EP0429573B1 - Schaltungsanordnung zum betrieb von elektromagnetischen verbrauchern - Google Patents

Schaltungsanordnung zum betrieb von elektromagnetischen verbrauchern Download PDF

Info

Publication number
EP0429573B1
EP0429573B1 EP90906897A EP90906897A EP0429573B1 EP 0429573 B1 EP0429573 B1 EP 0429573B1 EP 90906897 A EP90906897 A EP 90906897A EP 90906897 A EP90906897 A EP 90906897A EP 0429573 B1 EP0429573 B1 EP 0429573B1
Authority
EP
European Patent Office
Prior art keywords
voltage
circuit arrangement
circuit
arrangement according
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP90906897A
Other languages
English (en)
French (fr)
Other versions
EP0429573A1 (de
Inventor
Siegbert Schwab
Wolfgang Vogel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6383096&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0429573(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0429573A1 publication Critical patent/EP0429573A1/de
Application granted granted Critical
Publication of EP0429573B1 publication Critical patent/EP0429573B1/de
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2003Output circuits, e.g. for controlling currents in command coils using means for creating a boost voltage, i.e. generation or use of a voltage higher than the battery voltage, e.g. to speed up injector opening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2003Output circuits, e.g. for controlling currents in command coils using means for creating a boost voltage, i.e. generation or use of a voltage higher than the battery voltage, e.g. to speed up injector opening
    • F02D2041/2013Output circuits, e.g. for controlling currents in command coils using means for creating a boost voltage, i.e. generation or use of a voltage higher than the battery voltage, e.g. to speed up injector opening by using a boost voltage source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2031Control of the current by means of delays or monostable multivibrators

