EP0442318B1 - Durch Abbrennen regenerierbarer Partikelfilter für die Abgase von Brennkraftmaschinen - Google Patents

Durch Abbrennen regenerierbarer Partikelfilter für die Abgase von Brennkraftmaschinen Download PDF

Info

Publication number
EP0442318B1
EP0442318B1 EP91101119A EP91101119A EP0442318B1 EP 0442318 B1 EP0442318 B1 EP 0442318B1 EP 91101119 A EP91101119 A EP 91101119A EP 91101119 A EP91101119 A EP 91101119A EP 0442318 B1 EP0442318 B1 EP 0442318B1
Authority
EP
European Patent Office
Prior art keywords
filter
exhaust gas
tubes
particle filter
filter according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91101119A
Other languages
English (en)
French (fr)
Other versions
EP0442318A2 (de
EP0442318A3 (en
Inventor
Siegfried Wörner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eberspaecher Climate Control Systems GmbH and Co KG
Original Assignee
J Eberspaecher GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by J Eberspaecher GmbH and Co KG filed Critical J Eberspaecher GmbH and Co KG
Priority to AT91101119T priority Critical patent/ATE97994T1/de
Publication of EP0442318A2 publication Critical patent/EP0442318A2/de
Publication of EP0442318A3 publication Critical patent/EP0442318A3/de
Application granted granted Critical
Publication of EP0442318B1 publication Critical patent/EP0442318B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/0212Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters with one or more perforated tubes surrounded by filtering material, e.g. filter candles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/025Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/14Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having thermal insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2470/00Structure or shape of gas passages, pipes or tubes
    • F01N2470/18Structure or shape of gas passages, pipes or tubes the axis of inlet or outlet tubes being other than the longitudinal axis of apparatus

