EP0422451A1 - Elektronenröhre - Google Patents
Elektronenröhre Download PDFInfo
- Publication number
- EP0422451A1 EP0422451A1 EP90118545A EP90118545A EP0422451A1 EP 0422451 A1 EP0422451 A1 EP 0422451A1 EP 90118545 A EP90118545 A EP 90118545A EP 90118545 A EP90118545 A EP 90118545A EP 0422451 A1 EP0422451 A1 EP 0422451A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cathode
- grid
- electron tube
- tube according
- anode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J1/00—Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
- H01J1/02—Main electrodes
- H01J1/13—Solid thermionic cathodes
- H01J1/20—Cathodes heated indirectly by an electric current; Cathodes heated by electron or ion bombardment
- H01J1/28—Dispenser-type cathodes, e.g. L-cathode
Definitions
- the invention relates to an electron tube with a cathode, an anode and at least one independent first grid between cathode and anode.
- Electron tubes of the type mentioned have long been known and are commercially available.
- the cathode of such an electron tube is completely covered with osmium in order to be able to achieve higher current densities.
- the osmium has the task of reducing the work function of the electrons.
- An osmium-coated dispenser cathode is e.g. from patent EP-0 156 454 or from Technical Bulletin # 116, "Osmium coated dispenser cathodes - 'M' Type", Spectra-Mat Inc., 1240 Highway 1, Watsonville, California CA 95076, USA.
- a tungsten matrix cathode is covered with two layers.
- An Os or Os / Ru layer serves as the first layer and a W / Os alloy serves as the second layer.
- Impregnated dispenser cathodes which are coated with Os, an Os / Ru alloy or Ir (so-called M-type cathodes), have a longer service life than S-type cathodes without surface metallization because of their approximately 100 ° lower working temperature.
- M-type cathodes Performance analysis of three different M-type dispenser cathodes
- a problem with known electron tubes of high current density is the lattice load due to electron bombardment. It leads to an undesirable thermal emission of the lattice, which results from cathode material being deposited on the lattice during operation and thereby reducing the work function of the electrons.
- the object of the invention is to provide an electron tube of the type mentioned at the outset, which has a low lattice load even at high currents.
- the cathode has both strongly emitting and at most weakly emitting regions, the strongly emitting regions being arranged behind openings in the first grid and the at most weakly emitting regions corresponding to a shadow cast by the first grid adjacent to the cathode onto the cathode .
- the advantage of the arrangement according to the invention lies in the fact that the stream of charged particles is only generated where it also comes into play. It is thus focused on the openings in the grille.
- the preferably cylindrical cathode ensures the necessary stability and precision with the usually very small distances between the first grid and the cathode.
- a sheet metal grid is preferably used. Such grids are easier to manufacture and are mechanically less sensitive than wire grids.
- Graphite grids are particularly advantageous because they suffer only very low temperature-related mechanical deformations even when subjected to a greater current load.
- Grid currents occur in an electron tube with a cathode structured according to the invention, which lead to temperature increases. If the grid is now very fine and close to the cathode, deformations of the grid can severely disrupt the geometric alignment in the tube.
- the preferred graphite grids include, in particular, pyrographite and electrographite grids.
- the invention is also suitable in connection with conventional wire grids.
- the openings in the grid are diamond-shaped or rectangular.
- the strongly emitting areas also have a regular, lattice-like shape.
- a tetrode with a cathode designed according to the invention can switch high currents without showing the high load on the control grid which is present in the prior art.
- the cathode there can preferably be coated with a layer, e.g. from Mo / Ru, passivated.
- the cathode is preferably coated with a material from the following group: Sc2O3 / W, Os / Ir, Os / Ru, Os / W, Ir, Os, Os + W / Os, Os / Ru + W / Os.
- Os, Os / Ru, Os / W are particularly preferred because of the strong increase in emissivity.
- the double layers of Os + W / Os, Os / Ru + W / Os also represent a special group, because of their properties that prevent interdiffusion.
- cathode a so-called matrix or dispenser cathode, which is known for its current capacity, as the cathode.
- FIG. 1 shows a tetrode in longitudinal section according to a preferred embodiment of the invention.
- a cylindrical cathode 1, a first grid 2 adjacent to the cathode 1, a second grid 3 and a cylindrical anode 4 are arranged coaxially with a common axis 5.