Definitions

  • the invention relates to a circuit arrangement for operating electromagnetic consumers, in particular solenoid valves of internal combustion engines.
  • each solenoid valve is therefore supplied with a higher voltage than in the subsequent hold phase.
  • a clocking supply (electronic switch) of the solenoid valve in connection with a free-wheeling diode is known, with the clocking ratio of the pull-in (or peak) and holding current being adjusted and possibly regulated.
  • the consumer current is preferably set by a transistor which, particularly in the holding current phase, develops a high, undesired power loss due to the circuit structure.
  • EP-A-306 839 a method and device for controlling electromagnets is known in which the operating voltage is transformed up to a voltage level with a DC / DC converter for the pull-in phase of the solenoid valve, which level is usually several times the operating voltage of the system corresponds.
  • the pull-in and holding phase are controlled with two transistorized switches (compare claim 1.1. Part).
  • the circuit arrangement according to the invention with the features mentioned in main claim 1 can work in stationary, ie in non-clocked operation, so that the disadvantages associated with the clock operation do not occur. This results in a favorable energy balance and a significantly improved EMC intrinsic switching.
  • the switching elements assume either their blocked or their conductive state, so that only very low power losses can occur.
  • a higher voltage is applied to the consumer by the corresponding switching element and then a lower voltage by a further switching element.
  • solenoid valves With solenoid valves, a corresponding tightening energy is available in the tightening phase and subsequently the much lower holding energy required.
  • the larger voltage is formed by an operating voltage and the smaller voltage is generated from the operating voltage by means of a direct voltage converter (DC / DC converter).
  • the output voltage of the DC-DC converter is selected in such a way that the solenoid valve assumes its holding state, whereby voltage drops on any other circuit components that may be present and also disturbance variables (such as tolerance, temperature, etc.) are taken into account.
  • the DC-DC converter can be used for several circuit arrangements of an overall system which has several solenoid valves. Thus, each cylinder of an internal combustion engine requires an injection valve, which is formed by the solenoid valves mentioned.
  • the smaller voltage has the size of the minimum excitation voltage of the consumer. As described above, it is preferably only applied to the consumer for a certain time after the consumer is switched on, so that he maintains his minimum excitation.
  • the smaller voltage represents the holding voltage, while the larger voltage applied directly to the consumer when switched on forms the pull-in voltage of the solenoid valve.
  • the tightening voltage can vary depending on the load capacity of the switching element and consumers - a multiple of the nominal voltage.
  • the two switching elements are connected to the consumer via a decoupling circuit.
  • This decoupling circuit is preferably formed by a diode arrangement. Diode arrangement is particularly designed so that two diodes are connected in the forward direction with electrodes of the same type (anodes or cathodes) to the consumer and the other electrodes (cathodes or anodes) are each connected to one of the switching elements. In this way, undesired equalizing currents between the two voltage levels are avoided.
  • At least one of the circuits operated with the differently large voltages has a current control.
  • the circuit having the holding voltage is preferably provided with the current control. This has a sensor that detects the holding current and is connected to a current regulator. This controls the associated switching element.
  • the sensor is preferably designed as a shunt.
  • Transistors can be used as switching elements.
  • a control circuit which supplies the current regulator with a setpoint holding current and the control element supplied with operating voltage directly with a control value for the starting phase.
  • the control circuit preferably works in such a way that when switching on the control value is first supplied to the base of the transistor connected to the larger voltage, so that a defined peak current is set for switching on the solenoid valve as quickly as possible. After the pull-in phase, the supply of the solenoid valve is taken over by the holding circuit operated at a lower voltage. For this purpose, the switching element assigned to the holding circuit is switched on and the switching element assigned to the pull-in circuit is switched off.
  • both circuits are switched on at the same time and for the pull-in circuit to be switched off after the pull-in phase, the holding circuit remaining switched on.
  • the consumer is initially operated with the correspondingly higher voltage since the lower voltage no effect.
  • the decoupling circuit prevents mutual interference between the two voltages. After switching off the larger voltage (operating voltage), further operation with the lower holding voltage takes place.
  • the current regulation of the holding circuit reduces the power loss and the current load of the solenoid valve to the lowest possible value.
  • the current control also offers the possibility of tuning the holding current precisely to a predetermined value.
  • any current ripple in the holding circuit is largely corrected by the current regulator.
  • the withstand voltage, i. H. the output voltage of the DC-DC converter is preferably set so that there is a transition from current regulation to voltage regulation when the ohmic resistance of the consumer increases (e.g. due to temperature influences). This additionally limits the power loss in the consumer (solenoid valve).
  • FIG. 1 shows a block diagram of a circuit arrangement for operating an electromagnetic consumer 1. This is designed as a solenoid valve of an internal combustion engine, not shown. The fuel injection of the internal combustion engine is controlled by means of the solenoid valve.
  • the circuit arrangement is connected to an operating voltage U B , which is fed as an input voltage to a DC-DC converter 2.
  • the DC-DC converter 2 represents a so-called DC / DC converter, which generates a holding voltage U H from the operating voltage U B.
  • the operating voltage U B and the holding voltage U H are DC voltages.
  • the operating voltage U B represents a voltage U 1 greater than the holding voltage U H , and consequently the holding voltage U H forms a smaller voltage U 2.
  • the holding voltage U H is fed to a first switching element 4 via a sensor 3.
  • the operating voltage U B is connected to a second switching element 5.
  • the switching elements 4 and 5 are preferably designed as transistors.
  • the emitter-collector paths form the switching paths of the switching elements 4 and 5.
  • the operating voltage U B is preferably applied to the emitter of the associated transistor and the holding voltage U H reduced by the voltage drop at the sensor 3 is likewise applied to the emitter of the other transistor.
  • the outputs 6 and 7 of the switching elements 4 and 5 are connected to a decoupling circuit 8.
  • the outputs 6 and 7 are formed by the collectors of the transistors of the switching elements 4 and 5.
  • the decoupling circuit 8 has a diode arrangement 9, which - according to Figure 2- consists of two diodes D1 and D2.
  • the anodes of the diodes D1 and D2 are each connected to one of the collectors of the switching elements 4 and 5 forming transistors.
  • the cathodes of the diodes D1 and D2 are brought together at a summation point 10, which is also connected to the one terminal of the consumer 1.
  • the other connection of consumer 1 is grounded.
  • the circuit arrangement also has a control circuit 11 which provides a first control signal S 1 at its output 12 and a second control signal S 2 at its output 13.
  • the control signal S1 is supplied to a current controller 14 as a holding current setpoint.
  • the sensor 3 designed as a shunt 15 is connected to the current regulator 14 via a line 16.
  • the output 17 of the current regulator 14 leads to the first switching element 4, to the base of the transistor used there.
  • the second control signal S2 is available, which is given via a line 18 to the base of the transistor of the second switching element 5.
  • the circuit arrangement according to the invention works as follows: For opening the solenoid valve (consumer 1), the control circuit 11 provides the pulses shown in FIGS. 3 and 4 (control signals S 1 and S 2). Both control signals S1 and S2 are delivered t1 at the same time. At the time t2, the second switching element 5 acting control signal S2 goes back to zero, while the control signal S1 continues to be delivered - up to the time t3-. The output of the control signals S1 and S2 has the result that the current controller 14 is given a holding current setpoint. The current controller 14 receives the actual holding current value detected by the sensor 3 via the line 16. The control difference resulting between the holding current setpoint and the holding current actual value leads at the output 17 of the current regulator to a corresponding output signal which drives the base of the transistor of the first switching element 4.
  • both switching elements 4 and 5 are turned on due to the control signals S 1 and S 2, so that the voltage curve of the consumer voltage U L shown in FIG. 5 and the associated consumer current curve (consumer current I L ) shown in FIG. 6 are set.
  • the control signal S2 is applied to the second switching element 5, the larger voltage U1 (operating voltage U B ) applied to the consumer 1 via the decoupling circuit 8.
  • the smaller voltage U2 (holding voltage U H ), which is present at the summation point 10 and therefore also at the consumer 1, has no effect because it is less than the operating voltage U B.
  • FIG. 6 shows the current diagram associated with the voltage profile of consumer 1.
  • the consumer current I L rises rapidly due to the relatively large operating voltage U B and very quickly reaches its maximum value I max .
  • I max maximum value
  • the circuit arrangement according to the invention can be used in particular in the case of shock absorbers for motor vehicles which are adjustable in their damping force.
  • the adjusting member of such a shock absorber is designed as a solenoid valve so that it forms the consumer 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

Die Erfindung betrifft eine Schaltungsanordnung zum Betrieb von elektromagnetischen Verbrauchern, insbesondere von Magnetventilen von Brennkraftmaschinen. Zur Erzielung einer möglichst kleinen Verlustleistung wird vorgeschlagen, mindestens zwei unabhängig voneinander steuerbare Schaltglieder (4, 5) vorzusehen, die unterschiedlich große Spannungen (U1, U2) an den Verbraucher (1) legen.

