EP0418566A1 - Detection device for the typical signals of a helicopter and for firing ground-air mines - Google Patents

Detection device for the typical signals of a helicopter and for firing ground-air mines Download PDF

Info

Publication number
EP0418566A1
EP0418566A1 EP90115901A EP90115901A EP0418566A1 EP 0418566 A1 EP0418566 A1 EP 0418566A1 EP 90115901 A EP90115901 A EP 90115901A EP 90115901 A EP90115901 A EP 90115901A EP 0418566 A1 EP0418566 A1 EP 0418566A1
Authority
EP
European Patent Office
Prior art keywords
infrared sensor
helicopter
microphone
directional
directional characteristic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP90115901A
Other languages
German (de)
French (fr)
Other versions
EP0418566B1 (en
Inventor
Curt Reichert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SenSys AG
Original Assignee
SenSys AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SenSys AG filed Critical SenSys AG
Publication of EP0418566A1 publication Critical patent/EP0418566A1/en
Application granted granted Critical
Publication of EP0418566B1 publication Critical patent/EP0418566B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42CAMMUNITION FUZES; ARMING OR SAFETY MEANS THEREFOR
    • F42C13/00Proximity fuzes; Fuzes for remote detonation
    • F42C13/06Proximity fuzes; Fuzes for remote detonation operated by sound waves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42CAMMUNITION FUZES; ARMING OR SAFETY MEANS THEREFOR
    • F42C11/00Electric fuzes
    • F42C11/001Electric circuits for fuzes characterised by the ammunition class or type
    • F42C11/007Electric circuits for fuzes characterised by the ammunition class or type for land mines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42CAMMUNITION FUZES; ARMING OR SAFETY MEANS THEREFOR
    • F42C13/00Proximity fuzes; Fuzes for remote detonation
    • F42C13/02Proximity fuzes; Fuzes for remote detonation operated by intensity of light or similar radiation

