gewissen Relation zueinander stehen, wie es aus der Theorie der Drallströmung bekannt ist.This space 17 forms the outlet-side end of an annular channel 18 which, starting from the hub behind the last row of compressor runs, runs between the drum cover and the drum. The entire rotor-side cooling air is introduced into this ring duct. When dimensioning the ring duct 18, the following must be observed because of the swirling flow prevailing therein: In order that the swirl flow along the drum does not become unstable, the normal and tangential velocity of the cooling air as well as the mean duct radius and duct height must be in a certain relationship to one another, as is apparent from the Swirl flow theory is known.

Am turbinenseitigen Ende ist auf der Trommel ein gegen die Trommelabdeckung dichtendes Labyrinth 19 angeordnet. Das Labyrinth dichtet indes nur mittelbar gegen die Trommelabdeckung. Sein nichtrotierender Teil ist in einem Labyrinthkörper 24 auf geeignet Art befestigt. Zur Senkung der Wärmeübergangszahl α ist das Labyrinth rotorseitig in eine Anzahl an der Trommeloberfläche angeordneter Segmente unterteilt. In Fig.3 ist die Segmentierung des Labyrinthes 19 dargestellt. Im gezeigten Beispiel handelt es sich um axialgerichtete Hammerkopfnuten 21, welche in einen Bund 22 der Trommel 12 hineingearbeitet sind. In diese Nuten sind sogenannte Wärmestausegmente 20 mit entsprechend konfigurierten Füssen 23 eingehängt. Gegen die in den Ringkanal ragenden Aussenflächen der Wärmestausegmente wirken in Fig.3 nicht dargestellte metallische Dichtstreifen, welche beispielsweise im Labyrinthkörper 24 eingestemmt oder auf sonstige Art befestigt sein können.At the end on the turbine side, a labyrinth 19 sealing against the drum cover is arranged on the drum. The labyrinth seals only indirectly against the drum cover. Its non-rotating part is fastened in a suitable manner in a labyrinth body 24. To reduce the heat transfer coefficient α, the labyrinth is divided on the rotor side into a number of segments arranged on the drum surface. The segmentation of the labyrinth 19 is shown in FIG. In the example shown, there are axially directed hammer head grooves 21, which are worked into a collar 22 of the drum 12 are. So-called heat accumulation segments 20 with appropriately configured feet 23 are suspended in these grooves. Metal sealing strips (not shown in FIG. 3) act against the outer surfaces of the heat accumulation segments that protrude into the ring channel and can be caulked, for example, in the labyrinth body 24 or fastened in some other way.

Gemäss der Erfindung soll nunmehr innerhalb des Ringkanals 18 die Kühlluft in einem Drallgitter umgelenkt und auf höchstmögliche Tangentialgeschwindigkeit beschleunigt werden. Dieses Drallgitter 25 ist im Ringkanal in Form von Dralldüsen unmittelbar gegenüber der Stirnseite 16 des Turbinenrotors vorgesehen, d.h. es mündet direkt in den Radseitenraum 17. Aus später zu erläuternden Gründen ist es zweckmässig, das Drallgitter auf dem kleinstmöglich Radius anzuordnen.According to the invention, the cooling air is now to be deflected in a swirl grille within the ring channel 18 and accelerated to the highest possible tangential speed. This swirl grille 25 is provided in the ring channel in the form of swirl nozzles directly opposite the end face 16 of the turbine rotor, i.e. it opens directly into the wheel side space 17. For reasons to be explained later, it is advisable to arrange the swirl grille on the smallest possible radius.

Um den Labyrinthkörper 24 in seiner Lage zu halten, ist er über mehrere am Umfang verteilte strömungsorientierte Tragrippen 26 mit der Trommelabdeckung 13 verbunden.In order to hold the labyrinth body 24 in its position, it is connected to the drum cover 13 via a plurality of flow-oriented support ribs 26 distributed around the circumference.