Description

    Stand der Technik
  • Die Erfindung betrifft eine Schaltungsanordnung zum Betrieb von elektromagnetischen Verbrauchern, insbesondere von Magnetventilen von Brennkraftmaschinen.
  • Um elektromagnetische Verbraucher möglichst schnell in ihren Nenn-Erregungszustand zu versetzen, ist es bekannt, sie beim Einschalten für kurze Zeit an eine höhere Spannung zu legen, als es für den Nenn-Erregungszustand notwendig ist. Bei Brennkraftmaschinen mit einem Magnetventile aufweisenden Kraftstoff-Versorgungssystem besteht das Bedürfnis, die elektromagnetische Verbraucher bildenen Magnetventile möglichst schnell einzuschalten und anschließend mit möglichst geringer Energie im Einschaltzustand zu halten. In der Anzugphase wird jedem Magnetventil daher eine größere Spannung als in der nachfolgenden Haltephase zugeführt. Hierzu ist eine taktende Versorgung (elektronischer Schalter) des Magnetventils in Verbindung mit einer Freilauf-Diode bekannt, wobei über das Taktverhältnis der Anzug- (bzw. Spitzen-) und Haltestrom eingestellt und gegebenenfalls geregelt wird. So ist es aus der DE-OS 28 41 781 bekannt, einen elektromagnetischen Verbraucher über ein von zwei Schwellwertgebern gesteuertes Schaltglied an eine Versorgungsspannung zu legen. Die beiden Schwellwertgeber ermöglichen einen Zweipunkt-Regler-Betrieb. Der Verbraucherstrom wird in Abhängigkeit einer Vorgabe zwischen einem oberen und einem unteren Stromgrenzwert gehalten. Derart getaktete Endstufen sind im Hinblick auf ihre elektromagnetische Verträglichkeit (EMV-Eigenschaft) unbefriedigend.
  • Ferner ist es bekannt, den Verbraucherstrom entsprechend einem Sollwert-Vorgabeprofil derart zu regeln, daß in der Anzugphase des Magnetventils ein Spitzen- und in der nachfolgelden Betriebsphase ein Haltestrom des Magnetventils fließt. Vorzugsweise wird der Verbraucherstrom von einem Transistor einstellt, der insbesondere in der Haltestromphase aufgrund des Schaltungsaufbaus eine hohe, unerwünschte Verlustleistung entwickelt.
  • Aus der EP-A-306 839 ist ein Verfahren und Einrichtung zum Ansteuern von Elektromagneten bekannt, bei dem für die Anzugphase des Magnetventils die Betriebsspannung mit einem DC/DC-Wandle auf ein Spannungsniveau hochtransformiert, das in der Regel dem Mehrfachen der Betriebsspannung des Systems entspricht. Anzugs- und Halte phase werden mit zwei transistorierten Schaltern gesteuert (vergleiche Anspruch 1,1. Teil).
  • Ebenso wird in der US-A-4,729,056 ein hochgesetzte Spannung für die Überstromphase bei einem Gegenstand nach Anspruch 1, erstem Teil verwendet.
  • Vorteile der Erfindung
  • Die erfindungsgemäße Schaltungsanordnung mit den im Hauptanspruch 1 genannten Merkmalen kann im stationären arbeiten, d. h. im nicht getakteten Betrieb, so daß die mit dem Taktbetrieb verbundenen Nachteile nicht auftreten. So stellt sich eine günstige Energiebilanz und eine wesentlich verbesserte EMV-Eigenschalt ein. Die Schaltglieder nehmen entweder ihren gesperrten oder ihren leitenden Zustand ein, so daß nur sehr geringe Verlustleistungen auftreten können. Um den elektromagnetischen Verbraucher möglichst schnell in seinen Nenn-Erregungszustand zu versetzen, wird zunächst eine größere Spannung durch das entsprechende Schaltglied und anschließend eine demgegenüber kleinere Spannung durch ein weiteres Schaltglied an den Verbraucher gelegt. Bei Magnetventilen steht somit in der Anzugphase eine entsprechende Anzugenergie und nachfolgend die notwendige, wesentlich geringere Halteenergie zur Verfügung. Es sind somit zwei Stromkreise mit unterschiedlich hohen Spannungen vorgesehen, so daß ein "zweistufiger" Betrieb möglich ist. Sofern jedoch eine weitere Abstufung gewünscht ist,kann - im Rahmen der Erfindung- auch eine die Zahl "zwei" übersteigende Anzahl von Schaltgliedern vorgesehen sein, die entsprechend unterschiedlich große Spannungen an den Verbraucher legen.
  • Dabei wird die größere Spannung von einer Betriebsspannung gebildet und die kleinere Spannung mittels eines Gleichspannungswandlers (DC/DC-Wandlers) aus der Betriebsspannung erzeugt. Die Ausgangsspannung des Gleichspannungswandlers wird derart gewählt, daß das Magnetventil seinen Haltezustand einnimmt, wobei Spannungsabfälle an möglicherweise vorhandenen übrigen Schaltungskomponenten und auch Störgrößen (wie Toleranz, Temperatur usw.) berücksichtigt werden. Der Gleichspannungswandler läßt sich für mehrere Schaltungsanordnungen einer Gesamtanlage verwenden, die mehrere Magnetventile aufweist. So erfordert jeder Zylinder einer Brennkraftmaschine ein Einspritzventil, das von den genannten Magnetventilen gebildet wird.
  • Aufgrund des Einsatzes des Gleichspannungswandlers zur Erzeugung der Haltespannung entsteht nur eine sehr geringe Verlustleistung in dem zugehörigen Schaltglied, so daß insbesondere gebräuchliche Transistoren eingesetzt werden können.