- the first grid 2 is e.g. a sheet metal grid with openings 6.
- the second grid is designed accordingly.
- the cathode is constructed in the manner of a matrix cathode, as is e.g. is known from the cited patent specification EP-0 157 454.
- a porous tungsten matrix is impregnated with a barium-containing substance.
- the cathode 1 is selectively covered with a strongly emitting layer. It is preferably an osmium-containing, i.e. osmated layer.
- strongly emitting regions 7.1, 7.2, 7.3 are located behind the openings 6 of the first grating 2. In between, one or more regions 8, which emit at most weakly, are provided. The at most weakly emitting regions 8 correspond to an imaginary shadow cast by the grid 2 on the cathode 1.
- FIG. 2 shows a cross section through the tetrode of FIG. 1.
- the (imaginary) shadow is created by projecting the first grating 2 in the radial direction (with respect to the axis 5).
- the strongly emitting areas 7.1, 7.4, 7.7 are separated by the at most weakly emitting area 8.
- the strongly emitting areas 7.1, 7.2, ..., 7.9 are in this case rectangles which form a regular pattern in two directions perpendicular to one another.
- the at most weakly emitting region 8 separates the strongly emitting regions 7.1, 7.2, ..., 7.9 in the same way as the grating 2 and the openings 8.
- the shape of the openings is of subordinate importance. In practice, however, are usually regular Grid used, for example diamond-shaped. have rectangular openings.
- the advantage of the invention is that the flow of charged particles, which undesirably strikes the first grating 2, is largely prevented. Rather, the emitted electrons are guided very specifically through the openings 6 of the grid. As a result, the grid no longer heats up so much and it can no longer interfere with the electron tube in the manner of a parasitic cathode.
- the osmized areas usually have two to three times higher emissivity than the non-osmotic areas. If the ratio is to be increased further, the non-osmized areas are preferably additionally passivated with an emission-inhibiting layer.
- a layer consisting essentially of Mo and Ru (Mo / Ru layer) is particularly suitable for this. In such a case, the areas in the shadow of the first grating not only emit weakly, but essentially not at all.
- a cathode according to the invention can be produced using known means. Especially in the case of dispenser cathodes, which were previously used in a final process step e.g. have been osmized over the entire area, it means only a small change to cover the cathode with a suitable mask before osmosis, so that an osmium layer structured according to the invention is formed.
- the grid can also be designed as a graphite grid (e.g. pyrographite, electrographite). Such grids endure higher current loads and thus allow the electron tube to be operated at higher current densities as a whole.
- graphite grid e.g. pyrographite, electrographite
- the invention is in no way limited to tetrodes. It is used wherever at least one independent grid is arranged in front of a cathode. Accordingly, the invention can be used with triodes as well as with pentodes and even more complex electron tubes.
- cylindrical symmetry is not a mandatory requirement, but only a preferred feature of the invention. Accordingly, the invention is also suitable for flat structures.
- the invention provides electron tubes with large currents and at the same time a low lattice load.
Landscapes
- Solid Thermionic Cathode (AREA)
- Electrodes For Cathode-Ray Tubes (AREA)
- Cold Cathode And The Manufacture (AREA)
Abstract
In einer Elektronenröhre mit einer stark emittierenden Kathode (1), einer Anode (4) und mindestens einem selbständigen ersten Gitter (2) zwischen Kathode (1) und Anode (4), weist die Kathode (1) stark emittierende und höchstens schwach emittierende Bereiche (7.1, 7.2, 7.3 resp. 8) auf. Die stark emittierenden Bereiche (7.1, 7.2, 7.3) sind hinter Oeffnungen (6) des ersten Gitters (2) angeordnet und die höchstens schwach emittierenden Bereiche (8) entsprechen einem Schattenwurf des der Kathode (1) benachbarten ersten Gitters (2) auf die Kathode (1).
Description
- Die Erfindung betrifft eine Elektronenröhre mit einer Kathode, einer Anode und mindestens einem selbständigen ersten Gitter zwischen Kathode und Anode.
- Elektronenröhren der genannten Art sind seit langem bekannt und im Handel erhältlich. Die Kathode einer solchen Elektronenröhre ist ganzflächig mit Osmium bedeckt, um höhere Stromdichten erreichen zu können. Das Osmium hat dabei die Aufgabe, die Austrittsarbeit der Elektronen zu erniedrigen.