Definitions

  • the present invention relates to a device for target detection and launching for surface-to-fire mines to be fired in helicopter combat.
  • a surface mine is a defense mine that is fired from the ground, but fights a flying object, such as a helicopter.
  • the invention has for its object to provide a device for target detection and launch of such a surface-air mine, which is characterized by a particularly great simplicity and reliability and low energy consumption.
  • a device which is characterized by the following components: a microphone that is sensitive to helicopter noise, an infrared sensor, which is matched with its directional characteristic to the scattering range of the active body, and an electronic evaluation device that analyzes the helicopter noises and, when a predetermined intensity is reached and the infrared sensor responds at the same time, causes the firing.
  • the device according to the invention combines the advantages of a mine that is autonomous and can be placed inconspicuously with modern electronics and sensors and consequently makes this mine usable in the third dimension.
  • the surface-air mine equipped with a device according to the invention is set up rigidly. There is no tracking. A number of mines must therefore be set up side by side with different firing directions in order to cover an air space to a predetermined extent. The density of the lineups and the spreading effect of the floor determine the effectiveness of the mine belt, which functions in the third dimension.
  • a single microphone can be used.
  • the recorded noises are analyzed for the structure typical for helicopters.
  • acoustic detection is not carried out, but rather acoustic detection.
  • This acoustic detection defines, as it were, a second phase in which the infrared sensor and the corresponding electronics are switched on and in which the third phase, namely the launch, also takes place.
  • the electronic evaluation device splits the signals generated by the microphone and / or infrared sensor into different branches, evaluates them separately, leads them to a comparator and then to a logic operation.
  • the electronic evaluation device splits the signals generated by the microphone into a branch of 5-40 Hz and a branch of 200-1000 Hz.
  • the first range corresponds to a sound frequency range (infrasound), which is caused by the rotating rotor of a helicopter, while the machine noise of the helicopter is in the second range. Only if signals of both frequency ranges are available as well as the infrared sensor responds, a launch is effected.
  • the evaluation electronics split into several areas, and the mine is only ignited if signals are generated which fall within these frequency ranges characteristic of helicopters.
  • the latter has a radial directional lobe, in the direction of which the surface-air mine can be fired.
  • the term "directional lobe" denotes the reception characteristic of an infrared sensor or an aggregate of infrared sensors. It is more or less club-shaped in the functional area of the device according to the invention. The sensitivity increases towards the axis.
  • the infrared sensor must ensure a suitable tripping behavior with a directional characteristic.
  • the helicopter or its infrared source (turbine) appears quite small compared to the mine cone.
  • An infrared detector the sensitivity of which is directly matched to the scattering cone, therefore only gives a relatively weak infrared signal.
  • a certain susceptibility to faults eg moving clouds
  • the invention proposes a further alternative in which the infrared sensor has a sensitivity distribution in which a multiplicity of segments of maximum sensitivity are located within an active cone.
  • a sensitivity distribution of the infrared sensor can easily be achieved by segmented infrared lenses or mirrors. This gives a very clear signal when the helicopter is flying through one of the segments, and the sensitivity to interference is reduced.
  • the microphone used in accordance with the invention there is the condition that it is sensitive to helicopter noises, especially those in the infrasound range (caused by rotor rotation). Such a microphone does not need to have a special directional characteristic.
  • a directional microphone with a conical acoustic directional characteristic directed at the target area for the solution according to the invention, which defines a target field with its acoustic directional characteristic.
  • the directional lobe of the infrared sensor which is narrow compared to the acoustic directional characteristic, then preferably runs in the center of the target field of the acoustic directional characteristic.
  • the term “acoustic directional characteristic” denotes the reception characteristic of a directional microphone. In the functional area in this embodiment of the invention, it is connected more or less conically, the sensitivity increasing towards the center of the cone.
  • the surface-air mine 1 shown in FIG. 1 is used to combat helicopters. It has a directional microphone with a cone-shaped acoustic directional characteristic 2.
  • the directional microphone is sensitive to helicopter noises, in particular the frequency ranges 5 - 40 Hz and 200 - 1000 Hz.
  • Various cones of this directional characteristic 2 are shown in FIG.
  • the device also has an infrared sensor with a beam-shaped directional lobe 3.
  • the directional microphone and the infrared sensor cannot be seen in FIG. 1 for reasons of scale. They form, as it were, the roots of 2 and 3.
  • the ground-air mine 1 can be fired. It also has an electronic evaluation device.
  • FIG. 2 shows the helicopter noises, which are recorded as measurement record 4 over a time axis and which are picked up by the electronic evaluation device, and the infrared signal 5 which the electronic evaluation device takes over from the infrared sensor.
  • the directional microphone is aimed at the target area and, with its acoustic directional characteristic 2, defines a target field, in the center of which the directional lobe 3, which is narrow in relation to the acoustic directional characteristic 2, extends.
  • the electronic evaluation device analyzes the helicopter noise. When a predetermined intensity of the helicopter noise is reached and the infrared sensor responds at the same time, the surface-air mine 1 is fired, i.e. the ignition for the marching movement of the surface-air mine 1 causes.
  • FIG. 3 shows a perspective view of a ground-air mine 10 similar to FIG. 1, a particularly preferred embodiment of an infrared sensor (not shown) being used in this exemplary embodiment.
  • This infrared sensor has a plurality of active cones 3, which form segments of maximum sensitivity, which are arranged in an overall active cone 20.
  • Such a sensitivity distribution can be achieved by segmented infrared lenses or mirrors.
  • the gaps between the segments 30 lead to the probability that the helicopter will not be detected when passing through the cone. This probability increases with increasing distance from the mine.
  • Such behavior is very desirable because the effectiveness of the mine is limited to a certain distance (for example 100 m). This provides a certain level of protection against false triggering caused by helicopters flying at great heights.
  • FIG. 4 shows a block diagram of the evaluation electronics which are used in the embodiments of FIGS. 1 to 3.
  • the device comprises a microphone 40, the electrical signals generated as a function of the helicopter noise are split up into different branches by filters 41, 41. In this embodiment, two filters are shown; however, further subdivisions can also be made.
  • the split signals are then evaluated separately and fed to a logic element 43 via respective comparators 42.
  • FIG. 4 also shows an infrared sensor 44. Its signals are also fed to the link 43 via a filter 45 and a comparator 46. Here, too, a split into several branches can take place, as is indicated in dashed lines.
  • the link 43 triggers the ignition device of the mine when there are signals from the two branches of the microphone when a signal is present from the infrared sensor.