  • Nach einer Weiterbildung der Erfindung ist vorgesehen, daß die kleinere Spannung die Größe der Mindest-Erregerspannung des Verbrauchers aufweist. Sie wird - wie oben beschrieben- vorzugsweise erst eine gewisse Zeit nach dem Einschalten des Verbrauchers an diesen gelegt, damit er seine Mindesterregung behält. Bei einem Magnetventil stellt die kleinere Spannung die Haltespannung dar, während die direkt beim Einschalten an den Verbraucher angelegte größere Spannung die Anzugspannung des Magnetventils bildet. Die Anzugspannung kann -je nach Belastbarkeit von Schaltglied und Verbraucher- ein Vielfaches der Nennspannung ausmachen.
  • Um eine gegenseitige Einflußnahme der Schaltglieder zu verbindern, ist nach einer Weiterbildung der Erfindung vorgesehen, daß die beiden Schaltglieder über eine Entkopplungsschaltung mit dem Verbraucher verbunden sind. Diese Entkopplungsschaltung wird vorzugsweise von einer Diodenanordnung gebildet. Diode Anordnung ist insbesondere dabei so ausgebildet, daß zwei Dioden in Durchlaßrichtung mit gleichartigen Elektroden (Anoden oder Katoden) an dem Verbraucher angeschlossen sind und das deren andere Elektroden (Katoden oder Anoden) jeweils in verbindung zu einem der Schaltglieder stehen. Hierdurch sind unerwünschte Ausgleichsströme zwischen den beiden Spannungsebenen vermieden.
  • Nach einem bevorzugten Ausführungsbeispiel weist zumindest einer der mit den unterschiedlich großen Spannungen betriebenen Stromkreise eine Stromregelung auf. Vorzugsweise ist der die Haltespannung aufweisende Stromkreis mit der Stromregelung versehen. Diese besitzt einen den Haltestrom erfassenden Sensor, der an einen Stromregler angeschlossen ist. Dieser steuert das zugehörige Schaltglied an.
  • Der Sensor ist vorzugsweise als Shunt ausgebildet. Als Schaltglieder können Transistoren eingesetzt werden.
  • Ferner ist eine Steuerschaltung vorgesehen, die dem Stromregler einen Haltestrom-Sollwert und dem direkt von der Betriebsspannung versorgten Schaltglied einen Steuerwert für die Anzugphase zuführt. Die Steuerschaltung arbeitet bevorzugt derart, daß beim Einschalten zunächst der Steuerwert der Basis des an die größere Spannung angeschlossenen Transistors zugeführt wird, so daß sich ein definierter Spitzenstrom für ein möglichst rasches Einschalten des Magnetventils einstellt. Nach Ablauf der Anzugphase wird die Versorgung des Magnetventils von dem mit niedrigerer Spannung betriebenen Haltestromkreis übernommen. Hierzu wird das dem Haltestromkreis zugeordnete Schaltglied ein- und das dem Anzugstromkreis zugeordnete Schaltglied ausgeschaltet. Es ist jedoch auch möglich, daß beide Stromkreise gleichzeitig eingeschaltet werden und daß nach der Anzugphase eine Ausschaltung des Anzugstromkreises erfolgt, wobei der Haltestromkreis eingeschaltet bleibt. Hierdurch erfolgt zunächst ein Betrieb des Verbrauchers mit der entsprechend größeren Spannung, da die kleinere Spannung keine Wirkung entfaltet. Durch die Entkopplungsschaltung ist eine gegenseitige Beeinflussung der beiden Spannungen verhindert. Nach dem Ausschalten der größeren Spannung (Betriebsspannung) erfolgt der weitere Betrieb mit der niedrigeren Haltespannung.
  • Durch die Stromregelung des Haltestromkreises wird die Verlustleistung und die Strombelastung des Magnetventils auf einen möglichst geringen Wert reduziert. Die Stromregelung bietetüberdies die Möglichkeit, den Haltestrom auf einen vorbestimmten Wert genau einzustimmen. Überdies wird durch den Stromregler eine gegebenenfalls vorliegende Spannungswelligkeit des Haltestromkreises weitestgehend ausgeregelt.
  • Die Haltespannung, d. h. die Ausgangsspannung des Gleichspannungswandlers, wird vorzugsweise so eingestellt, daß es bei einem Ansteigen des ohmschen Widerstandes des Verbrauchers (z.B. durch Temperatureinflüsse) zu einem Übergang von der Stromregelung zu einer Spannungsregelung kommt. Hierdurch wird die Verlustleistung im Verbraucher (Magnetventil) zusätzlich begrenzt.
  • Zeichnung
  • Die Erfindung wird im folgenden anhand der Figuren naher erläutert. Es zeigen:
  • Figur 1
    ein Blockschaltbild der erfindungsgemäßen Schaltungsanordnung,
    Figur 2
    einen Ausschnitt aus dem Blockschaltbild gemäß Figur 1 in detaillierter Darstellung,
    Figur 3
    ein Steuersignal für einen Haltestromkreis,
    Figur 4
    ein Steuersignal für einen Anzugstromkreis,
    Figur 5
    einen Spannungsverlauf an einem mit der Schaltungsanordnung betriebenen elektromagnetischen Verbraucher und
    Figur 6
    einen Stromverlauf des Verbrauchers.
  • Die Figur 1 zeigt als Blockschaltbild eine Schaltungsanordnung zum Betrieb eines elektromagnetischen Verbrauchers 1. Dieser ist als Magnetventil einer nicht dargestellten Brennkraftmaschine ausgebildet. Mittels des Magnetventils wird die Kraftstoffeinspritzung der Brennkraftmaschine gesteuert.
  • Die Schaltungsanordnung ist an eine Betriebsspannung UB angeschlossen, die als Eingangsspannung einem Gleichspannungswandler 2 zugeführt wird. Der Gleichspannungswandler 2 stellt einen sogenannten DC/DC-Wandler dar, der aus der Betriebsspannung UB eine Haltespannung UH erzeugt. Bei der Betriebsspannung UB und der Haltespannung UH handelt es sich um Gleichspannungen. Die Betriebsspannung UB stellt eine gegenüber der Haltespannung UH größere Spannung U₁ dar, mithin bildet die Haltespannung UH eine demgegenüber kleinere Spannung U₂.