Definitions

  • the invention relates to a particle filter for cleaning the exhaust gas of internal combustion engines with filter candles, which are arranged in a housing provided with an inlet chamber and an outlet funnel between holding plates, of which the inlet-side holding plate is provided with exhaust gas passage openings, and from a filter material provided with exhaust gas passage openings occupied support tube are formed and to which additional heat for regeneration by burning is supplied from a heat source.
  • Such particle filters are required for cleaning exhaust gases from internal combustion engines, especially in vehicles that are operated with diesel fuel, in order to filter out the soot particles that are harmful to health and represent a high and dangerous environmental impact.
  • These particle filters are known in two versions.
  • the exhaust gas is filtered as it flows through a ceramic block (monolith) which has a large number of through channels, of which one channel is closed like a chessboard and one channel is closed on the outlet side, so that the exhaust gas flows into one channel, then through the surrounding monolith section acting as a filter flows into the adjacent channel and leaves it, freed from soot particles.
  • a soot filter describes, for example, DE-OS 32 17 357.
  • the other embodiment uses filter cartridges for particle filtering.
  • These filter cartridges are preferably designed as a wound filter.
  • a support tube provided with exhaust gas passage openings is wrapped in multiple layers with filter material threads, so that an element comparable to a textile yarn spool is produced.
  • Such an arrangement shows e.g. DE-OS 38 15 148 with a special representation of the storage of the filter candles in holding plates.
  • the filter candles can also be formed by a hose cover made of filter material via a support tube according to DE-OS 38 23 205.
  • the filter candles are also flowed through from the outside in, the exhaust gas to be cleaned enters the support pipes through the filter material, which are closed on the inlet side, the soot particles are retained when the wound filter material flows through, and the cleaned exhaust gas flows through the support pipes into the outlet funnel and becomes dissipated from there.
  • the filter cartridges are arranged on concentric circles in the filter housing and are of a uniform design. Instead of the holding plate on the inlet side provided with exhaust gas passage openings, a holding grille can also be arranged.
  • sooting occurs when flowing through the particle filter, ie the filter material becomes increasingly clogged with soot particles, and the soot has to be removed after a relatively short period of operation.
  • Mechanical removal is practically out of the question because the entire filter would have to be removed and the soot would have to be disposed of. It is therefore necessary to burn off or burn off the enriched soot.
  • oxidizing agents are added to the exhaust gas from a storage container as additives, so that the soot collected with them reduces the soot ignition temperature and the combustion rate increasing agents come into contact and can be burned off.
  • an "external regeneration” is activated for “driving regeneration” as soon as a higher occupancy with soot particles can be determined, for example via the exhaust gas back pressure, which heats the exhaust gas to be cleaned as much (> 600 ° C) that the free burning process can take place. It has been shown, however, that especially in load states with a low exhaust gas mass flow during the regeneration, the filter candles are not burned over their entire length, and that depending on the exposure, the inner filter candles are burned further than the outer ones. The reason for this is that the front half of the filter cartridges is already burning free for a sufficiently low flow resistance ensures that the rear part or the outermost filter cartridges are not sufficiently flowed through. This imperfect regeneration results in shorter and shorter re-infiltration times, which in the worst case can lead to filter failure. Experiments have shown that the infusion time decreased from, for example, 135 minutes on initial infusion to 15 to 20 minutes.
  • the invention has for its object to show a particle filter that enables regeneration while driving and in which a high degree of burning is achieved over the entire filter length, so that the re-infusion time is approximately constant and corresponds to the first infusion time.
  • filter material-free overflow pipes mounted in at least one holding plate distributed over the cross section of the housing are arranged parallel to and spaced from the support pipes covered with filter material.
  • This solution can be applied to all particle filters, including those in which the filtering is carried out via channeled monoliths, after obvious modifications which may be necessary.
  • the overflow pipes are formed by ducts which are open on both sides and open into the additional chamber - described here later.
  • the filter cartridges are mounted in a downstream holding plate and a rear holding plate.
  • the exhaust gas to be cleaned is fed to the filter candle area (the cleaning zone) through exhaust gas passage openings in the front holding plate and through the overflow pipes from the inlet funnel or the inlet chamber.
  • the exhaust gas receives external heat in the inlet chamber
  • the overflow pipes which have exhaust gas outlet openings in the downstream area and are closed on the outlet side, conduct exhaust gas into the downstream lower area of the filter candles during the sooting phase and thus bring about a more uniform loading of the filter candles over their length.
  • hot exhaust gas exhaust gas to be cleaned mixed with hot exhaust gas from the external heat source
  • exhaust gas exhaust gas to be cleaned mixed with hot exhaust gas from the external heat source
  • An expedient embodiment of the particle filter according to the invention shows the feature that an overflow pipe in the longitudinal axis of the housing and further overflow pipes are arranged concentrically thereto, the number of overflow pipes per circuit increasing to the outside.
  • the overflow tubes are arranged in such a way that each overflow tube is surrounded by as many filter candles as possible, so that the filter candles are all flowed as evenly as possible over their length. This also ensures that the section of the particle filter equipped with filter cartridges is flowed through uniformly over the entire length even at low load conditions. This automatically ensures that the surrounding filter cartridges are loaded and burned freely reached and a sufficiently long re-infusion time with uniform infusion ensured.
  • the particle filters are part of the sound damping system of the vehicle engine, it is advantageous to also assign sound damping properties to the particle filter. It has been shown that this is possible with simultaneous improvement of the filter properties, both with respect to the sooting and the burning free, in that a further chamber is formed in the particle filter downstream behind the filter candle region by an inserted bottom, which of the ones carrying the filter material Pipes are penetrated and open into the overflow pipes open on both sides, so that the exhaust gas or exhaust gas / hot gas mixture can enter this chamber.
  • This additional chamber acts with the support tubes as a resonator chamber, and at the same time serves to guide the uncleaned exhaust gas or the exhaust gas / hot gas mixture back into the filter section of the particle filter, so that the filter candles are also flowed to in the downstream area.
  • the floor used is also provided with exhaust gas passage openings. The cleaned exhaust gas flows through the support tubes of the filter cartridges, which extend on the inlet side and penetrate this additional chamber, into the outlet funnel and from there via the exhaust pipe.
  • a mixing chamber is arranged as an inlet chamber in the flow direction upstream of the filter chamber of the particle filter provided with filter candles and overflow pipes.
  • the exhaust gas to be cleaned is preferably fed radially or tangentially into this mixing chamber and on the other hand preferably the hot gas axially. This results in thorough mixing and thus uniform heating of the exhaust gas and the entire filter cross-section is acted on evenly.
  • the hot gas can be taken from an external heat source or the exhaust gas from a burner attached. However, this hot gas can also be supplied axially via an inlet funnel arranged axially on the inlet side of the mixing chamber. If necessary, flow-directing elements, such as baffles, can also be attached in this mixing chamber.
  • the overflow pipes can have exhaust gas passage openings over at least part of their length, so that additional exhaust gas can be supplied to the respectively adjacent filter candles over the entire length.
  • the overflow pipes are closed on the outlet side in the arrangement without the additional chamber behind the filter section, so that all of the exhaust gas flowing through the overflow pipes is fed to the filter candles.
  • the exhaust gas passage openings are arranged in the overflow pipes in such a way that the number of exhaust gas passage openings increases downstream. It is of course also equivalent that the size of the exhaust gas passage openings increases downstream. It is crucial that more exhaust gas is fed to the filter candles downstream, so that the entire length of the filter candles is recorded, especially when burning free.
  • This uniform supply of the exhaust gas also serves the continuation, according to which the overflow pipes have different diameters, for example depending on the exhaust gas inflow from the inlet funnel or the inlet chamber, the diameters increasing radially outward.
  • a continuation shows the feature that the entry chamber has at least one connection for the engine exhaust gases to be cleaned and one connection for the external supply of heat.
  • This arrangement has the advantage over the known arrangements in which the engine exhaust gases and the hot gases are supplied via an inlet funnel that better mixing can be achieved. It has proven to be particularly advantageous that the inlet chamber has a connecting flange for a burner, the hot exhaust gases of which are mixed with the engine exhaust gases to be cleaned. It is particularly advantageous to use a flat burner as a burner. Such a burner is described for example in DE-OS 34 10 716.