- Eine osmiumbeschichtete Dispenserkathode ist z.B. aus dem Patent EP-0 156 454 oder aus dem Technical Bulletin #116, "Osmium coated dispenser cathodes - 'M' Type", Spectra-Mat Inc., 1240 Highway 1, Watsonville, California CA 95076, USA, bekannt.
- Weitere Veröffentlichungen, die sich mit Schichten hoher Emissivität für Kathoden befassen sind:
- Japan J. Appl. Phys. 1, Regul. Paper short Notes (Japan), Vol 27 No. 8, S. 1411-14, August 1988, S. Yamamoto, S. Taguchi, I. Watanabe, S. Sasaki. Zum Erhöhen der Elektronenemission einer mit WSc₂O₃ bedeckten, imprägnierten Kathode wird eine monoatomare Oberflächenschicht bestehend aus Ba, Sc und O abgeschieden.
- "High current density cathodes - an update", M. Feinleib, M.C. Green, IEDM 84, S. 314-317. Um die störende Wirkung der Interdiffusion zu verringern und die Emission zu stabilisieren, wird eine Wolfram-Matrixkathode mit zwei Schichten abgedeckt. Als erste Schicht dient eine Os- oder Os/Ru-Schicht, und als zweite eine W/Os-Legierung.
- "Modern dispenser cathodes", J.L. Cronin, IEE Proc. Vol. 128, Pt. 1, No. 1, 19-31, Februar 1981. Darin wird u.a. eine M-Typ Dispenserkathode beschrieben (bestehend aus porösem und mit Barium-Calcium-Aluminat imprägniertem Wolfram), welche mit einer dünnen Schicht aus Os/Ru oder Os/Ir bedeckt ist.
- "Long Life High Reliability Iridium-coated M-Type Dispenser Cathode", Ioshiaki Ouchi, Sakae Kimura, Toshiharu Higuchi, Kasou Kobayashi, Toshiba Review No. 157, Frühling 1987, S. 25-29. Imprägnierte Dispenserkathoden, die mit Os, einer Os/Ru-Legierung oder Ir beschichtet sind (sog. M-Typ Kathoden), haben wegen ihrer etwa um 100° niedrigeren Arbeitstemperatur eine höhere Lebensdauer als S-Typ Kathoden ohne Oberflächenmetallisierung.
- "Performance analysis of three different M-type dispenser cathodes", B. Latini, P. Cristini, I. Fragala, G. Marletta, Int. Conf. on Microwave Tubes in Systems, Problems and Prospects (Conf. Publ. No. 241), Heft 22-23 Oktober 1984, S. 35-41. Verschiedene M-Typ Kathoden wurden auf ihre Emissivität hin untersucht und mit S-Typ Kathoden verglichen. Bei 1300 K ergab sich bei einer Os(80%)/Ru(20%)-Beschichtung eine Erhöhung der Emissivität um den Faktor 4.2, bei einer Os(50%)/W(50%)-Beschichtung eine Erhöhung um den Faktor 3 und bei einer Ir(100%)-Beschichtung eine Erhöhung um den Faktor 1.6.
- "Dispenser Cathodes: The Current State of the Technology", L. R. Falce, IEDM - 83, S. 448-451. Dieser Artikel verschafft einen Ueberblick über die gängigen Arten von Kathoden. - Ein Problem bekannter Elektronenröhren hoher Stromdichte stellt die Gitterbelastung durch Elektronenbombardement dar. Sie führt zu einer unerwünschten thermischen Emission des Gitters, welche daher rührt, dass sich Kathodenmaterial während des Betriebs durch Abdampfen auf dem Gitter niederschlägt und dadurch die Austrittsarbeit der Elektronen erniedrigt.
- Aufgabe der Erfindung ist es, eine Elektronenröhre der eingangs genannten Art anzugeben, die auch bei grossen Stromstärken eine niedrige Gitterbelastung aufweist.
- Erfindungsgemäss besteht die Lösung darin, dass die Kathode sowohl stark emittierende als auch höchstens schwach emittierende Bereiche aufweist, wobei die stark emittierenden Bereiche hinter Oeffnungen des ersten Gitters angeordnet sind und die höchstens schwach emittierenden Bereiche einem Schattenwurf des der Kathode benachbarten ersten Gitters auf die Kathode entsprechen.
