EP0420308A1 - Continuous enclosure - Google Patents

Continuous enclosure Download PDF

Info

Publication number
EP0420308A1
EP0420308A1 EP90202111A EP90202111A EP0420308A1 EP 0420308 A1 EP0420308 A1 EP 0420308A1 EP 90202111 A EP90202111 A EP 90202111A EP 90202111 A EP90202111 A EP 90202111A EP 0420308 A1 EP0420308 A1 EP 0420308A1
Authority
EP
European Patent Office
Prior art keywords
enclosure
bearing
parts
enclosure parts
bearing elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP90202111A
Other languages
German (de)
English (en)
French (fr)
Inventor
Petrus Josephus Joannes Hubertus Ligtenberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fh Biddle Bv
Original Assignee
Fh Biddle Bv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fh Biddle Bv filed Critical Fh Biddle Bv
Publication of EP0420308A1 publication Critical patent/EP0420308A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/06Casings, cover lids or ornamental panels, for radiators
    • F24D19/065Grids attached to the radiator and covering its top
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F17/00Vertical ducts; Channels, e.g. for drainage
    • E04F17/08Vertical ducts; Channels, e.g. for drainage for receiving utility lines, e.g. cables, pipes
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F19/00Other details of constructional parts for finishing work on buildings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/06Casings, cover lids or ornamental panels, for radiators