  • inlet pipes projecting into the filter space in the area not occupied by filter cartridge support tubes are arranged in the inlet side. This allows a more targeted supply of the exhaust gas to the filter candles, in particular in the downstream rear area, whereby according to a continuation these inflow tubes protrude to different degrees into the filter space. Since in the longitudinal axis of the housing, especially when burning free, with a central arrangement of the hot gas supply, for example through the burner, an approximately conical free-burn zone is created, i.e.
  • the arrangement of the inlet pipes and their different ones can be used Penetration depth into the filter chamber a more uniform free burning can be achieved.
  • the inflow tubes arranged in concentric circles arrange the radially outer parts projecting further into the filter space.
  • the inflow pipes can also have exhaust gas openings have, which can also be distributed unevenly over the length of the inlet pipes.
  • the improvement of the free burning can also be supported by a particularly advantageous arrangement which has the feature that inlet tulips are integrally formed on at least some of the overflow pipes or the filter core support pipes. These are formed by expanding the corresponding pipes on the inlet side and improve the inflow of the exhaust gas or the exhaust gas / hot gas mixture. As a result, a certain control over the cross-section and also over the length of the filter space can be achieved by improving the inflow.
  • both Filter core support tubes as well as the overflow tubes are each mounted on one side in a sliding seat in one of the holding plates. This means that every pipe can expand without causing tension in the overall system.
  • Another expedient embodiment is characterized in that the filter core support tubes and the overflow tubes are mounted alternately with a sufficiently tight sliding seat in the inlet-side or outlet-side holding plate. This results in a particularly high stability of the filter arrangement even at different temperature loads, so that, if necessary, different - but of course heat-resistant - materials can be used even for the filter core support tubes and the overflow tubes, for example steels of different alloys.
  • the particle filter consists of a housing 1, in which the filter chamber 4 is formed between an inlet-side holding plate 2 and an outlet-side holding plate 3.
  • the housing 1 can have any cross section, preferably round or oval.
  • an inlet chamber 5 is arranged in front of the filter chamber 4, into which the exhaust gas of the engine to be cleaned is fed via connecting pieces 6, 7 - in the case of two-pipe systems.
  • a further connection 8 is provided for the supply of external heat.
  • this connection 8 is shown as a "black box", since the external heat is generated further away and supplied via a connection piece, and is also generated in a burner attached to the connection flange 9 and can be supplied directly.
  • a flat burner is preferably provided as the burner.
  • the patent application shows an example of an external supply of heat P 35 45 437.7.
  • An arrangement that can be used as a flat burner is shown, for example, in patent application P 34 10 716.9.
  • the inlet chamber 5 can also be preceded by an inlet funnel (not shown) via which both the engine exhaust gas and the external heat are then supplied.
  • the inlet chamber 5 is at the same time designed as a mixing chamber for mixing the supplied engine exhaust gas and the supplied external heat as hot gas for the free-burning phase. Good mixing can be achieved, for example, by tangential introduction of one of the media; flow-directing means can of course also be arranged in the inlet chamber 5.
  • the inlet funnel or the inlet chamber is flanged to the filter chamber 4 by means of a flange (9).
  • the inlet chamber 5 can also be a section of the inlet funnel.
  • an outlet chamber 11 with an outlet funnel 12 adjoins the filter chamber 4 via a flange connection 10, via which the cleaned exhaust gas flows out.
  • the entire particle filter is protected against heat loss through radiation by an insulation 13 made of thermal insulation material.
  • the filter chamber 4 is delimited on the inlet side by the holding plate 2, on the outlet side by the holding plate 3.
  • the filter candles 14 penetrating the filter chamber 4 are arranged in these holding plates 2, 3. These consist of a filter core support tube 15 which is covered with filter material 16. This assignment can be applied as a winding or in the form of individual knitted hoses.
  • the filter support pipes 15 have exhaust gas passage openings 17 through which the exhaust gas or the exhaust gas / hot gas mixture can enter from the outside through the filter material 16.
  • the filter core support tubes 15 are closed on the inlet side and open on the outlet side.
  • the outlet-side holding plate 3 is formed without exhaust gas passage openings in the two arrangements according to FIG. 1.
  • overflow pipes 18, 19 are also arranged in the two holding plates 2, 3. These overflow pipes 18, 19 are closed on the outlet side.
  • the overflow pipes 18 are provided with exhaust gas passage openings 20 over their entire length and have an inlet tulip 31.
  • the overflow tubes 18 and 19 are flowed through from the inside to the outside and conduct the hot exhaust gas to the filter candles 14, in particular in the free-burning phase, whereby hot exhaust gas is also passed through the perforation of the overflow tubes 18, 19 to the downstream region of the filter candles 14, thereby causing a uniform free burning is achieved.
  • Fig. 1 - upper half - overflow pipes 19 are shown, which have exhaust gas outlet openings 21 only in their downstream area.
  • the hot exhaust gas is fed into the downstream area of the filter chamber 4 and thus to the filter candles 14, which means that this area, which is not burned free in an arrangement without overflow pipes, is now free of soot particles is cleaned by burning, which results in the desired long sooting time.
  • the arrangement of the exhaust gas passage openings 21 in the downstream section of the overflow pipes 19 can take place progressively, ie a larger exhaust gas outlet area can be achieved at the end of the overflow pipe 19. This can be done either by a progression of the number or the size of the exhaust gas outlet openings 20 can be achieved.
  • the overflow tubes 18, 19 are distributed over the cross section of the filter chamber 4 in such a way that the filter cartridges 14 are acted on as uniformly as possible, ie that the distance to the nearest filter cartridges 14 is short and in each case the same. Since the free-burning profile without overflow tubes 18, 19 is approximately conical in shape, the overflow tubes 18, 19 can also have different diameters distributed over the cross section of the filter space 4, namely a larger diameter on the outside than the inside, for stronger supply of the hot exhaust gas in the edge region of the filter space 4.
  • the filter core support tubes 15 and the overflow tubes 18, 19 are therefore mounted alternately in the inlet-side holding plate 2 and the outlet-side holding plate 3 with a sufficiently tight sliding seat because of the risk of soot particles escaping.
  • FIGS. 5 and 6 shows a further variant in which a further chamber 22 is arranged downstream.
  • a further chamber 22 is arranged downstream.
  • This is formed by an inserted floor 23 and, as a resonator chamber, contributes to better sound absorption of the particle filter, which is integrated in the exhaust line of a silencer system.
  • the bottom 23 closes off the filter chamber 4 and, as in the previously described variants, is a holding plate for the filter candles 14 are formed and provided with exhaust gas passage openings 24.
  • FIGS. 5 and 6 a variant with smooth, non-perforated overflow pipes 19 is shown.
  • both the inlet-side holding plate 2 and the base 23 acting as a holding plate for the overflow pipes 19 are provided with exhaust gas passage openings 24 and 25, respectively.
  • the exhaust gas flows partly through the exhaust gas passage openings 25 into the filter chamber 4 and from there through the filter candles 14 into the outlet chamber 11, partly through the overflow pipes 19 into the chamber 22 and from there back through the exhaust gas passage openings 24 into the Filter chamber 14 and from there via the filter candles 14.
  • FIG. 4 A variant is shown in the lower half of FIG. 4 and the associated sections FIGS. 5 and 6, in which the overflow pipe 18 is open on both sides, has an inlet tulip 31 and exhaust gas outlet openings 20 on the inlet side. These exhaust gas outlet openings 20 are arranged over the entire length of the overflow pipe 18, possibly with a progression downstream. In FIG. 5, lower half, the exhaust gas passage openings 25 are not shown.
  • FIG. 7 shows variants in which the overflow pipes 18, 19 of the previous figures are replaced by inflow pipes 26, 27, which are designed as shortened overflow pipes.
  • the other structure corresponds to the figures discussed above, in particular FIG. 1 with the associated figures 2 and 3.
  • an embodiment is shown in which the exhaust gas from the inlet chamber 5 is supplied to the filter chamber 4 partly through the exhaust gas passage openings 25 and partly via an inflow pipe 27. which is designed as a smooth tube open on both sides.
  • the penetration depth of this inflow tube 27 extends to at least half of the filter space 4.
  • the penetration depth can vary, the penetration depth going further downstream in the edge zones than, for example, that in the longitudinal axis or adjacent to the longitudinal axis arranged pipe.
  • inflow pipe 27 has exhaust gas passage openings 28 and an inlet tulip 31.
  • outlet-side cross-section reduction acting on a nozzle on an end piece 29 is also shown, with which the inflow conditions in If necessary, can be improved.
  • exhaust gas through openings 30 optionally provided in the inlet-side holding plate 2 are shown in the edge region of the inflow into the filter space 4.
  • the exhaust gas to be cleaned is supplied to the filter chamber 4 equipped with filter candles 14 via the overflow pipes 18, 19 and the inlet pipes 26, 27 - additionally also through exhaust gas passage openings 25 in the inlet-side holding plate 2 - and that during the possible free-burning phase during operation of the engine, a mixture of exhaust gas and hot gas, the latter from an external heat source or an attached burner is supplied.
  • This enables an approximately uniform loading and free burning that extends over the entire length and the entire cross section of the particle filter. In particular, a long sooting phase is achieved by completely burning off the particle filter.