- Der Vorteil der erfindungsgemässen Anordnung liegt darin, dass der Strom geladener Teilchen nur dort erzeugt wird, wo er auch zum Tragen kommt. Er wird damit gleichsam auf die Oeffnungen des Gitters fokussiert. Die vorzugsweise zylinderförmige Kathode gewährleistet die nötige Stabilität und Präzision bei den üblicherweise sehr kleinen Abständen zwischen erstem Gitter und Kathode.
- Bei besonders feinen Gitterstrukturen wird vorzugsweise ein Blechgitter verwendet. Solche Gitter lassen sich besser herstellen und sind mechanisch weniger empfindlich als Drahtgitter.
- Besonders vorteilhaft sind Graphitgitter, da sie auch bei grösserer Strombelastung nur sehr geringe temperaturbedingte mechanische Verformungen erleiden. Auch bei einer Elektronenröhre mit einer erfindungsgemäss strukturierten Kathode treten nämlich Gitterströme auf, die zu Temperaturerhöhungen führen. Wenn das Gitter nun sehr fein und nahe an der Kathode ist, dann können Verformungen des Gitters die geometrische Ausrichtung in der Röhre empfindlich stören.
- Zu den bevorzugten Graphitgittern gehören insbesondere Pyrographit- und Elektrographitgitter.
- Die Erfindung eignet sich aber auch im Zusammenhang mit herkömmlichen Drahtgittern.
- Bei einer einfachen Ausführungsform sind die Oeffnungen im Gitter rautenförmig oder rechteckig. Damit haben auch die stark emittierenden Bereiche eine regelmässige, gitterartige Form.
- Eine Tetrode mit einer erfindungsgemäss ausgebildeten Kathode vermag hohe Ströme zu schalten, ohne die beim Stand der Technik vorhandene hohe Belastung des Steuergitters zu zeigen.
- Um die Emission in den höchstens schwach emittierenden Bereichen weiter abzusenken, kann die Kathode dort vorzugsweise mit einer Schicht, z.B. aus Mo/Ru, passiviert werden.
- In den stark emittierenden Bereichen ist die Kathode vorzugsweise mit einem Material aus der folgenden Gruppe beschichtet: Sc₂O₃/W, Os/Ir, Os/Ru, Os/W, Ir, Os, Os + W/Os, Os/Ru + W/Os. Wegen der starken Erhöhung der Emissivität sind Os, Os/Ru, Os/W besonders bevorzugt. Eine spezielle Gruppe stellen ausserdem die Zweifachschichten aus Os + W/Os, Os/Ru + W/Os dar, wegen ihren die Interdiffusion hindernden Eigenschaften.
- Es entspricht einer bevorzugten Ausführungsform, als Kathode eine sogenannte Matrix- oder Dispenserkathode zu verwenden, die für ihre Stromkapazität bekannt ist.
- Weitere vorteilhafte Ausführungsformen ergeben sich aus der Beschreibung und den Patentansprüchen.
- Nachfolgend soll die Erfindung anhand von Ausführungsbeispielen und im Zusammenhang mit den Zeichnungen näher erläutert werden. Es zeigen:
- Fig. 1 einen Längsschnitt durch eine erfindungsgemässe Tetrode;
- Fig. 2 einen Querschnitt durch eine erfindungsgemässe Tetrode; und
- Fig. 3 eine Draufsicht auf die Kathode der Tetrode.
- Die in den Zeichnungen verwendeten Bezugszeichen und deren Bedeutung sind in der Bezeichnungsliste zusammenfassend aufgelistet. Grundsätzlich sind in den Figuren gleiche Teile mit gleichen Bezugszeichen versehen.
- Fig. 1 zeigt gemäss einer bevorzugten Ausführungsform der Erfindung eine Tetrode im Längsschnitt.
- Eine zylindrische Kathode 1, ein der Kathode 1 benachbartes, erstes Gitter 2, ein zweites Gitter 3 und eine zylindrische Anode 4 sind koaxial zu einer gemeinsamen Achse 5 angeordnet.
- Das erste Gitter 2 ist z.B. ein Blechgitter mit Oeffnungen 6. Das zweite Gitter ist entsprechend ausgebildet.