Definitions

  • an enclosure in the form of a housing for arranging continuously along a wall.
  • a cable duct for the electrical leads can be integrated in this enclosure.
  • Known embodiments consist of a number of separate, adjoining units mounted to a continuous whole and each containing the necessary devices and such like. With respect to connecting pipes and so on these units have to be arranged at an early stage of the building. This results in a great risk of damage during the further building.
  • the separate units have to be specifically designed for each application.
  • the known systems are moreover not very flexible in the case of later change of the lay-out of the space in which they are disposed.
  • the invention has for its object to provide an enclosure with which these drawbacks are obviated.
  • This is achieved by the steps as characterized in claim 1.
  • the continuous bearing profile or the bearing profiles with the bearing elements protruding transversely thereof can be arranged in an early stage of the building and the climate conditioning units such as heating or cooling units can be arranged without problems. Only at a much later stage, shortly before completion of the building, can the separate external enclosure parts be arranged on the bearing profiles. If the lay-out is changed the enclosure parts can be simply removed again and re-fitted in a changed position.
  • Each bearing element can herein support the ends of two adjoining enclosure parts so that a minimum number of bearing elements is required and a maximum utilizable space is available inside the enclosure.
  • the step of claim 3 is applied.
  • a large tolerance in lengthwise direction of the enclosure is a large tolerance in lengthwise direction of the enclosure.
  • the use of covering strips results in a number of additional advantages which will be further elucidated.
  • step of claim 4 Simple fitting and removal of the covering strips is achieved with the step of claim 4.
  • step of claim 5 is preferably applied therein. Due to the resilient foam material the hook connections remain under load so that the covering strips do not come loose in undesirable manner.
  • the enclosure parts are furthermore well fixed through the resilient gripping of the foam material.
  • a favourable embodiment from the point of view of manufac­turing technique is further characterized in claim 6.
  • the clamps can be arranged on the bearing profile once it has been mounted so that an accurate placing thereof is possible.
  • the enclosure can be embodied in many different ways.
  • the structure of all embodiments of the enclosure is however basically always the same.
  • This general structure consists of (fig. 1): - base profiles 1 - bearing panels 2 (constructed of bearing plates and support brackets) - enclosure parts 3 (for example front panels, grid parts, cable duct) - covering strips 4.
  • Attachment of the enclosure to the building takes place by means of two L-profiles 1 which in the embodiment shown are both fixed on the wall.
  • This fixing is realized by (fig. 3): adjustable distance bolts 5 and fixing screws 7.
  • the distance bolts 5 and screws 7 are arranged pair-wise at a determined interval of for instance 750 mm.
  • One type of profile 1 with fixing elements can always be used for all embodiments so that this bearing profile 1 can optionally be held in stock.
  • Bearing elements 2 are attached to the bearing profiles 1 such that they protrude transversely thereof. These bearing elements are steel-plate components and have bent over edges. Fixing to the bearing profiles 1 is performed in the same manner for each point of attachment by means of a bolt 13 with nut 8 and clamping plate 11 (fig. 3 and 4). In order to prevent the construction bending during tightening a stiffening plate 9 is point welded onto the bearing plate 10.
  • Cut away portions can be arranged in the bearing plates 10 for the purpose of conduit feed, for example.
  • Support brackets 14 are point welded onto the bearing plates 10 (fig. 5). These are also steel-plate components.
  • bearing element The assembly of bearing plate 10 and support brackets 14 is further described as bearing element.
  • the bearing elements can differ greatly depending on the embodiment of the product. All bearing elements are however preferably identical per project.
  • Enclosure parts 3 are arranged on the bearing elements 2. These consist in the embodiment shown of steel front panels 15 and aluminium grids 16.
  • the front plates 15 are attached (fig. 6A) by hooking them from underneath into the bottom support bracket 14, subsequent­ly pivoting the top part into the correct position and allowing the front panel 15 to drop onto the bearing elements (fig. 6B).
  • the aluminium grid 16 is fitted by laying protruding studs of the grid 16 on the rear side onto the bearing profile 1 and at the front by laying in the double bent edge of the front panel 15 (fig. 6C). In this case therefore the upper bearing profile also has the function of supporting the grid 16.
  • covering strips 4 Arranged on the transition seams between the enclosure parts 3 are covering strips 4. These are also folding steel-­plate components which cover the transition seams and can have a nominal part in fixation of the enclosure parts 3. On the side where they lie against the enclosure parts 3 they are provided with a layer of resilient and non-slip foam material 19 (fig. 7).
  • the covering strips are fitted as follows: - A clamp 20 (fig. 9) is pressed onto the upper bearing profile 1. - The covering strip is hooked with the hook-like bottom end 17 behind the lower edge of the front panel 15. The position of the covering strip 4 is herein wholly indepen­dent of the position of the bearing elements 2. - The covering strip 4 is placed round the enclosure parts 3. - The protruding plate portion with the opening 18 is pushed behind the bearing profile 1. The opening 18 in the covering strip 4 herein snaps into place automatically behind the clamp 20.
  • Removal of the covering strip 4 therefore costs more effort than fitting.
  • rapid fitting is possible, while on the other hand the strip cannot easily be pried loose, for instance by users who are bored.
  • the covering strip remains well locked in the clamp 20. Because the strip 4 is fixed at both outer ends it lies consistently well on the underlying components.
  • Fig. 10 shows the enclosure in the above described mounted state.
  • a lower bearing profile 22 can be fitted on the floor instead of on the wall.
  • the bearing elements 23 are then provided with a leg portion 21 which bears on the lower base profile 22 (fig. 11).
  • the bearing elements 2 can in principle be placed in two ways relative to the enclosure parts 3 (see top view fig. 12): - Between the enclosure parts, wherein approximately as many bearing elements 2 are necessary as there are segments of enclosure parts 3. - Under the enclosure parts, wherein approximately twice as many bearing elements 2 are necessary as there are segments of enclosure parts 3. This solution is more costly but has particular additional advantages. This placing is employed when the length of the segments is comparatively large and the danger exists with unfavourable loading of bending of particular components. This placing can also be favourable when partition walls are used transversely on the enclosure, as will be further elucidated.
  • the support brackets 24 are in principle all identical per project. The embodiment is determined per project and adapted to the situation.
  • the support brackets 24 are fixed to the base profile 1 by the known connection with clamping plates (fig. 3, 4).
  • the enclosure according to the invention can be adapted simply to a changed interior, for instance when a partition wall is added or removed. This is of importance in view of the frequent practice in buildings wherein the space is regularly laid out differently.
  • the place where the partition wall is or can be placed is therein always the transition between the segments.
  • the location of this segment transition is selected in the design in accordance with a point in the modular lay-out of the building. This is generally speaking the location where partition walls can be present.
  • the removal of a partition wall proceeds in reverse sequence: - covering strips removed - enclosure parts 3 shifted away from each other - partition wall removed - enclosure parts 3 pushed against one another - covering strip arranged.
  • partition wall In the case of a newly placed partition wall no extra panels need be arranged for acoustic insulation and fire-proof­ing.
  • the partition wall can namely run through to the relevant wall or floor.
  • the flexibility of the invention also manifests itself when pillars 26 stand in the space. As shown in fig. 14 and 15, the enclosure panels can simply be shifted against (or for aesthetic reasons placed leaving a gap to) the pillar 26. Only an extra transitional panel 27 is needed for finishing. The external covering strips 4 connect the parts visually to one whole (fig. 15). Similar solutions are of course possible in the case of more forwardly placed pillars, alcoves, extensions, corners and the like.
  • Fig. 16 shows an overview in schematic cross sections of some possible embodiments of the enclosure according to the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Assembled Shelves (AREA)
  • Building Environments (AREA)
EP90202111A 1989-08-28 1990-08-02 Continuous enclosure Withdrawn EP0420308A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NL8902176A NL8902176A (nl) 1989-08-28 1989-08-28 Doorlopende verdekkast.
NL8902176 1989-08-28