Description

  • Die Erfindung betrifft einen Partikelfilter für die Reinigung des Abgases von Brennkraftmaschinen mit Filterkerzen, die in einem mit einer Eintrittskammer und einem Austrittstrichter versehenen Gehäuse zwischen Halteplatten, von denen die eintrittsseitige Halteplatte mit Abgasdurchtrittsöffnungen versehen ist, angeordnet sind und aus einem mit Abgasdurchtrittsöffnungen versehenen, mit Filtermaterial belegten Tragrohr gebildet sind und denen aus einer Wärmequelle zusätzlich Wärme für die Regeneration durch Abbrennen zugeführt wird.
  • Derartige Partikelfilter werden für die Reinigung von Abgasen aus Brennkraftmaschinen, insbesondere bei Fahrzeugen, die mit Dieselkraftstoff betrieben werden, benötigt, um die Rußpartikel, die gesundheitsschädlich sind und eine hohe und gefährliche Umweltbelastung darstellen, herauszufiltern. Diese Partikelfilter sind in zwei Ausführungen bekannt. Bei der einen Ausführung erfolgt die Filterung des Abgases beim Durchströmen eines Keramikblockes (Monolithen), der eine Vielzahl von Durchgangskanälen aufweist, von denen schachbrettartig jeweils ein Kanal eintrittsseitig und ein Kanal austrittsseitig verschlossen ist, so daß das Abgas in den einen Kanal einströmt, sodann durch den als Filter wirkenden umgebenden Monolithabschnitt in den benachbarten Kanal einströmt und diesen, von Rußpartikel befreit, verläßt. Einen solchen Rußfilter beschreibt z.B. die DE-OS 32 17 357.
  • Die andere Ausführungsart verwendet zur Partikelfilterung Filterkerzen. Diese Filterkerzen sind vorzugsweise als Wickelfilter ausgebildet. Dabei wird ein mit Abgasdurchtrittsöffnungen versehenes Tragrohr mehrlagig mit Filtermaterialfäden umwickelt, so daß ein mit einer Textilgarnspule vergleichbares Element entsteht. Eine derartige Anordnung zeigt z.B. die DE-OS 38 15 148 mit besonderer Darstellung der Lagerung der Filterkerzen in Halteplatten. Die Filterkerzen können auch durch einen Schlauchüberzug aus Filtermaterial über ein Tragrohr entsprechend der DE-OS 38 23 205 gebildet sein. Auch die Filterkerzen werden von außen nach innen durchströmt, das zu reinigende Abgas tritt durch das Filtermaterial in die Tragrohre, die eintrittsseitig verschlossen sind ein, die Rußpartikel werden beim Durchströmen des gewickelten Filtermaterials zurückgehalten und das gereinigte Abgas strömt durch die Tragrohre in den Austrittstrichter und wird von dort abgeführt. Die Filterkerzen sind dabei auf konzentrischen Kreisen im Filtergehäuse angeordnet und sind von einheitlicher Bauform. Anstelle der mit Abgasdurchtrittsöffnungen versehenen eintrittsseitigen Halteplatte kann auch ein Haltegitter angeordnet sein.
  • Während des Betriebes der Brennkraftmaschine erfolgt beim Durchströmen des Partikelfilters eine Aufrußung, d.h. das Filtermaterial setzt sich zunehmend mit Rußpartikel zu, und der Ruß muß nach einer relativ geringen Betriebsdauer entfernt werden. Eine mechanische Entfernung scheidet praktisch aus, da hierzu der gesamte Filter ausgebaut werden und der Ruß entsorgt werden müßte. Man ist daher auf ein Abbrennen oder Freibrennen des angereicherten Rußes angewiesen. Hierzu werden dem Abgas aus einem Vorratsbehälter Oxidationsmittel als Additive zugesetzt, so daß der gesammelte Ruß mit diesen die Rußzündtemperatur herabsetzenden und die Verbrennungsgeschwindigkeit erhöhenden Mitteln in Kontakt kommt und abgebrannt werden kann. Diese Art des Freibrennens des angesammelten Rußes hat jedoch den Nachteil, daß die Additive chemische Verbindungen sind, die leicht entflammbar sind und das Abgas mit unerwünschten Bestandteilen anreichert, deren Umweltverträglichkeit noch nicht erwiesen ist. Man hat daher bereits versucht, einen Dieselbrenner als externe Wärmequelle anzuschließen, konnte mit der bekannten Anordnung aber nicht im Fahrbetrieb des Fahrzeuges die Filter regenerieren. Daher ist man bei dieser Lösung auf sehr große Filter angewiesen, um eine Speicherkapazität zu erhalten, die einen längeren Fahrbetrieb zwischen den Regenerationsphasen zuläßt. Diese Ruhepausenregeneration ist bei Fahrzeugen möglich, die im Intervallbetrieb arbeiten, z.B. Busse im innerstädtischen Betrieb. Für andere Fahrzeuge muß die Regeneration während des Fahrbetriebes erfolgen. Hierfür hat man z.B. zwei Filter parallel zueinander angeordnet und regeneriert jeweils einen der beiden Filter.
  • Bei Anordnung nur eines Partikelfilters mit mehreren Filterkerzen oder eines Monolithblockes mit vielen Kanälen wird zur "Fahrregeneration", sobald sich eine höhere Belegung mit Rußpartikel z.B. über den Abgasgegendruck feststellen läßt, eine externe Wärmequelle zugeschaltet, die das zu reinigende Abgas soweit erhitzt (> 600 °C), daß der Freibrennvorgang erfolgen kann. Dabei hat sich jedoch gezeigt, daß vor allem im Lastzuständen mit geringem Abgasmassenstrom während der Regeneration die Filterkerzen nicht auf ihrer gesamten Länge freigebrannt werden, daß ferner je nach Beaufschlagung die inneren Filterkerzen weiter als die äußeren freigebrannt werden. Ursache hierfür ist, daß bereits ein Freibrennen der etwa vorderen Hälfte der Filterkerzen für einen ausreichend niedrigen Strömungswiderstand sorgt und damit der hintere Teil bzw. die äußersten Filterkerzen nicht genügend durchströmt werden. Aus dieser unvollkommenen Regeneration ergeben sich immer kürzere Wiederaufrußungszeiten, die im ungünstigsten Fall zum Ausfall des Filters führen können. Versuche haben gezeigt, daß die Aufrußungszeit von z.B. 135 Minuten bei Erstaufrußung auf 15 bis 20 Minuten zurückging.
  • Ausgehend von diesem Stand der Technik liegt der Erfindung die Aufgabe zugrunde, einen Partikelfilter aufzuzeigen, der eine Regeneration während des Fahrbetriebes ermöglicht und bei dem ein hoher Freibrenngrad über der gesamten Filterlänge erzielt wird, so daß die Wiederaufrußzeit etwa konstant ist und der Erstaufrußungszeit entspricht.
  • Diese Aufgabe wird bei einem gattungsgemäßen Partikelfilter dadurch gelöst, daß über dem Querschnitt des Gehäuses verteilt in mindestens einer Halteplatte gelagerte filtermaterialfreie Überströmrohre parallel zu den mit Filtermaterial belegten Tragrohren und im Abstand zu diesen angeordnet sind. Diese Lösung ist nach naheliegenden, eventuell erforderlichen Abwandlungen bei allen Partikelfiltern anwendbar, auch bei solchen, bei denen die Filterung über mit Kanälen versehenen Monolithen erfolgt. In diesem Fall werden die Überströmrohre durch beidseits offene, in die - hier später beschriebene - Zusatzkammer mündende Kanäle gebildet.
  • Bei einem gattungsgemäßen, mit Rußfilterkerzen bestückten Partikelfilter sind die Filterkerzen in einer stromab vorderen und einer hinteren Halteplatte gelagert. Das zu reinigende Abgas wird dem Filterkerzenbereich (der Reinigungszone) durch Abgasdurchtrittsöffnungen in der vorderen Halteplatte und durch die Überströmrohre aus dem Eintrittstrichter oder der Eintrittskammer zugeführt. Während der Regeneration wird dem Abgas externe Wärme, in der Eintrittskammer z.B. durch einen mit flüssigem Brennstoff betriebenen Brenner zugeführt, so daß über das auf die Zündtemperatur erhitzte Abgas der Freibrennvorgang initiiert wird. Die Überströmrohre, die im stromabseitigen Bereich Abgasaustrittsöffnungen aufweisen und austrittsseitig verschlossen sind, leiten während der Aufrußphase Abgas in den stromab unteren Bereich der Filterkerzen und bewirken damit eine gleichmäßigere Beaufschlagung der Filterkerzen über deren Länge. In der Freibrennphase (Regenerationsphase) wird durch diese Überströmrohre entsprechend heißes Abgas (zu reinigendes Abgas gemischt mit heißem Abgas der externen Wärmequelle) dem stromab hinteren Bereich der Filterkerzen zugeführt, so daß auch dieser Abschnitt der Filterkerzen durch Freibrennen gleichzeitig regeneriert wird.
  • In den Unteransprüchen sind vorteilhafte und zweckmäßige weitere Ausgestaltungen der Erfindung aufgezeigt, die zumindest teilweise alleine oder in Kombination selbständige erfinderische Merkmale aufweisen.
  • Eine zweckmäßige Ausgestaltung des erfindungsgemäßen Partikelfilters zeigt das Merkmal, daß ein Überströmrohr in der Längsachse des Gehäuses und weitere Überströmrohre konzentrisch hierzu angeordnet sind, wobei die Anzahl der Überströmrohre pro Kreis nach außen zunimmt. Dadurch sind die Überströmrohre derart angeordnet, daß jedes Überströmrohr von möglichst vielen Filterkerzen umgeben ist, so daß die Filterkerzen alle über ihre Länge möglichst gleichmäßig angeströmt werden. Damit wird ferner erreicht, daß der mit Filterkerzen bestückte Abschnitt des Partikelfilters auch bei niedrigen Lastzuständen gleichmäßig über die gesamte Länge durchströmt wird. Damit wird automatisch ein gleichmäßiges Beladen bzw. Freibrennen der umgebenden Filterkerzen erreicht und eine ausreichend lange Wiederaufrußungszeit bei gleichmäßiger Aufrußung sichergestellt.