  • Die Haltespannung UH wird über einen Sensor 3 einem ersten Schaltglied 4 zugeführt. Die Betriebsspannung UB ist an ein zweites Schaltglied 5 angeschlossen. Die Schaltglieder 4 und 5 sind vorzugsweise als Transistoren ausgebildet. Die Emitter-Kollektor-Strecken bilden die Schaltstrecken der Schaltglieder 4 und 5. Vorzugsweise liegt die Betriebsspannung UB an dem Emitter des zugehörigen Transistors und die um den Spannungsabfall am Sensor 3 verminderte Haltespannung UH ebenfalls an dem Emitter des anderen Transistors an. Die Ausgänge 6 und 7 der Schaltglieder 4 und 5 sind an eine Entkopplungsschaltung 8 angeschlossen. Die Ausgänge 6 und 7 werden von den Kollektoren der Transistoren der Schaltglieder 4 und 5 gebildet.
  • Die Entkopplungsschaltung 8 weist eine Dioden-Anordnung 9 auf, die -gemäß Figur 2- aus zwei Dioden D₁ und D₂ besteht. Die Anoden der Dioden D₁ und D₂ sind jeweils mit einem der Kollektoren der die Schaltglieder 4 und 5 bildenen Transistoren verbunden. Die Katoden der Dioden D₁und D₂ sind an einen Summenpunkt 10 zusammengeführt, der ferner mit dem einen Anschluß des Verbrauchers 1 verbunden ist. Der andere Anschluß des Verbrauchers 1 ist an Masse geführt.
  • Die Schaltungsanordnung weist ferner eine Steuerschaltung 11 auf, die an ihrem Ausgang 12 ein erstes Steuersignal S₁ und an ihrem Ausgang 13 ein zweites Steuersignal S₂ bereitstellt. Das Steuersignal S₁ wird einem Stromregler 14 als Haltestrom-Sollwert zugeführt. Ferner ist der als Shunt 15 ausgebildete Sensor 3 über eine Leitung 16 mit dem Stromregler 14 verbunden. Der Ausgang 17 des Stromreglers 14 führt zum ersten Schaltglied 4, und zwar an die Basis des dort verwendeten Transistors. Am Ausgang 13 der Steuerschaltung 11 steht das zweites Steuersignal S₂ zur Verfügung, das über eine Leitung 18 auf die Basis des Transistors des zweiten Schaltgliedes 5 gegeben wird.
  • Die erfindungsgemäße Schaltungsanordnung arbeitet folgendermaßen:
    Für das Öffnen des Magnetventils (Verbraucher 1) stellt die Steuerschaltung 11 die in den Figuren 3 und 4 dargestellten Impulse (Steuersignale S₁ und S₂) zur Verfügung. Beide Steuersignale S₁ und S₂ werden zum gleichen Zeitpunkt t₁ abgegeben. Zum Zeitpunkt t₂ geht das das zweite Schaltglied 5 beaufschlagende Steuersignal S₂ wieder auf Null zurück, während das Steuersignal S₁ weiterhin- und zwar bis zum Zeitpunkt t₃- geliefert wird. Die Abgabe der Steuersignale S₁ und S₂ hat zur Folge, daß dem Stromregler 14 ein Haltestrom-Sollwert vorgegeben wird. Über die Leitung 16 erhält der Stromregler 14 den vom Sensor 3 erfaßten Haltestrom-Istwert. Die sich zwischen dem Haltestrom-Sollwert und Haltestrom-Istwert ergebende Regeldifferenz führt am Ausgang 17 des Stromreglers zu einem entsprechenden Ausgangssignal, das die Basis des Transistors des ersten Schaltgliedes 4 ansteuert.
  • Zum Zeitpunkt t₁ werden aufgrund der Steuersignale S₁ und S₂ beide Schaltglieder 4 und 5 durchgesteuert, so daß sich der in der Figur 5 dargestellte Spannungsverlauf der Verbraucherspannung UL sowie der in der Figur 6 dargestellte, zugehörige Verbraucherstromverlauf (Verbraucherstrom IL) einstellt. Solange das Steuersignal S₂ an dem zweiten Schaltglied 5 anliegt, wird die größere Spannung U₁ (Betriebsspannung UB) über die Entkopplungsschaltung 8 an den Verbraucher 1 angelegt. Die kleinere Spannung U₂ (Haltespannung UH), die am Summenpunkt 10 und demnach ebenfalls an den Verbraucher 1 anliegt, entfaltet keine Wirkung, da sie kleiner als die Betriebsspannung UB ist. Insofern kommt sie erst zum Zeitpunkt t₂ zum Tragen, da dann das zweite Schaltglied 5 seinen gesperrten Zustand annimmt und am Verbraucher 1 nunmehr nur noch die kleinere Spannung U₂, d. h. UH zur Verfügung steht. Die Verbraucherspannung UL geht demgemäß zum Zeitpunkt t₂ auf einen niedrigeren Wert zurück. Zum Zeitpunkt t₃ wird auch das Steuersignal S₁ ausgeschaltet, so daß auch das erste Schaltglied 4 in seinen gesperrten Zustand übergeht. Der Verbraucher 1 wird damit spannungslos.
  • In der Figur 6 ist das zu dem Spannungsverlauf des Verbrauchers 1 zugehörige Stromdiagramm wiedergegeben. Der Verbraucherstrom IL steigt aufgrund der relativ großen Betriebsspannung UB zügig an und erreicht sehr schnell seinen Maximalwert Imax. Hierdurch kann das Magnetventil innerhalb sehr kurzer Zeit anziehen. Ist das Anziehen erfolgt, so reicht es für das Beibehalten dieses Zustandes aus, daß die Wicklung des Magnetventils von einem gegenüber dem maximalen Strom Imax kleineren Strom, nämlich dem Haltestrom IH durchflossen wird. Dieser stellt sich zum Zeitpunkt t₂ ein. Er wird von dem Gleichspannungswandler 2 -eingestellt von dem Schaltglied 4-geliefert. Da die Stromregelung (Stromregler 14) mit der gegenüber der Betriebsspannung UB kleineren Spannung U₂ erfolgt, tritt in dem ersten Schaltglied 4 nur eine relativ geringe Verlustleistung auf.
  • Die erfindungsgemäße Schaltungsanordnung kann insbesondere bei in ihrer Dämpfungskraft verstellbaren Stoßdämpfern für Kraftfahrzeuge eingesetzt werden. Das Verstellglied eines derartigen Stoßdämpfers ist als Magnetventil ausgebildet, so daß dieses den Verbraucher 1 bildet.