- Gemäss einer bevorzugten Ausführungsform ist die Kathode in der Art einer Matrixkathode aufgebaut, wie sie z.B. aus der zitierten Patentschrift EP-0 157 454 bekannt ist. Dabei ist eine poröse Wolframmatrix mit einem bariumhaltigen Stoff getränkt.
- Um nun gemäss der Erfindung die Gitterbelastung zu verringern, ist die Kathode 1 selektiv mit einer stark emittierenden Schicht bedeckt. Vorzugsweise handelt es sich dabei um eine osmiumhaltige, d.h. osmierte Schicht. Im Sinn der Erfindung befinden sich stark emittierende Bereiche 7.1, 7.2, 7.3 hinter den Oeffnungen 6 des ersten Gitters 2. Dazwischen sind ein oder mehrere höchstens schwach emittierende Bereiche 8 vorgesehen. Die höchstens schwach emittierenden Bereiche 8 entsprechen einem gedachten Schattenwurf des Gitters 2 auf die Kathode 1.
- Der erwähnte Sachverhalt wird in Fig. 2 veranschaulicht. Sie zeigt einen Querschnitt durch die Tetrode von Fig. 1. Der (gedachte) Schattenwurf entsteht dabei durch eine Projektion des ersten Gitters 2 in radialer Richtung (bezogen auf die Achse 5). Die stark emittierenden Bereiche 7.1, 7.4, 7.7 werden durch den höchstens schwach emittierenden Bereich 8 getrennt.
- Fig. 3 schliesslich zeigt eine Draufsicht auf die Kathode 1, wenn die Oeffnungen des Gitters 2 rechteckig sind. Die stark emittierenden Bereiche 7.1, 7.2, ..., 7.9 sind in diesem Fall Rechtecke, die in zwei zueinander senkrechten Richtungen ein regelmässiges Muster bilden. Der höchstens schwach emittierende Bereich 8 trennt die stark emittierenden Bereiche 7.1, 7.2, ..., 7.9 in gleicher Weise wie das Gitter 2 die Oeffnungen 8.
- Im Prinzip ist die Form der Oeffnungen von untergeodneter Bedeutung. In der Praxis werden jedoch meist regelmässige Gitter verwendet, die z.B. rautenförmige resp. rechteckige Oeffnungen haben.
- Der Vorteil der Erfindung besteht darin, dass der Strom geladener Teilchen, welcher unerwünschterweise auf das erste Gitter 2 auftrifft, weitgehend unterbunden ist. Die emittierten Elektronen werden vielmehr ganz gezielt durch die Oeffnungen 6 des Gitters hindurch geführt. Damit erhitzt sich das Gitter auch nicht mehr so stark und es kann nicht mehr in der Art einer parasitären Kathode die Elektronenröhre störend beeinflussen.
- Die osmierten Bereiche weisen in der Regel eine zwei bis dreimal höhrere Emissivität auf als die nicht-osmierten Bereiche. Wenn das Verhältnis noch vergrössert werden soll, dann werden die nicht-osmierten Bereiche vorzugsweise zusätzlich mit einer emissionshemmenden Schicht passiviert. Dafür eignet sich eine im wesentlichen aus Mo und Ru bestehende Schicht (Mo/Ru-Schicht) besonders gut. In einem solchen Fall emittieren die Bereiche im Schattenwurf des ersten Gitters nicht nur schwach, sondern im wesentlichen überhaupt nicht.
- Eine erfindungsgemässe Kathode lässt sich mit bekannten Mitteln herstellen. Insbesondere bei Dispenserkathoden, welche bisher in einem abschliessenden Prozessschritt z.B. ganzflächig osmiert worden sind, bedeutet es nur eine kleine Umstellung, die Kathode vor dem Osmieren mit einer geeigneten Maske abzudecken, sodass eine erfindungsgemäss strukturierte Osmiumschicht entsteht.
- Andererseits ist es auch möglich eine fertige Kathode in einem zusätzlichen Schritt mit einer erfindungsgemäss passivierenden Schicht zu versehen, die wie beschrieben im wesentlichen dem Schattenwurf des ersten Gitters entspricht.