  • Da die Partikelfilter Teil der Schalldämpfungsanlage des Fahrzeugmotors sind, ist es vorteilhaft, dem Partikelfilter auch Schalldämpfeigenschaften zuzuordnen. Es hat sich gezeigt, daß dies bei gleichzeitiger Verbesserung der Filtereigenschaften, sowohl hinsichtlich der Aufrußung als auch des Freibrennens, dadurch möglich ist, daß in dem Partikelfilter stromab hinter dem Filterkerzenbereich eine weitere Kammer durch einen eingesetzten Boden gebildet ist, die von den das Filtermaterial tragenden Rohren durchdrungen wird und in die beidseitig offene Überströmrohre münden, so daß das Abgas bzw. Abgas/Heißgasgemisch in diese Kammer eintreten kann. Diese Zusatzkammer wirkt mit den Tragrohren als Resonatorkammer schalldämpfend und dient gleichzeitig der Führung des ungereinigten Abgases bzw. des Abgas/Heißgasgemisches zurück in den Filterabschnitt des Partikelfilters, so daß die Filterkerzen auch im stromabliegenden Bereich angeströmt werden. Hierzu ist auch der eingesetzte Boden mit Abgasdurchtrittsöffnungen versehen. Das gereinigte Abgas strömt durch die eintrittsseitig verlängerten Tragrohre der Filterkerzen, die diese Zusatzkammer durchdringen, in den Austrittstrichter und von dort über die Abgasleitung ab.
  • Um während der Regenerationsphase eine möglichst gleichmäßige Beaufschlagung der Filterkerzen über den Gesamtquerschnitt mit aufgeheiztem Abgas zu erreichen, ist gemäß einer weiteren Ausgestaltung in Strömungsrichtung vor dem mit Filterkerzen und Überströmrohren versehenen Filterraum des Partikelfilters als Eintrittskammer eine Mischkammer angeordnet. In diese Mischkammer wird zum einen vorzugsweise radial oder tangential das zu reinigende Abgas zugeführt und zum anderen vorzugsweise axial das Heißgas. Hierdurch tritt eine gute Durchmischung und damit eine gleich- mäßige Aufheizung des Abgases auf und der gesamte Filterquerschnitt wird gleichmäßig beaufschlagt. Das Heißgas kann dabei einer externen Wärmequelle entnommen werden oder das Abgas eines angesetzten Brenners sein. Die axiale Zuführung dieses Heißgases kann aber auch über einen eingangsseitig axial an der Mischkammer angeordneten Eintrittstrichter erfolgen. In dieser Mischkammer können, falls erforderlich, auch strömungslenkende Elemente, wie z.B. Leitflächen, angebracht werden.
  • Gemäß einer Weiterführung können die Überströmrohre über mindestens einen Teil ihrer Länge Abgasdurchtrittsöffnungen aufweisen, so daß den jeweils benachbarten Filterkerzen über der gesamten Länge zusätzlich Abgas zugeführt werden kann. Dabei sind die Überströmrohre bei der Anordnung ohne der Zusatzkammer hinter dem Filterabschnitt austrittsseitig verschlossen, so daß das gesamte die Überströmrohre durchströmende Abgas den Filterkerzen zugeführt wird. Um eine gleichmäßige Aufrußung und auch ein vollständiges Freibrennen zu erreichen, sind die Abgasdurchtrittsöffnungen in den Überströmrohren derart angeordnet, daß die Anzahl der Abgasdurchtrittsöffnungen stromab zunimmt. Gleichwertig ist natürlich auch, daß die Größe der Abgasdurchtrittsöffnungen stromab zunimmt. Entscheidend ist, daß stromab mehr Abgas den Filterkerzen zugeführt wird, damit insbesondere beim Freibrennen die gesamte Länge der Filterkerzen erfaßt wird. Dieser gleichmäßigen Zuführung des Abgases dient auch die Weiterführung, nach der die Überströmrohre unterschiedliche Durchmesser aufweisen, z.B. in Abhängigkeit von der Abgaszuströmung aus dem Eintrittstrichter oder der Eintrittskammer, wobei die Durchmesser radial nach außen zunehmen. Eine Weiterführung zeigt das Merkmal, daß die Eintrittskammer mindestens einen Anschluß für die zu reinigenden Motorabgase und einen Anschluß für die externe Wärmezufuhr aufweist. Diese Anordnung hat gegenüber den bekannten Anordnungen, bei denen die Motorabgase und die Heißgase über einen Einlaßtrichter zugeführt werden den Vorteil, daß eine bessere Durchmischung erreicht werden kann. Als besonders vorteilhaft hat sich erwiesen, daß die Eintrittskammer einen Anschlußflansch für einen Brenner aufweist, dessen heiße Abgase den zu reinigenden Motorabgasen zugemischt werden. Dabei ist es besonders vorteilhaft als Brenner einen Flachbrenner zu verwenden. Ein derartiger Brenner ist beispielsweise in der DE-OS 34 10 716 beschrieben.
  • Es sind zur Einleitung des Abgases bzw. des Abgas/Heißgasgemisches in den stromab hinteren Bereich der Filterkerzen gemäß einer noch weiteren Ausgestaltung der Erfindung in der eintrittsseitigen Halteplatte in der nicht von Filterkerzentragrohren besetzten Fläche in den Filterraum ragende Einströmrohre angeordnet. Damit ist ein gezielteres Zuleiten des Abgases zu den Filterkerzen, insbesondere in den stromab hinteren Bereich möglich, wobei gemäß einer Weiterführung diese Einströmrohre unterschiedlich weit in den Filterraum ragen. Da in der Längsachse des Gehäuses insbesondere beim Freibrennen, bei zentraler Anordnung der Heißgaszuführung z.B. durch den Brenner eine etwa kegelförmige freigebrannte Zone entsteht, d.h. im in Längsachse zentralen (Mitten-) Bereich eine tiefere Abbrennzone erfolgt, kann über die Anordnung der Einströmrohre und deren unterschiedliche Eindringtiefe in den Filterraum ein gleichmäßi- geres Freibrennen erzielt werden. In diesem Fall - also ab- hängig von dem Freibrennprofil - werden von den auf konzen- trischen Kreisen angeordneten Einströmrohren die radial Äußeren weiter in den Filterraum ragend angeordnet. Dabei können die Einströmrohre ebenfalls Abgasdurchtrittsöffnungen aufweisen, die auch ungleichmäßig über die Länge der Einlaßrohre verteilt sein können.
  • Die Verbesserung des Freibrennens kann auch durch eine besonders vorteilhafte Anordnung unterstützt werden, die das Merkmal aufweist, daß an mindestens einigen der Überströmrohre oder der Filterkerzentragrohre Einlaßtulpen angeformt sind. Diese werden durch eintrittsseitiges Aufweiten der entsprechenden Rohre gebildet und bewirken eine Verbesserung der Einströmung des Abgases bzw. des Abgas/Heißgasgemisches. Dadurch kann eine gewisse Steuerung des Aufrußens bzw. des Freibrennens über den Querschnitt und auch über die Länge des Filterraumes durch Verbesserung der Einströmung erreicht werden.
  • Bei der Regeneration des Partikelfilters durch Freibrennen treten Temperaturen im Bereich von > 700 °C auf. Obwohl durch die vorgenannten Merkmale eine gewisse Vergleichmäßigung der Aufrußung bzw. des Freibrennens erreicht werden kann, treten doch Spannungen auf, die zu einem Verziehen des aus den einzelnen, in Halteplatten gelagerten Filterkerzen und Überströmrohren gebildeten Filterkörpers führen. Hierzu reichen bereits relativ geringe unterschiedliche Wärmedehnungen der einzelnen Rohre aus. Diese sind schon dadurch bedingt, daß die umwickelten Filterkerzen andere Wärmeleitwerte aufweisen als die Überströmrohre. Diese Spannungen können zu einem vorzeitigen Ausfall der Parti- kelfilter führen. Die bekannten Maßnahmen, die Rohre in einer Halteplatte zu lagern, die mit einem Schiebesitz im Gehäuse befestigt ist, hat sich als nicht ausreichend erwiesen, weil bei dieser Lösung zwar der Filterblock als ganzes sich ausdehnen kann, aber die einzelnen Längenänderungen doch zu zu starken Spannungen führen. Es sind daher gemäß einer besonders zweckmäßigen Weiterbildung sowohl die Filterkerzentragrohre als auch die Überströmrohre jeweils einseitig in einem Schiebesitz in einer der Halteplatten gelagert. Damit hat jedes Rohr die Möglichkeit sich auszudehnen, ohne daß es zu Spannungen im Gesamtsystem kommt. Eine weitere zweckmäßige Ausgestaltung ist dadurch gekennzeichnet, daß die Filterkerzentragrohre und die Überströmrohre abwechselnd mit einem ausreichend dichten Schiebesitz in der eintrittsseitigen oder der austrittsseitigen Halteplatte gelagert sind. Damit ergibt sich eine besonders hohe Stabilität der Filteranordnung auch bei unterschiedlicher Temperaturbelastung, so daß im Bedarfsfall sogar für die Filterkerzentragrohre und die Überströmrohre unterschiedliche - aber natürlich jeweils wärmefeste - Werkstoffe ver- wendet werden können, z.B. Stahle unterschiedlicher Legierung.
  • Die Erfindung ist in den Figuren vereinfacht und schematisch in Ausführungsbeispielen dargestellt und wird im folgenden einschließlich noch weiterer Ausführungen beschrieben. Zur Vereinfachung sind dabei in den Figuren jeweils zwei Ausführungsbeispiele dargestellt.
  • Es zeigt:
  • Fig. 1
    einen Längsschnitt eines Partikelfilters
    Fig. 2
    einen zugehörigen Schnitt an der Stelle A-A
    Fig. 3
    einen zugehörigen Schnitt an der Stelle B-B
    Fig. 4
    einen Längsschnitt weiterer Varianten eines Partikelfilters
    Fig. 5
    einen zugehörigen Schnitt an der Stelle C-C
    Fig. 6
    einen zugehörigen Schnitt an der Stelle D-D
    Fig. 7
    einen Längsschnitt weiterer Varianten des Partikelfilters.