Claims (12)

  1. Schaltungsanordnung zum Betrieb von elektromagnetischen Ventilen, insbesondere von Magnetventilen von Brennkraftmaschinen und/oder Magnetventilen zur Verstellung der Dämpfungseigenschaften eines Stoßdämpfers für Kraftfahrzeuge, bei der durch mindestens zwei unabhängig voneinander steuerbare Schaltglieder (4, 5) zwei unterschiedlich große Spannungen (U1, U2) an das Magnetventil (1) angelegt werden, dadurch gekennzeichnet, daß die höhere der beiden Spannungen (U1) die Betriebsspannung (UB) der gesamten Schaltungsanordnung ist und die niedrigere der beiden Spannungen (U2) mittels eines Gleichspannungswandlers (2; DC/DC- Wandler) aus der höheren Spannung (UB, U2) gebildet wird.
  2. Schaltungsanordnung nach Anspruch 1, dadurch gekennzeichnet, daß die kleinere Spannung (U₂) die Größe der Mindest-Erregerspannung des Verbrauchers (1) aufweist.
  3. Schaltungsanordnung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die kleinere Spannung (U₂) die Haltespannung (UH) eines den Verbraucher (1) bildenden Magnetventils und die größere Spannung (U₁) die Anzugspannung des Magnetventils ist.
  4. Schaltungsanordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die beiden Schaltglieder (4,5) über eine Entkopplungsschaltung (8) mit dem Verbraucher (1) verbunden sind.
  5. Schaltungsanordnung nach Anspruch 4, dadurch gekennzeichnet, daß die Entkopplungsschaltung (8) eine Dioden-Anordnung (9) aufweist.
  6. Schaltungsanordnung nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß die Entkopplungsschaltung (8) zwei Dioden (D₁, D₂) aufweist, die in Durchlaßrichtung mit gleichartigen Elektroden (Anoden oder Katoden) an den Verbraucher (1) angeschlossen sind und deren andere Elektroden (Katoden oder Anoden) jeweils in Verbindung zu einem der Schaltglieder (4 bzw. 5) stehen.
  7. Schaltungsanordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß zumindest einer der mit der unterschiedlich großen Spannungen (U₁, U₂) betriebenen Stromkreise eine Stromregelung aufweist.
  8. Schaltungsanordnung nach Anspruch 3, dadurch gekennzeichnet, daß der die Haltespannung (UH) aufweisende Stromkreis mit der Stromkreis mit der Stromregelung versehen ist.
  9. Schaltungsanordnung nach Anspruch 8, dadurch gekennzeichnet, daß die Stromregelung einen den Haltestrom (IH) erfassenden Sensor (3) aufweist, der an einen Stromregler (14) angeschlossen ist, welcher das zugehörige Schaltglied (4) ansteuert.
  10. Schaltungsanordnung nach Anspruch 9, dadurch gekennzeichnet, daß der Sensor (3) als Shunt (15) ausgebildet ist.
  11. Schaltungsanordnung nach Anspruch 1,4,6 oder 9, dadurch gekennzeichnet, daß die Schaltglieder (4,5) als Transistoren ausgebildet sind.
  12. Schaltungsanordnung nach Anspruch 9, dadurch gekennzeichnet eine Steuerschaltung (11), die dem Stromregler (14) einen Haltestrom-Sollwert (Steuersignal S₁) für die Haltephase und dem direkt von der Betriebsspannung (UB) versorgten Schaltglied (5) einen Steuerwert (Steuersignal S₂) für die Anzugphase des Magnetventils zuführt.
EP90906897A 1989-06-20 1990-05-16 Schaltungsanordnung zum betrieb von elektromagnetischen verbrauchern Revoked EP0429573B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3920064 1989-06-20
DE3920064A DE3920064A1 (de) 1989-06-20 1989-06-20 Schaltungsanordnung zum betrieb von elektromagnetischen verbrauchern