Der Zylinderschnitt in Fig. 2 zeigt in vergrössertem Masstab den Schaufelplan über dem Labyrinthkörper 24. Hierin bedeuten c die Absolutgeschwindigkeit der Kühlluft und u die Umfangsgeschwindigkeit des Rotors. Zwecks Angabe der Grössenordnung bei einem ausgeführten Beispiel beträgt das Verhältnis Teilung zu Sehne bei den Tragrippen 26 beispielsweise 1,2 und bei den Dralldüsen 25 ca. 0.85. Bei den Tragrippen 26 handelt es sich lediglich um Strömungsrippen mit symmetrischen Profil, in denen der Strömung weder eine Aenderung der Geschwindigkeit noch der Richtung aufgezwungen wird. Die Strömung verlässt die Tragrippen mit der Geschwindigkeit c und einem Winkel von ca. 20° gegen die Umfangsrichtung.The cylinder section in FIG. 2 shows the blade plan over the labyrinth body 24 on an enlarged scale. Here, c means the absolute speed of the cooling air and u the peripheral speed of the rotor. For the purpose of specifying the order of magnitude in one example, the ratio of pitch to chord is 1.2 for the support ribs 26 and 0.85 for the swirl nozzles 25. The support ribs 26 are only flow ribs with a symmetrical profile in which the flow is not forced to change the speed or the direction. The flow leaves the support ribs at speed c and an angle of approx. 20 ° against the circumferential direction.

Bei den Dralldüsen handelt es sich um ein Beschleunigungsgitter mit geringer Krümmung der Skelettlinie, welches die Strömung von nunmehr ca. 25° auf ca. 10° umlenkt und die Geschwindigkeit von ca. 120 auf ca. 420 m/sec steigert.The swirl nozzles are an acceleration grille with a slight curvature of the skeleton line, which redirects the flow from now approx. 25 ° to approx. 10 ° and increases the speed from approx. 120 to approx. 420 m / sec.

Die Wirkungsweise der Erfindung wird nachstehend anhand eines Zahlenbeispieles erläutert: Es versteht sich, dass auf die Bekanntgabe von allen den Berechnungen und Versuchen zugrundeliegenden Absolutwerten verzichtet wird, da diese wegen ihrer Abhängigkeit von allzu zahlreichen Parametern ohnehin ungenügende Aussagekraft besitzen würden.The mode of operation of the invention is explained below with the aid of a numerical example: It goes without saying that all absolute values on which the calculations and tests are based are not disclosed, since these would in any case have insufficient informative value because of their dependence on too many parameters.

Die gesamte für die Rotorkühlung erforderliche Kühlluft, d.h. ca. 8% der verdichteten Luft wird hinter der letzten Laufreihe im Bereich der Nabe entnommen. Durch den Ringkanal 18 strömt die drallbehaftete Kühlluft bis vor das Trommellabyrinth 19. Durch den vom Verdichter her vorgegebenen Drall wird sichergestellt, dass infolge der kleinen Relativgeschwindigkeit zwischen Rotoroberfläche und Kühlluft minimale Wärmeübergangszahlen und tiefstmögliche adiabate Wandtemperaturen erreicht werden. Dies wiederum hat niedrige transiente Spannungen und tiefstmögliche stationäre Temperaturen im betrachteten Bereich zur Folge.The total cooling air required for rotor cooling, i.e. Approx. 8% of the compressed air is taken from behind the last row in the area of the hub. The swirling cooling air flows through the annular duct 18 up to the drum labyrinth 19. The swirl given by the compressor ensures that, due to the low relative speed between the rotor surface and the cooling air, minimal heat transfer coefficients and the lowest possible adiabatic wall temperatures are achieved. This in turn results in low transient voltages and the lowest possible stationary temperatures in the area under consideration.