- Was bisher im Zusammenhang mit Os gesagt wurde gilt natürlich sinngemäss für die bevorzugten Schichten aus Sc₂O₃/W, Os/Ir, Os/Ru, Os/W, Ir, Os, Os + W/Os, Os/Ru + W/Os. Im Prinzip eignen sich aber all jene Materialschichten, die eine Herabsetzung der Austrittsarbeit (Work function) der Elektronen zur Folge haben.
- Das Gitter kann auch als Graphitgitter (z.B. Pyrographit, Elektrographit) ausgebildet sein. Solche Gitter ertragen höhere Strombelastungen und erlauben somit, die Elektronenröhre insgesamt bei höheren Stromdichten zu betreiben.
- Die Erfindung beschränkt sich keineswegs auf Tetroden. Sie findet überall dort Verwendung, wo vor einer Kathode mindestens ein selbständiges Gitter angeordnet ist. Demzufolge kann die Erfindung sowohl bei Trioden, als auch bei Pentoden und noch komplexeren Elektronenröhren eingesetzt werden.
- Es ist auch offensichtlich, dass die Zylindersymmetrie nicht eine zwingende Voraussetzung, sondern nur ein bevorzugtes Merkmal der Erfindung ist. Entsprechend eignet sich die Erfindung auch für ebene Strukturen.
- Zusammenfassend kann gesagt werden, dass mit der Erfindung Elektronenröhren mit grossen Strömen und gleichzeitig geringer Gitterbelastung zur Verfügung gestellt werden.
- 1 - Kathode; 2 - erstes Gitter; 3 - zweites Gitter; 4 - Anode; 5 - Achse; 6 - Oeffnungen; 7.1,...,7.9 - stark emittierende Bereiche; 8 - höchstens schwach emittierende Bereiche.
Claims (10)
1. Elektronenröhre mit
a) einer Kathode,
b) einer Anode und
c) mindestens einem selbständigen ersten Gitter zwischen Kathode und Anode,
dadurch gekennzeichnet, dass
dadurch gekennzeichnet, dass
d) die Kathode sowohl stark emittierende als auch höchstens schwach emittierende Bereiche aufweist, wobei die stark emittierenden Bereiche hinter Oeffnungen des ersten Gitters angeordnet sind und die höchstens schwach emittierenden Bereiche einem Schattenwurf des der Kathode benachbarten ersten Gitters auf die Kathode entsprechen
2. Elektronenröhre nach Anspruch 1, dadurch gekennzeichnet, dass die Kathode in den stark emittierenden Bereichen eine Schicht aus einem Material der Gruppe Sc₂O₃-W, Os-Ir, Os-Ru, Ir, Os, W-Os, Os + W-Os, Os-Ru + W-Os aufweist.
3 Elektronenröhre nach Anspruch 1, dadurch gekennzeichnet, dass die Kathode zylinderförmig ist und dass Kathode, Gitter und Anode zylindersymmetrisch angeordnet sind.
4. Elektronenröhre nach Anspruch 1, dadurch gekennzeichnet, dass das selbständige Gitter ein Blechgitter ist.
5. Elektronenröhre nach Anspruch 1, dadurch gekennzeichnet, dass das selbständige Gitter ein Drahtgitter ist.
6. Elektronenröhre nach Anspruch 1, dadurch gekennzeichnet, dass das selbständige Gitter ein Graphitgitter ist.
7. Elektronenröhre nach Anspruch 1, dadurch gekennzeichnet, dass die Oeffnungen des ersten Gitters rautenförmig oder rechteckig sind.
8. Elektronenröhre nach Anspruch 1, dadurch gekennzeichnet, dass im Sinn einer Tetrode genau zwei Gitter zwischen Kathode und Anode vorgesehen sind.
9. Elektronenröhre nach Anspruch 1, dadurch gekennzeichnet, dass die Kathode in den höchstens schwach emittierenden Bereichen mit einer passivierenden Schicht bedeckt ist.