Publications (2)

Publication Number Publication Date
EP0429573A1 EP0429573A1 (de) 1991-06-05
EP0429573B1 true EP0429573B1 (de) 1993-08-11

Family

ID=6383096

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90906897A Revoked EP0429573B1 (de) 1989-06-20 1990-05-16 Schaltungsanordnung zum betrieb von elektromagnetischen verbrauchern

Country Status (5)

Country Link
EP (1) EP0429573B1 (de)
JP (1) JPH04500399A (de)
BR (1) BR9006811A (de)
DE (2) DE3920064A1 (de)
WO (1) WO1990015922A1 (de)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2800442B2 (ja) * 1991-03-18 1998-09-21 国産電機株式会社 電磁式燃料噴射弁の駆動方法及び駆動装置
US5419162A (en) * 1994-01-25 1995-05-30 Matrix, S.R.L. High speed electromagnet selection device for selecting the needles in a knitting machine
US5796223A (en) * 1996-07-02 1998-08-18 Zexel Corporation Method and apparatus for high-speed driving of electromagnetic load
JP3844091B2 (ja) 1996-07-02 2006-11-08 株式会社小松製作所 誘導負荷駆動装置
DE19963154B4 (de) * 1999-12-24 2009-10-08 Conti Temic Microelectronic Gmbh Verfahren zur Vorgabe des Stroms durch ein induktives Bauteil
DE50107464D1 (de) * 2000-02-16 2006-02-02 Bosch Gmbh Robert Verfahren und schaltungsanordnung zum betrieb eines magnetventils
DE10022342C2 (de) * 2000-05-08 2003-04-24 Siemens Ag Antriebselektronik und Verfahren zur elektrisch gesteuerten Einschaltung eines elektromagnetischen Schaltgeräts
DE10022722C5 (de) * 2000-05-10 2008-07-10 Pilz Gmbh & Co. Kg Sicherheitsschaltgerät zum sicheren Ein- und Ausschalten eines elektrischen Verbrauchers
DE10030714A1 (de) * 2000-06-23 2002-01-10 Schmersal K A Gmbh & Co Sicherheitsschalter und Hubmagnetbaugruppe
DE102004019152B4 (de) * 2004-04-21 2007-05-31 Robert Bosch Gmbh Verfahren zum Betreiben eines Magnetventils zur Mengensteuerung
JP4482913B2 (ja) 2005-04-01 2010-06-16 Smc株式会社 電磁弁及び電磁弁駆動回路
DE102005040532B4 (de) * 2005-08-26 2009-09-03 Continental Automotive Gmbh Stromquelle und Steuervorrichtung
DE102007023716A1 (de) * 2006-11-02 2008-05-08 Continental Teves Ag & Co. Ohg Proportionalregelventil
DE102007006179B4 (de) 2007-02-07 2008-10-16 Continental Automotive Gmbh Schaltungsanordnung und Verfahren zum Betreiben einer induktiven Last
DE102020109880A1 (de) 2020-04-08 2021-10-14 Wabco Europe Bvba Verfahren und Vorrichtung zum Ansteuern eines Fluid-Magnetventils