Durch das Labyrinth 19 strömt lediglich die unvermeidliche Leckmenge. Es ist nicht zu umgehen, dass im Labyrinth die Tangentialgeschwindigkeit auf ca. 50% der dortigen Umfangsgeschwindigkeit abgebaut wird. Damit geht bereits ein Teil der obengenannten positiven Drallwirkung verloren. Durch die spezifische Strömungsform im Labyrinth wird zudem der α-Wert erhöht. Abhilfe wird hier geschaffen durch die Segmentierung des rotorseitigen Labyrinthteiles, welche den Wärmefluss in die Trommel stark vermindert. Durch die Tatsache der Drallreduktion innerhalb des Labyrinthes ist es wichtig, dass der auf das Labyrinth folgende Teil des Ausströmkanals 27 so kurz wie möglich bemessen wird, d.h. das Labyrinth ist möglichst nahe an die erste Turbinenscheibe zu verlegen.Only the inevitable amount of leakage flows through the labyrinth 19. It cannot be avoided that the tangential speed in the labyrinth is reduced to approx. 50% of the peripheral speed there. This means that part of the positive swirl effect mentioned above is already lost. The specific flow shape in the labyrinth also increases the α value. This is remedied by the segmentation of the rotor-side labyrinth part, which greatly reduces the heat flow into the drum. Due to the fact that the twist is reduced within the labyrinth, it is important that the part of the outflow channel 27 following the labyrinth is dimensioned as short as possible, i.e. the labyrinth should be laid as close as possible to the first turbine disc.

Der Hauptteil der Rotorkühlluft wird über die strömungsorientierten Tragrippen 26 des Labyrinthkörpers 24 in die Dralldüsen 25 geführt. In diesen erfolgt eine Beschleunigung der Kühlluft bis nahe an die Schallgeschwindigkeit bei gleichzeitiger leichter Umlenkung in Rotordrehrichtung. Die Abströmung aus dem Drallgitter erfolgt dabei nahezu tangential, d.h. ca. 10° zur Umfangsrichtung.The main part of the rotor cooling air is guided into the swirl nozzles 25 via the flow-oriented support ribs 26 of the labyrinth body 24. In these, the cooling air is accelerated to close to the speed of sound with a slight deflection in the direction of rotor rotation. The outflow the swirl grid is almost tangential, ie approx. 10 ° to the circumferential direction.

Zum einen wirkt sich dieser hoher Drall wiederum positiv auf den Wärmeübergang aus, wie bereits oben beschrieben. Vorteilhafte Werte können erzielt werden, wenn am Eintritt der Kühlluft in den Rotor das Verhältnis Tangentialgeschwindigkeit zu Umfangsgeschwindigkeit um ca. 1 beträgt. Dies bedeutet, dass beim Einströmen in den Rotorkühlkanal kein Arbeitsaustausch erfolgt, d.h. dass dem Rotor weder Arbeit entzogen noch hinzugefügt wird. Insbesondere wird auch die Temperatur der Kühlluft durch Pumparbeit nicht erhöht.On the one hand, this high swirl has a positive effect on the heat transfer, as already described above. Advantageous values can be achieved if the ratio of tangential speed to peripheral speed is around 1 at the entry of the cooling air into the rotor. This means that there is no work exchange when flowing into the rotor cooling duct, i.e. that no work is taken from or added to the rotor. In particular, the temperature of the cooling air is not increased by pumping.

Darüberhinaus wird durch das hohe Geschwindigkeitsniveau der statische Druck am Austritt aus dem Drallgitter stark herabgesetzt. Im Radseitenraum herrscht somit ein niedrigerer mittlerer Druck, wodurch der Axialschub des Rotors erniedrigt wird.In addition, the high speed level greatly reduces the static pressure at the outlet from the swirl grille. There is therefore a lower mean pressure in the wheel side space, as a result of which the axial thrust of the rotor is reduced.

Selbstverständlich ist die Erfindung nicht auf das gezeigte und beschriebene Ausführungsbeispiel beschränkt. In Abweichung von der Lösung der getrennten Tragrippen und Dralldüsen ist durchaus eine Ausbildung denkbar, bei welcher diese beiden Elemente in einem einzigen Gitter vereinigt werden.Of course, the invention is not limited to the exemplary embodiment shown and described. In a departure from the solution of the separate support ribs and swirl nozzles, an embodiment is quite conceivable in which these two elements are combined in a single grid.