10. Elektronenröhre nach Anspruch 1, dadurch gekennzeichnet, dass die Kathode eine Oxidkathode, insbesondere eine Matrixkathode ist.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH368989 | 1989-10-10 | ||
CH3689/89 | 1989-10-10 | ||
CH454289 | 1989-12-19 | ||
CH4542/89 | 1989-12-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
EP0422451A1 true EP0422451A1 (de) | 1991-04-17 |
Family
ID=25693627
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP90118545A Withdrawn EP0422451A1 (de) | 1989-10-10 | 1990-09-27 | Elektronenröhre |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0422451A1 (de) |
JP (1) | JPH03171531A (de) |
CN (1) | CN1050946A (de) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1321431C (zh) * | 2003-09-09 | 2007-06-13 | 卫军民 | 一种大功率四极电子管及其制作方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3843902A (en) * | 1972-08-24 | 1974-10-22 | Varian Associates | Gridded convergent flow electron gun |
US4230968A (en) * | 1976-05-26 | 1980-10-28 | Hitachi, Ltd. | Cathode structure for magnetrons |
GB2116356A (en) * | 1982-03-10 | 1983-09-21 | Hitachi Ltd | Impregnated cathode |
GB2139413A (en) * | 1983-04-18 | 1984-11-07 | Litton Systems Inc | An electron gun |
-
1990
- 1990-09-27 EP EP90118545A patent/EP0422451A1/de not_active Withdrawn
- 1990-10-05 JP JP2268264A patent/JPH03171531A/ja active Pending
- 1990-10-10 CN CN 90108415 patent/CN1050946A/zh active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3843902A (en) * | 1972-08-24 | 1974-10-22 | Varian Associates | Gridded convergent flow electron gun |
US4230968A (en) * | 1976-05-26 | 1980-10-28 | Hitachi, Ltd. | Cathode structure for magnetrons |
GB2116356A (en) * | 1982-03-10 | 1983-09-21 | Hitachi Ltd | Impregnated cathode |
GB2139413A (en) * | 1983-04-18 | 1984-11-07 | Litton Systems Inc | An electron gun |
Also Published As
Publication number | Publication date |
---|---|
CN1050946A (zh) | 1991-04-24 |
JPH03171531A (ja) | 1991-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE3880592T2 (de) | Feldemissions-vorrichtung. | |
DE2536363C3 (de) | Dünnschicht-Feldelektronenemissionsquelle and Verfahren zu ihrer Herstellung | |
DE69009307T2 (de) | Anzeigevorrichtung mit flachem Bildschirm. | |
DE1963389C3 (de) | Elektronenstrahlerzeugersystem | |
DE69025831T2 (de) | Elektronemittierende Vorrichtung; Herstellungsverfahren Elektronemittierende Vorrichtung, Herstellungsverfahren derselben und Anzeigegerät und Elektronstrahl- Schreibvorrichtung, welche diese Vorrichtung verwendet. | |
DE69200635T2 (de) | Elektronenemissionselement. | |
DE4103585A1 (de) | Gekapselte feldemissionsvorrichtung | |
EP0041228B1 (de) | Verfahren zur Herstellung eines Elektronenstrahlaustrittsfensters | |
DE2345920A1 (de) | Eine mehrere strahlenbuendel aufweisende kathodenstrahlroehre mit einer darin angeordneten gemeinsamen, die strahlenbuendel begrenzenden blende | |
DE2401514A1 (de) | Elektronenvervielfacher | |
DE69519344T2 (de) | Unter Feldeffekt-Emission arbeitende Elektronen emittierende Vorrichtung und Herstellungsverfahren dazu | |
DE69221873T2 (de) | Magnetron | |
CH639798A5 (de) | Roentgenroehre mit einer elektronenkanone. | |
EP0422451A1 (de) | Elektronenröhre | |
DE2210160A1 (de) | Elektronenstrahlerzeuger fuer laufzeitroehren | |
DE3142777A1 (de) | Elektronenkanone | |
DE2914838C2 (de) | Elektronenstrahlerzeugungssystem | |
DE3407197C2 (de) | Kathodenstrahlröhre | |
DE69730333T2 (de) | Herstellung von gittergesteuerter elektronen emittierende quelle mittels verteilte teilchen zur bestimmung der gitteröffnungen | |
DE69602162T2 (de) | Kathodenstruktur mit einem heizelement | |
DE3150848C3 (de) | Elektronenstrahlerzeugungssystem für hohe Helligkeit | |
EP0559283B1 (de) | Kathode mit einem porösen Kathodenelement | |
DE3216039C2 (de) | Elektronenstrahl-Erzeugungssystem einer Kathodenstrahlröhre | |
DE19504305A1 (de) | Röntgenröhre | |
DE1208418B (de) | Direktabbildende Signalspeicherroehre |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): CH DE FR GB LI NL |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 19911018 |