  • Der Partikelfilter besteht aus einem Gehäuse 1, in welchem zwischen einer eintrittsseitigen Halteplatte 2 und einer austrittsseitigen Halteplatte 3 der Filterraum 4 gebildet ist. Das Gehäuse 1 kann dabei einen beliebigen Querschnitt aufweisen, vorzugsweise rund oder oval. Eintrittsseitig ist vor dem Filterraum 4 eine Eintrittskammer 5 angeordnet, in die das zu reinigende Abgas des Motors über Anschlußstutzen 6, 7 - bei Zweirohranlagen - zugeführt wird. Ferner ist ein weiterer Anschluß 8 zur Zufuhr externer Wärme vorgesehen. In den Figuren ist dieser Anschluß 8 als "black box" dargestellt, da die externe Wärme sowohl weiter abliegend erzeugt und über einen Stutzen zugeführt als auch in einem an den Anschlußflansch 9 angesetzten Brenner erzeugt und unmittelbar zugeführt werden kann. Als Brenner wird dabei vorzugsweise ein Flachbrenner vorgesehen. Ein Beispiel für eine externe Wärmezufuhr zeigt die Patentanmeldung P 35 45 437.7. Eine als Flachbrenner verwendbare Anordnung zeigt beispielsweise die Patentanmeldung P 34 10 716.9. Der Eintrittskammer 5 kann auch ein - nicht dargestellter - Einlaßtrichter vorgeschaltet sein, über den dann sowohl das Motorabgas als auch die externe Wärme zugeführt wird. Die Eintrittskammer 5 ist zugleich als Mischkammer zur Mischung des zugeführten Motorabgases und der zugeführten externen Wärme als Heißgas für die Freibrennungsphase ausgebildet. Eine gute Durchmischung läßt sich z.B. durch tangentiale Einleitung eines der Medien erreichen, es können natürlich auch strömungsleitende Mittel in der Eintrittskammer 5 angeordnet sein. Der Eintrittstrichter bzw. die Eintrittskammer ist an den Filterraum 4 mittels einem Flansch (9) angeflanscht. Die Eintrittskammer 5 kann auch ein Abschnitt des Eintrittstrichters sein. Austrittsseitig schließt sich an den Filterraum 4 über eine Flanschverbindung 10 eine Austrittskammer 11 mit einem Austrittstrichter 12 an, über die das gereinigte Abgas abströmt. Der gesamte Partikelfilter ist durch eine Isolation 13 aus Wärmedämm-Material gegen Wärmeverluste durch Abstrahlung geschützt.
  • Der Filterraum 4 wird eintrittsseitig von der Halteplatte 2 begrenzt, austrittsseitig durch die Halteplatte 3. In diesen Halteplatten 2, 3 sind die den Filterraum 4 durchdringenden Filterkerzen 14 angeordnet. Diese bestehen aus einem Filterkerzentragrohr 15, das mit Filtermaterial 16 belegt ist. Diese Belegung kann als Wicklung oder in Form von einzelnen gewirkten Schläuchen aufgebracht sein. Die Filtertragrohre 15 weisen Abgasdurchtrittsöffnungen 17 auf, durch die das Abgas bzw. das Abgas/Heißgasgemisch von außen durch das Filtermaterial 16 eintreten kann. Die Filterkerzentragrohre 15 sind eintrittsseitig geschlossen und austrittsseitig offen. Die Zuführung des Abgases bzw. des Abgas/Heißgasgemisches - im folgenden nur als Abgas bezeichnet, wobei für die Freibrennphase immer ein Abgas/Heißgasgemisch verstanden wird - erfolgt gemäß Fig. 1 über Abgasdurchtrittsöffnungen 25 in der eintrittsseitigen Halteplatte 2. Die austrittsseitige Halteplatte 3 ist bei den beiden Anordnungen nach Fig. 1 ohne Abgasdurchtrittsöffnungen ausgebildet. Nach Fig. 1 mit den Schnitten Fig. 2 und 3 sind in den beiden Halteplatten 2, 3 noch Überströmrohre 18, 19 angeordnet. Diese Überströmrohre 18, 19 sind austrittsseitig verschlossen. In der in Fig. 1 - untere Hälfte - dargestellten Ausführung sind die Überströmrohre 18 über ihrer gesamten Länge mit Abgasdurchtrittsöffnungen 20 versehen und weisen eine Einlaßtulpe 31 auf. Diese ist für die Einleitung des Abgases in in die Überströmrohre 18 vorteilhaft. Die Überströmrohre 18 bzw. 19 werden von innen nach außen durchströmt und leiten insbesondere in der Freibrennphase das heiße Abgas zu den Filterkerzen 14, wobei durch die Perforation der Überströmrohre 18, 19 heißes Abgas auch den stromab unteren Bereich der Filterkerzen 14 geleitet werden, wodurch ein gleichmäßiges Freibrennen erzielt wird. In Fig. 1 - obere Hälfte - sind Überströmrohre 19 dargestellt, die nur in ihrem stromabseitigen Bereich Abgasaustrittsöffnungen 21 aufweisen. Damit erfolgt insbe- sondere in der Freibrennphase die Zuführung des heißen Abgases in den stromab hinteren Bereich des Filterraumes 4 und damit zu den Filterkerzen 14, was dazu führt, daß gerade dieser Bereich, der bei einer Anordnung ohne Überströmrohre nicht freigebrannt wird, jetzt von Rußpartikeln durch Freibrennen gereinigt wird, wodurch sich die angestrebte lange Aufrußzeit ergibt. Die Anordnung der Abgasdurchtrittsöffnungen 21 in dem stromabseitigen Abschnitt der Überströmrohre 19 kann dabei progressiv erfolgen, d.h. es kann dem Ende des Überströmrohres 19 zu eine größere Abgasautrittsfläche erzielt werden. Dies kann entweder durch eine Progression der Anzahl oder der Größe der Abgasaustrittsöffnungen 20 erreicht werden. Die Überströmrohre 18, 19 sind so über den Querschnitt des Filterraumes 4 verteilt, daß eine möglichst gleichmäßige Beaufschlagung der Filterkerzen 14 erfolgt, d.h. daß der Abstand zu den nächstgelegenen Filterkerzen 14 kurz und jeweils gleich ist. Da das Freibrennprofil ohne Überströmrohre 18, 19 etwa Kegelform aufweist, können auch zur stärkeren Zufuhr des heißen Abgases in den Randbereich des Filterraumes 4 die Überströmrohre 18, 19 über den Querschnitt des Filterraumes 4 verteilt unterschiedliche Durchmesser aufweisen, nämlich außen einen größeren Durchmesser als innen.
  • Infolge der hohen thermischen Belastung bei dem Freibrennen mit Temperaturen in der Größenordnung von > 700 °C und der ungleichen Wärmeverteilung über dem Filterraum 4 (die Filterkerzentragrohre 15 weisen infolge der Beschichtung mit Filtermaterial 16 eine andere Temperatur auf als die Überströmrohre 18, 19) treten unterschiedliche Wärmedehnungen bei den Filterkerzen 14 und den Überströmrohren 18, 19 auf. Bei den Anordnungen der Figuren 1 bis 7 sind daher die Filterkerzentragrohre 15 und die Überströmrohre 18, 19 abwechselnd in der eintrittsseitigen Halteplatte 2 und der austrittsseitigen Halteplatte 3 mit einem ausreichend dichten Schiebesitz gelagert wegen der Gefahr des Ausströmens von Rußpartikel.
  • In der Fig. 4 mit den Schnitten Fig. 5 und 6 ist eine weitere Variante dargestellt, bei der stromab eine weitere Kammer 22 angeordnet ist. Diese wird durch einen eingesetzten Boden 23 gebildet und trägt als Resonatorkammer zu einer besseren Schalldämpfung des Partikelfilters bei, der in dem Abgasstrang einer Schalldämpferanlage integriert ist. Der Boden 23 schließt den Filterraum 4 ab und ist, wie bei den zuvor beschriebenen Varianten, als Halteplatte für die Filterkerzen 14 ausgebildet und mit Abgasdurchtrittsöffnungen 24 versehen. Die Überströmrohre 18, 19 münden in die weitere Kammer 22, die Filterkerzentragrohre 15 durchdringen diese weitere Kammer 22 und münden mit ihrem stromabseitig offenen Ende in der Austrittskammer 11. In der oberen Hälfte der Fig. 4 und der zugehörigen Schnitte Fig. 5 und 6 ist eine Variante mit glatten, nicht perforierten Überströmrohren 19 dargestellt. Bei dieser Ausführung ist sowohl die eintrittsseitige Halteplatte 2 als auch der als Halteplatte für die Überströmrohre 19 wirkende Boden 23 mit Abgasdurchtrittsöffnungen 24 bzw. 25 versehen. Bei dieser Ausführung strömt das Abgas zu einem Teil durch die Abgasdurchtrittsöffnungen 25 in den Filterraum 4 und von dort durch die Filterkerzen 14 in die Austrittskammer 11, zum anderen Teil durch die Überströmrohre 19 in die Kammer 22 und von dort zurück durch die Abgasdurchtrittsöffnungen 24 in den Filterraum 14 und von dort über die Filterkerzen 14 ab.
  • In der unteren Hälfte der Fig. 4 und der zugehörigen Schnitte Fig. 5 und 6 ist eine Variante dargestellt, bei welcher das Überströmrohr 18 beidseitig offen ist, eintrittsseitig eine Einlaßtulpe 31 und Abgasaustrittsöffnungen 20 aufweist. Diese Abgasaustrittsöffnungen 20 sind über der gesamten Länge des Überströmrohres 18 angeordnet, evtl. mit einer Progression stromab. In der Figur 5, untere Hälfte, sind die Abgasdurchtrittsöffnungen 25 nicht eingezeichnet.
  • Die Fig. 7 zeigt Varianten, bei denen die Überströmrohre 18, 19 der bisherigen Figuren ersetzt sind durch Einströmrohre 26, 27, die als verkürzte Überströmrohre ausgebildet sind. Der andere Aufbau entspricht den zuvor besprochenen Figuren, insbesondere der Figur 1 mit den dazugehörigen Schnitten nach Fig. 2 und 3. In der oberen Hälfte der Fig. 7 ist ein Ausführungsbeispiel dargestellt, bei dem das Abgas aus der Eintrittskammer 5 zum einen Teil über die Abgasdurchtrittsöffnungen 25 dem Filterraum 4 zugeführt wird und zum anderen Teil über ein Einströmrohr 27, das als glattes, beidseitig offenes Rohr ausgebildet ist. Die Eindringtiefe dieses Einströmrohres 27 reicht bis mindestens zur Hälfte des Filterraumes 4. Bei den über den Querschnitt des Filterraumes 4 verteilten Einströmrohren 27 kann die Eindringtiefe jedoch variieren, wobei in den Randzonen die Eindringtiefe stromab weitergeht als z.B. bei dem in der Längsachse oder benachbart zur Längsachse angeordneten Rohr.
  • In der unteren Hälfte der Fig. 7 ist eine ähnliche Variante dargestellt, bei welcher das Einströmrohr 27 Abgasdurchtrittsöffnungen 28 aufweist sowie eine Einlaßtulpe 31. An dem Einströmrohr 27 ist ferner eine als Düse wirkende austrittsseitige Querschnittsverminderung auf ein Endstück 29 dargestellt, mit dem die Einströmverhältnisse im Bedarfsfall verbessert werden können.
  • In der Fig. 6 sind noch in der eintrittsseitigen Halteplatte 2 wahlweise vorgesehene Abgasdurchtrittsöffnungen 30 im Randbereich der Einströmung in den Filterraum 4 dargestellt.
  • Allen Ausführungsbeispielen gemeinsam ist, daß über die Überströmrohre 18, 19 bzw. den Einlaßrohren 26, 27 dem mit Filterkerzen 14 bestückten Filterraum 4 während der Aufrußphase das zu reinigende Abgas - zusätzlich auch durch Abgasdurchtrittsöffnungen 25 in der eintrittsseitigen Halte- platte 2 - zugeführt wird und daß während der, bei Betrieb des Motors möglichen Freibrennphase ein Gemisch von Abgas und Heißgas, letzteres aus einer externen Wärmequelle oder einem angesetzten Brenner zugeführt wird. Damit ist eine über die ganze Länge und den ganzen Querschnitt des Partikelfilters sich erstreckende in etwa gleichmäßige Beladung und Freibrennung möglich. Insbesondere wird durch ein völliges Freibrennen des Partikelfilters eine lange Aufrußphase erreicht.