BezugszeichenlisteReference list

11
Turbineturbine
22nd
erste Turbinenstufefirst turbine stage
33rd
Rotorrotor
44th
SchaufelträgerShovel carrier
55
TurbinengehäuseTurbine casing
66
SammelraumGathering room
77
BrennkammerCombustion chamber
88th
DiffusorDiffuser
99
Verdichtercompressor
1010th
letzte Verdichterstufelast compressor stage
1111
Wellewave
1212th
Trommeldrum
1313
TrommelabdeckungDrum cover
1414
Ripperib
1515
DiffusoraussengehäuseDiffuser outer casing
1616
StirnseiteFace
1717th
RadseitenraumWheel side space
1818th
RingkanalRing channel
1919th
LabyrinthdichtungLabyrinth seal
2020th
Segmentsegment
2121
HammerkopfnutHammer head groove
2222
BundFederation
2323
Fuss von 20Foot of 20
2424th
LabyrinthkörperLabyrinth body
2525th
DrallgitterSwirl grille
2626
TragrippeSupport rib
2727
AusströmkanalOutflow channel

Claims (3)

  1. Axial-flow gas turbine, essentially consisting of a multistage turbine (1) which drives, inter alia, a compressor (9) arranged on a common shaft (11),
    - in which the shaft part lying between turbine and compressor is a drum (12) which is surrounded by a drum cover (13), and in which the annular passage (18) formed between drum and drum cover assumes the function of conducting the cooling air tapped from the compressor to the front end (16) of the turbine rotor and after this to its rotor-side cooling passages,
    - and for which a labyrinth seal (19) sealing against the drum cover is arranged on the drum for sealing between the pressure levels at the outlet of the compressor and at the inlet of the cooling air into the turbine,
    - all the rotor-side cooling air for the turbine being tapped from the compressor in the area of the compressor outlet,
    characterized in that
    - the rotor-side cooling air for the turbine is tapped after the last moving row of the compressor at its hub and is passed in the spinning state directly into the annular passage (18),
    - and this cooling air is deflected inside the annular passage in a spin cascade (25) and accelerated almost to the speed of sound.
  2. Axial-flow gas turbine according to Patent Claim 1, characterized in that the annular passage is formed on the turbine side by the wheel side space (17) which is defined on the one side by the drum cover and on the other side by the front end (16) of the turbine rotor.
  3. Axial-flow gas turbine according to Patent Claim 1, characterized in that the labyrinth seal (19) sealing against the drum cover is subdivided on the rotor side into segments (20) in order to reduce the heat transfer coefficient α.
EP91103525A 1990-03-23 1991-03-07 Axial flow gas turbine Expired - Lifetime EP0447886B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH96390 1990-03-23
CH963/90 1990-03-23

Publications (2)

Publication Number Publication Date
EP0447886A1 EP0447886A1 (en) 1991-09-25
EP0447886B1 true EP0447886B1 (en) 1994-07-13

Family

ID=4199266

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91103525A Expired - Lifetime EP0447886B1 (en) 1990-03-23 1991-03-07 Axial flow gas turbine

Country Status (4)

Country Link
US (1) US5189874A (en)
EP (1) EP0447886B1 (en)
JP (1) JP3105277B2 (en)
DE (1) DE59102139D1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11846237B2 (en) 2017-01-19 2023-12-19 Rtx Corporation Gas turbine engine with intercooled cooling air and dual towershaft accessory gearbox