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2569239A1 (fr) * 1984-03-05 1986-02-21 Mesenich Gerhard Procede pour commander une soupape d'injection electromagnetique
DE3511966C2 (de) * 1985-04-02 1993-10-14 Bosch Gmbh Robert Stromregelung für einen elektromagnetischen Verbraucher in Verbindung mit einer Brennkraftmaschine
US4729056A (en) * 1986-10-02 1988-03-01 Motorola, Inc. Solenoid driver control circuit with initial boost voltage
DE3729954A1 (de) * 1987-09-07 1989-03-16 Sikora Gernot Verfahren und einrichtung zum ansteuern von einspritzventilen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Montanari Adriano, "Misure elettroniche", September 1985, Edizioni Cupido, (Potenza, Picena, MC) siehe Seite 66, Zeilen 1-22 *

Also Published As

Publication number Publication date
EP0429573A1 (de) 1991-06-05
DE59002301D1 (de) 1993-09-16
JPH04500399A (ja) 1992-01-23
WO1990015922A1 (de) 1990-12-27
DE3920064A1 (de) 1991-01-03
BR9006811A (pt) 1991-08-06

Similar Documents

Publication Publication Date Title
EP0429573B1 (de) Schaltungsanordnung zum betrieb von elektromagnetischen verbrauchern
EP0543826B1 (de) Verfahren und einrichtung zur ansteuerung eines elektromagnetischen verbrauchers
DE2132717A1 (de) Ansteuerschaltung fuer magnetventile hoher schaltgeschwindigkeit, insbesondere einer hydraulischen stelleinrichtung
EP1675245A2 (de) Schaltungsanordnung zur schnellen Reduzierung des in der Erregerwicklung eines Generators induzierten Freilaufstromes
DE4304517A1 (de) Stromversorgung für vorwiegend induktive Lasten
WO1988008638A1 (en) Combined secondary circuit regulator
DE69914166T2 (de) Steuereinrichtung und elektromagnet mit einer durch den haltestrom des elektromagneten gespeisten stromversorgungsschaltung
DE4024496A1 (de) Schaltungsanordnung zum betrieb von elektromagnetischen verbrauchern
EP0708998B1 (de) Gepuffertes gleichspannungsversorgungssystem
DE2738897C2 (de) Spannungsregler
EP0693756A1 (de) Verfahren und Vorrichtung zur Ansteuerung eines elektromagnetischen Verbrauchers
EP0920722B1 (de) Generatorregler
EP1389359B1 (de) Gleichspannungswandler mit schaltregler
DE3225157C2 (de)
EP1119897B1 (de) Vorrichtung zur erzeugung eines regelsignals für einen gleichspannungswandler
DE3714173C2 (de)
WO1989003579A1 (en) Circuit arrangement for accelerating the supply to an electromagnetic consumer
EP1386789B1 (de) Vorrichtung und Verfahren zur Regelung einer Bordnetzspannung für ein Kraftfahrzeug
EP0479804A1 (de) Versorgungsschaltung für den betrieb eines elecktromagnetischen verbrauchers
EP1326338B1 (de) Vorrichtung zur Ansteuerung eines elektrischen Leistungsbauelements
DE4241197C1 (de) Verfahren zur Steuerung des Stellgliedes eines Reglers sowie Steuereinrichtung hierzu
DE4021486A1 (de) Schaltungsanordnung zum betrieb von elektromagnetischen verbrauchern
AT405704B (de) Schaltnetzteil
EP1116327B1 (de) Eingangsschaltung für eine endstufe
DE102010001247A1 (de) Schaltungsanordnung zur Reduzierung eines Stromes durch eine Induktivität und Verfahren zum Steuern einer solchen Schaltungsanordnung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19901128

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROBERT BOSCH GMBH

17Q First examination report despatched

Effective date: 19920220

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930817

REF Corresponds to:

Ref document number: 59002301

Country of ref document: DE

Date of ref document: 19930916

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: JOH. VAILLANT GMBH U. CO

Effective date: 19940509

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19950426

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19950512

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19950726

Year of fee payment: 6

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 19950630

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Free format text: 950630