Claims (16)

  1. Partikelfilter für die Reinigung des Abgases von Brennkraftmaschinen mit Filterkerzen, die in einem mit einer Eintrittskammer und einem Austrittstrichter versehenen Gehäuse zwischen Halteplatten, von denen die eintrittsseitige Halteplatte mit Abgasdurchtrittsöffnungen versehen ist, angeordnet sind und aus einem mit Abgasdurchtrittsöffnungen versehenen, mit Filtermaterial belegten Tragrohr gebildet sind und denen aus einer Wärmequelle zusätzlich Wärme für die Regeneration durch Abbrennen zugeführt wird.
    dadurch gekennzeichnet,
    daß über den Querschnitt des Gehäuses (1) verteilt in mindestens einer Halteplatte (2, 3) gelagerte filtermaterialfreie Überströmrohre (18, 19) parallel zu den mit Filtermaterial (16) belegten Tragrohren (15) und im Abstand zu diesen angeordnet sind.
  2. Partikelfilter nach Anspruch 1, dadurch gekennzeichnet, daß ein Überströmrohr (18) in der Längsachse des Gehäuses und weitere Überströmrohre (18 bzw. 19) konzentrisch hierzu angeordnet sind, wobei die Anzahl der Überströmrohre (18, 19) pro Kreis nach außen zunimmt.
  3. Partikelfilter nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß stromab eine weitere Kammer (22) durch einen eingesetzten Boden (23) gebildet ist, die von den das Filtermaterial (16) tragenden Rohren (15) durchdrungen wird und in die eintrittsseitig offene Überströmrohre (18, 19) münden.
  4. Partikelfilter nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, daß in Strömungsrichtung vor dem mit Filterkerzen (14) und Überströmrohren (18, 19) versehenen Filterraum (4) als Eintrittskammer eine Mischkammer (5) angeordnet ist.
  5. Partikelfilter nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Überströmrohre (18, 19) über mindestens einen Teil ihrer Länge Abgasdurchtrittsöffnungen (20, 21) aufweisen.
  6. Partikelfilter nach Anspruch 5, dadurch gekennzeichnet, daß die Anzahl der Abgasdurchtrittsöffnungen (20, 21) stromab zunimmt.
  7. Partikelfilter nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Eintrittskammer (5) mindestens einen Anschluß (6 bzw. 7) für die zu reinigenden Motorabgase und einen Anschluß (8) für die externe Wärmezufuhr aufweist.
  8. Partikelfilter nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Eintrittskammer (5) einen Anschlußflansch (9) für einen Brenner aufweist.
  9. Partikelfilter nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß der eingesetzte Boden (23) Abgasdurchtrittsöffnungen (24) aufweist.
  10. Partikelfilter nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß die Überströmrohre (18, 19) unterschiedliche Durchmesser aufweisen.
  11. Partikelfilter nach einem der Ansprüche 1 bis 8 oder 10, dadurch gekennzeichnet, daß in der eintrittsseitigen Halteplatte (2) in der nicht von Filterkerzentragrohren (15) besetzten Fläche in den Filterraum (4) ragende Einströmrohre (26, 27) angeordnet sind.
  12. Partikelfilter nach Anspruch 11, dadurch gekennzeichnet, daß die Einströmrohre (26, 27) unterschiedlich weit in den Filterraum (4) ragen.
  13. Partikelfilter nach Anspruch 11 oder 12, dadurch gekennzeichnet, daß die Einströmrohre (26, 27) Abgasaustrittsöffnungen (28) aufweisen.
  14. Partikelfilter nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß an mindestens einigen der Überströmrohre (18, 19) oder der Filterkerzentragrohre (14) Einlaßtulpen (31) angeformt sind.
  15. Partikelfilter nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß sowohl die Filterkerzentragrohre (14) als auch die Überströmrohre (18, 19) jeweils einseitig in einem Schiebesitz gelagert sind.
  16. Partikelfilter nach Anspruch 15, dadurch gekennzeichnet, daß die Filterkerzentragrohre (14) und die Überströmrohre (18, 19) abwechselnd einen ausreichend dichten Schiebesitz in der eintrittsseitigen Halteplatte (2) oder der austrittsseitigen Halteplatte (3) aufweisen.
EP91101119A 1990-02-16 1991-01-29 Durch Abbrennen regenerierbarer Partikelfilter für die Abgase von Brennkraftmaschinen Expired - Lifetime EP0442318B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT91101119T ATE97994T1 (de) 1990-02-16 1991-01-29 Durch abbrennen regenerierbarer partikelfilter fuer die abgase von brennkraftmaschinen.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4004861 1990-02-16
DE4004861A DE4004861A1 (de) 1990-02-16 1990-02-16 Durch abbrennen regenerierbarer partikelfilter fuer die abgase von brennkraftmaschinen