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2707698B1 (en) * 1993-07-15 1995-08-25 Snecma Turbomachine provided with an air blowing means on a rotor element.
DE4433289A1 (en) * 1994-09-19 1996-03-21 Abb Management Ag Axial gas turbine
US5555721A (en) * 1994-09-28 1996-09-17 General Electric Company Gas turbine engine cooling supply circuit
JP4088368B2 (en) * 1998-06-04 2008-05-21 三菱重工業株式会社 Gland deformation prevention structure of low-pressure steam turbine
US6234746B1 (en) * 1999-08-04 2001-05-22 General Electric Co. Apparatus and methods for cooling rotary components in a turbine
CN1329662C (en) * 2001-12-17 2007-08-01 乐金电子(天津)电器有限公司 Vortex compressor
EP1418319A1 (en) 2002-11-11 2004-05-12 Siemens Aktiengesellschaft Gas turbine
DE102005025244A1 (en) * 2005-05-31 2006-12-07 Rolls-Royce Deutschland Ltd & Co Kg Air guiding system between compressor and turbine for gas-turbine engine operated at high pressure ratio has compressor and air chamber whereby first turbine cooling air is flowed through air chamber
EP2011963B1 (en) 2007-07-04 2018-04-04 Ansaldo Energia Switzerland AG Method for operating a gas turbine with axial thrust balance
EP2242916B1 (en) * 2008-02-20 2015-06-24 Alstom Technology Ltd Gas turbine
US8935926B2 (en) 2010-10-28 2015-01-20 United Technologies Corporation Centrifugal compressor with bleed flow splitter for a gas turbine engine
DE102013220844B4 (en) 2013-10-15 2019-03-21 MTU Aero Engines AG Compressor and gas turbine with such a compressor
US11808210B2 (en) 2015-02-12 2023-11-07 Rtx Corporation Intercooled cooling air with heat exchanger packaging
US10731560B2 (en) 2015-02-12 2020-08-04 Raytheon Technologies Corporation Intercooled cooling air
US10371055B2 (en) 2015-02-12 2019-08-06 United Technologies Corporation Intercooled cooling air using cooling compressor as starter
US10830148B2 (en) 2015-04-24 2020-11-10 Raytheon Technologies Corporation Intercooled cooling air with dual pass heat exchanger
US10221862B2 (en) 2015-04-24 2019-03-05 United Technologies Corporation Intercooled cooling air tapped from plural locations
US10480419B2 (en) 2015-04-24 2019-11-19 United Technologies Corporation Intercooled cooling air with plural heat exchangers
US10100739B2 (en) 2015-05-18 2018-10-16 United Technologies Corporation Cooled cooling air system for a gas turbine engine
US10794288B2 (en) 2015-07-07 2020-10-06 Raytheon Technologies Corporation Cooled cooling air system for a turbofan engine
US10443508B2 (en) 2015-12-14 2019-10-15 United Technologies Corporation Intercooled cooling air with auxiliary compressor control
US10669940B2 (en) 2016-09-19 2020-06-02 Raytheon Technologies Corporation Gas turbine engine with intercooled cooling air and turbine drive
US10794290B2 (en) 2016-11-08 2020-10-06 Raytheon Technologies Corporation Intercooled cooled cooling integrated air cycle machine
US10550768B2 (en) 2016-11-08 2020-02-04 United Technologies Corporation Intercooled cooled cooling integrated air cycle machine
US10961911B2 (en) 2017-01-17 2021-03-30 Raytheon Technologies Corporation Injection cooled cooling air system for a gas turbine engine
US10577964B2 (en) 2017-03-31 2020-03-03 United Technologies Corporation Cooled cooling air for blade air seal through outer chamber
US10711640B2 (en) 2017-04-11 2020-07-14 Raytheon Technologies Corporation Cooled cooling air to blade outer air seal passing through a static vane
US10738703B2 (en) 2018-03-22 2020-08-11 Raytheon Technologies Corporation Intercooled cooling air with combined features
US10808619B2 (en) 2018-04-19 2020-10-20 Raytheon Technologies Corporation Intercooled cooling air with advanced cooling system
US10830145B2 (en) 2018-04-19 2020-11-10 Raytheon Technologies Corporation Intercooled cooling air fleet management system
US10718233B2 (en) 2018-06-19 2020-07-21 Raytheon Technologies Corporation Intercooled cooling air with low temperature bearing compartment air
US11255268B2 (en) 2018-07-31 2022-02-22 Raytheon Technologies Corporation Intercooled cooling air with selective pressure dump