Publications (1)

Publication Number Publication Date
EP0420308A1 true EP0420308A1 (en) 1991-04-03

Family

ID=19855232

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90202111A Withdrawn EP0420308A1 (en) 1989-08-28 1990-08-02 Continuous enclosure

Country Status (2)

Country Link
EP (1) EP0420308A1 (nl)
NL (1) NL8902176A (nl)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2263540A (en) * 1991-12-18 1993-07-28 Thompson & Sons W Cover suitable for fitting to radiators of a variety of sizes
GB2288012A (en) * 1994-02-19 1995-10-04 Tox Tunde Olaopa Hot air deflector
NL1010190C2 (nl) * 1998-09-25 2000-04-03 Metaalfab Kramahan B V Inrichting voor het afschermen van een verwarmingselement.
WO2012000869A1 (en) 2010-07-02 2012-01-05 Lindab Ab System and method for mounting and enclosing ventilation ducts

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH449207A (fr) * 1966-01-05 1967-12-31 Forsch Anstalt Fuer Waermetech Installation de chauffage central et procédé pour sa réalisation
CH501883A (de) * 1969-01-31 1971-01-15 Guedel Fritz Verkleidungshaube für Konvektor
DE2103993A1 (de) * 1971-01-28 1972-08-24 Schäfer-Werke KG, 5908 Neunkirchen Verkleidung für Klima-Induktionsgeräte und Konrektoren
US3827202A (en) * 1972-11-07 1974-08-06 Sterling Radiator Co Inc Joint for enclosure, and mounting therefor
NL8600634A (nl) * 1986-03-11 1987-10-01 Swaay Installaties Bv Verwarmingssamenstel voor het verwarmen van een of meer ruimtes in een gebouw.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH449207A (fr) * 1966-01-05 1967-12-31 Forsch Anstalt Fuer Waermetech Installation de chauffage central et procédé pour sa réalisation
CH501883A (de) * 1969-01-31 1971-01-15 Guedel Fritz Verkleidungshaube für Konvektor
DE2103993A1 (de) * 1971-01-28 1972-08-24 Schäfer-Werke KG, 5908 Neunkirchen Verkleidung für Klima-Induktionsgeräte und Konrektoren
US3827202A (en) * 1972-11-07 1974-08-06 Sterling Radiator Co Inc Joint for enclosure, and mounting therefor
NL8600634A (nl) * 1986-03-11 1987-10-01 Swaay Installaties Bv Verwarmingssamenstel voor het verwarmen van een of meer ruimtes in een gebouw.

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2263540A (en) * 1991-12-18 1993-07-28 Thompson & Sons W Cover suitable for fitting to radiators of a variety of sizes
GB2288012A (en) * 1994-02-19 1995-10-04 Tox Tunde Olaopa Hot air deflector
NL1010190C2 (nl) * 1998-09-25 2000-04-03 Metaalfab Kramahan B V Inrichting voor het afschermen van een verwarmingselement.
WO2012000869A1 (en) 2010-07-02 2012-01-05 Lindab Ab System and method for mounting and enclosing ventilation ducts

Also Published As

Publication number Publication date
NL8902176A (nl) 1991-03-18

Similar Documents

Publication Publication Date Title
CA2089914C (en) Work space partition system
US6047508A (en) Wall panel partition system
US5175969A (en) Partition panel
CA2107740C (en) System for distributing and managing cabling within a work space
EP0443202B1 (en) Work space management system hallway wall arrangement
US3856981A (en) Power panel arrangement
US5018323A (en) Wall panel system
US20080022616A1 (en) H-shaped boot-to-register cover mounting adapter
JP2002506152A (ja) 可変幅端部パネル
CA2482793C (en) Air partition member and air passageway system
DK141466B (da) Organ til fastgørelse af kabelkanaler.
EP1062395A2 (en) Clear wall panel system
WO1990003749A1 (en) Horizontally oriented demountable partition system
KR20000077172A (ko) 바아행거 및 장착용 클립조립체
GB2128223A (en) Skirting board
US6293056B1 (en) Multi-purpose above-ceiling utility support system
EP0420308A1 (en) Continuous enclosure
US4982536A (en) Conduit device in a window parapet
AU2001277409B2 (en) Wall cornice ducting system
EP0244407A1 (en) Method of preparing a hospital room or the like
WO2007017638A1 (en) Adjustable housing for installation of a lighting fitting in a suspended ceiling
JP3123701B2 (ja) オフィス構造
JP3103968B2 (ja) 配管装置
GB2042044A (en) Mounting for a wall cladding sheet
JPH0540188Y2 (nl)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19911002

17Q First examination report despatched

Effective date: 19920317

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 19940629