Publications (3)

Publication Number Publication Date
EP0442318A2 EP0442318A2 (de) 1991-08-21
EP0442318A3 EP0442318A3 (en) 1992-01-02
EP0442318B1 true EP0442318B1 (de) 1993-12-01

Family

ID=6400310

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91101119A Expired - Lifetime EP0442318B1 (de) 1990-02-16 1991-01-29 Durch Abbrennen regenerierbarer Partikelfilter für die Abgase von Brennkraftmaschinen

Country Status (4)

Country Link
EP (1) EP0442318B1 (de)
AT (1) ATE97994T1 (de)
DE (2) DE4004861A1 (de)
ES (1) ES2047958T3 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4111029C2 (de) * 1991-04-05 1995-08-31 Eberspaecher J Durch Freibrennen regenerierbarer Partikelfilter für die Abgase von Brennkraftmaschinen
DE4200100A1 (de) * 1992-01-03 1993-07-08 Ernst Apparatebau Gmbh & Co Russfilter fuer dieselmotoren
DE9301608U1 (de) * 1993-02-05 1993-03-25 Ernst-Apparatebau Gmbh & Co., 5800 Hagen, De
DE4309478A1 (de) * 1993-03-24 1994-09-29 Ernst Apparatebau Gmbh & Co Rußfilter für Dieselmotoren
DE4405045C2 (de) * 1994-02-17 1998-04-09 Eberspaecher J Gmbh & Co Vorrichtung zur brennerthermischen Motorabgas-Nachbehandlung sowie deren Verwendung
DE19746814A1 (de) * 1997-10-23 1999-04-29 Behr Gmbh & Co Pumpeneinrichtung, damit ausgerüstete Abgasreinigungsanlage und Betriebsverfahren hierfür
DE102008033842A1 (de) * 2008-07-19 2010-02-18 Karl-Heinz Grywotz Automobiltechnik GmbH Partikelfilter für Diesel- und Otto-Motoren

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3217357A1 (de) * 1982-05-08 1983-11-10 Fa. J. Eberspächer, 7300 Esslingen Einrichtung zur verminderung des russanteils im abgas von brennkraftmaschinen
US4478618A (en) * 1983-08-01 1984-10-23 General Motors Corporation Diesel exhaust particulate trap with plural filter tubes
DE3410716A1 (de) * 1984-03-23 1985-10-03 Fa. J. Eberspächer, 7300 Esslingen Brennkammer fuer heizeinrichtungen
DE3815148A1 (de) * 1988-05-04 1989-11-16 Eberspaecher J Anordnung zur lagerung eines von abgas durchstroemten filters in einem metallischen gehaeuse
DE3823205A1 (de) * 1988-07-08 1990-01-11 Eberspaecher J Russfilterkerze fuer die reinigung von abgasen und aus russfilterkerzen gebildete russfilteranordnung

Also Published As

Publication number Publication date
EP0442318A2 (de) 1991-08-21
DE59100641D1 (de) 1994-01-13
DE4004861C2 (de) 1992-01-16
ATE97994T1 (de) 1993-12-15
DE4004861A1 (de) 1991-08-22
ES2047958T3 (es) 1994-03-01
EP0442318A3 (en) 1992-01-02

Similar Documents

Publication Publication Date Title
DE4111029C2 (de) Durch Freibrennen regenerierbarer Partikelfilter für die Abgase von Brennkraftmaschinen
EP1691045B1 (de) Abgasreinigungssystem
DE602004011176T2 (de) Vorrichtung zum Filtern und Brennen von Teilchenmaterial
DE4005189C2 (de) Abgasreinigungsvorrichtung für einen Dieselmotor
DE2953010C2 (de)
DE4026375C1 (de)
EP0438682A2 (de) Abgassystem mit einem Partikelfilter und einem Regenerierungsbrenner
DE3914758A1 (de) Russfilter zur reinigung des abgastroms einer brennkraftmaschine
AT396967B (de) Abgasfilter für dieselmotoren
EP2691614A1 (de) Heizmodul für eine abgasreinigungsanlage
WO2009065572A1 (de) Russpartikelfilter
DE3823205C2 (de)
DE3614812C2 (de)
EP2823163A1 (de) Abgasreinigungsvorrichtung
EP0442318B1 (de) Durch Abbrennen regenerierbarer Partikelfilter für die Abgase von Brennkraftmaschinen
DE1293792B (de) Vorrichtung zur Nachverbrennung des Abgases von Brennkraftmaschinen
EP0638776B1 (de) Anordnung zur Verringerung der Geruchs - und Schadstoffemission bei Heizgeräten für Fahrzeuge
DE3713476C2 (de)
EP0128463A2 (de) Raumheizgerät für Kleinräume
EP0549851B1 (de) Russfilter für Dieselmotoren
EP0668437A1 (de) Verfahren und Vorrichtung zur brennerthermischen Motorabgas-Nachbehandlung
DE2418108B2 (de) Thermisch-katalytische Abgas-Reinigungsvorrichtung
DE102005049690A1 (de) Temperaturvergleichmässigender Innenkanal für ein Filterelement und Filter zur Abgasnachbehandlung
DE1476633C3 (de) Abgasreinigungsvorrichtung für Brennkraftmaschinen
DE10350765A1 (de) Satz von thermischen Nachverbrennungsvorrichtungen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE DE DK ES FR GB IT NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE DE DK ES FR GB IT NL SE

17P Request for examination filed

Effective date: 19920123

17Q First examination report despatched

Effective date: 19921102

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILA

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE DK ES FR GB IT NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19931201

Ref country code: DK

Effective date: 19931201

REF Corresponds to:

Ref document number: 97994

Country of ref document: AT

Date of ref document: 19931215

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19931215

REF Corresponds to:

Ref document number: 59100641

Country of ref document: DE

Date of ref document: 19940113

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2047958

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 91101119.5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19961202

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19970116

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19970128

Year of fee payment: 7

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19971204

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19980120

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980131

BERE Be: lapsed

Owner name: EBERSPACHER G.M.B.H. & CO.

Effective date: 19980131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990130

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19990129

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20000503

REG Reference to a national code

Ref country code: FR

Ref legal event code: CJ

REG Reference to a national code

Ref country code: FR

Ref legal event code: CJ

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030115

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040930

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050129

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050131

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060801