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2647684A (en) * 1947-03-13 1953-08-04 Rolls Royce Gas turbine engine
US2951337A (en) * 1957-05-28 1960-09-06 Gen Motors Corp Turbine air system
US3565545A (en) * 1969-01-29 1971-02-23 Melvin Bobo Cooling of turbine rotors in gas turbine engines
US3826084A (en) * 1970-04-28 1974-07-30 United Aircraft Corp Turbine coolant flow system
US3989410A (en) * 1974-11-27 1976-11-02 General Electric Company Labyrinth seal system
US4236869A (en) * 1977-12-27 1980-12-02 United Technologies Corporation Gas turbine engine having bleed apparatus with dynamic pressure recovery
US4332133A (en) * 1979-11-14 1982-06-01 United Technologies Corporation Compressor bleed system for cooling and clearance control
GB2108202B (en) * 1980-10-10 1984-05-10 Rolls Royce Air cooling systems for gas turbine engines
US4456427A (en) * 1981-06-11 1984-06-26 General Electric Company Cooling air injector for turbine blades
US4462204A (en) * 1982-07-23 1984-07-31 General Electric Company Gas turbine engine cooling airflow modulator
DE3424139C2 (en) * 1984-06-30 1996-02-22 Bbc Brown Boveri & Cie Gas turbine rotor
US4650395A (en) * 1984-12-21 1987-03-17 United Technologies Corporation Coolable seal segment for a rotary machine
US4674955A (en) * 1984-12-21 1987-06-23 The Garrett Corporation Radial inboard preswirl system
GB2189845B (en) * 1986-04-30 1991-01-23 Gen Electric Turbine cooling air transferring apparatus
DE3736836A1 (en) * 1987-10-30 1989-05-11 Bbc Brown Boveri & Cie AXIAL FLOWED GAS TURBINE

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11846237B2 (en) 2017-01-19 2023-12-19 Rtx Corporation Gas turbine engine with intercooled cooling air and dual towershaft accessory gearbox

Also Published As

Publication number Publication date
JPH04224234A (en) 1992-08-13
DE59102139D1 (en) 1994-08-18
JP3105277B2 (en) 2000-10-30
US5189874A (en) 1993-03-02
EP0447886A1 (en) 1991-09-25

Similar Documents

Publication Publication Date Title
EP0447886B1 (en) Axial flow gas turbine
EP0313826B1 (en) Axial gas turbine
EP0581978B1 (en) Multi-zone diffuser for turbomachine
EP0536575B1 (en) Shroud band for axial flow turbine
DE60318792T2 (en) Bleed air housing for a compressor
EP1111189B1 (en) Cooling air path for the rotor of a gas turbine engine
DE60300418T2 (en) Disc of an axial compressor of a turbomachine with centripetal blower
EP0528138B1 (en) Blade shroud for axial turbine
EP1004748B1 (en) Runner for a turbomachine
EP0591565B1 (en) Stator blade fastening for axial through-flow turbomachines
DE4422700A1 (en) Diffuser for turbomachinery
EP0417433B1 (en) Axial turbine
EP0799973A1 (en) Wall contour for an axial turbomachine
DE2319743A1 (en) ROTOR BLADE FOR FLOW MACHINERY
DE2356721B2 (en) Cooling device for hollow rotor blades of an axially flowed turbine
DE102005025244A1 (en) Air guiding system between compressor and turbine for gas-turbine engine operated at high pressure ratio has compressor and air chamber whereby first turbine cooling air is flowed through air chamber
DE3825744A1 (en) FLUID SEALING AND GAS TURBINE ARRANGEMENT AND METHOD FOR PREVENTING THE LEAKAGE OF WORKING FLUID FROM A TURBO MACHINE
DE2507182A1 (en) AXIAL GAS TURBINE SYSTEM
DE2943464A1 (en) GASKET DEVICE FOR A GAS TURBINE ENGINE
DE2633291B2 (en) Gas turbine system with cooling by two independent cooling air flows
EP0702129B1 (en) Cooling the rotor of an axial gasturbine
DE3315914C2 (en)
EP0491966B1 (en) Support device of a thermal turbomachine
EP0992656B1 (en) Turbomachine to compress or expand a compressible medium
DE3406071A1 (en) Device for cooling the rotors of steam turbines

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI

17P Request for examination filed

Effective date: 19920306

17Q First examination report despatched

Effective date: 19930315

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI

REF Corresponds to:

Ref document number: 59102139

Country of ref document: DE

Date of ref document: 19940818

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940916

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: ASEA BROWN BOVERI AG TRANSFER- ALSTOM

Ref country code: CH

Ref legal event code: NV

Representative=s name: GIACOMO BOLIS C/O ALSTOM (SWITZERLAND) LTD CHSP IN

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: FR

Ref legal event code: CA

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20100218

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20100318

Year of fee payment: 20

Ref country code: IT

Payment date: 20100317

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100208

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100331

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59102139

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20110306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20110306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20110307