Abstract

The device consists of a microphone sensitive to helicopter noises, an infrared sensor and an electronic evaluation device, the electronic evaluation device analysing the helicopter noises and, when a predetermined noise intensity is reached and there is a simultaneous response of the infrared sensor, triggering the firing. <IMAGE>

Description

Die vorliegende Erfindung bezieht sich auf eine Vorrichtung für die Zielerkennung und Abschußauslösung für abzufeuernde Boden-Luft-Minen bei der Hubschrauberbekämpfung. Mit Boden-Luft-Mine wird eine Abwehrmine bezeichnet, die vom Boden abgefeuert wird, jedoch ein fliegendes Objekt, beispielsweise einen Hubschrauber, bekämpft.The present invention relates to a device for target detection and launching for surface-to-fire mines to be fired in helicopter combat. A surface mine is a defense mine that is fired from the ground, but fights a flying object, such as a helicopter.

Der Erfindung liegt die Aufgabe zugrunde, eine Vorrichtung für die Zielerkennung und den Abschuß einer solchen Boden-Luft-Mine zu schaffen, die sich durch eine besonders große Einfachheit und Funktionssicherheit sowie einen geringen Energieverbrauch auszeichnet.The invention has for its object to provide a device for target detection and launch of such a surface-air mine, which is characterized by a particularly great simplicity and reliability and low energy consumption.

Diese Aufgabe wird erfindungsgemäß durch eine Vorrichtung gelöst, die durch die folgenden Bestandteile gekennzeichnet ist:
ein Mikrofon, welches für Hubschraubergeräusche empfindlich ist,
einen Infrarotsensor, der mit seiner Richtcharakteristik auf den Streubereich des Wirkkörpers abgestimmt ist, und
eine elektronische Auswerteeinrichtung, die die Hubschraubergeräusche analysiert und bei Erreichen einer vorgegebenen Intensität sowie bei gleichzeitigem Ansprechen des Infrarotsensors den Abschuß bewirkt.
This object is achieved according to the invention by a device which is characterized by the following components:
a microphone that is sensitive to helicopter noise,
an infrared sensor, which is matched with its directional characteristic to the scattering range of the active body, and
an electronic evaluation device that analyzes the helicopter noises and, when a predetermined intensity is reached and the infrared sensor responds at the same time, causes the firing.

Die erfindungsgemäße Vorrichtung verknüpft die Vorteile einer Mine, die autonom ist und unauffällig plaziert werden kann, mit moderner Elektronik und Sensorik und macht folglich diese Mine in der dritten Dimension nutzbar. Die mit einer erfindungsgemäßen Vorrichtung ausgerüstete Boden-Luft-Mine wird starr aufgestellt. Eine Nachführung findet nicht statt. Es müssen folglich einige Minen nebeneinander mit verschiedenen Schußrichtungen aufgestellt werden, um einen Luftraum zu einem vorgegebenen Teil abzudecken. Die Dichte der Aufstellungen und die Streuwirkung des Geschosses entscheiden über die Wirksamkeit des in der dritten Dimension funktionierenden Minengürtels.The device according to the invention combines the advantages of a mine that is autonomous and can be placed inconspicuously with modern electronics and sensors and consequently makes this mine usable in the third dimension. The surface-air mine equipped with a device according to the invention is set up rigidly. There is no tracking. A number of mines must therefore be set up side by side with different firing directions in order to cover an air space to a predetermined extent. The density of the lineups and the spreading effect of the floor determine the effectiveness of the mine belt, which functions in the third dimension.

Erfindungsgemäß kann mit einem einzigen Mikrofon gearbeitet werden. Die aufgenommenen Geräusche werden auf die für Hubschrauber typische Struktur analysiert. Bei der erfindungsgemäßen Vorrichtung erfolgt nicht eine akustische Ortung, sondern vielmehr eine akustische Erkennung.According to the invention, a single microphone can be used. The recorded noises are analyzed for the structure typical for helicopters. In the device according to the invention, acoustic detection is not carried out, but rather acoustic detection.

Diese akustische Erkennung definiert gleichsam eine zweite Phase, in der der Infrarotsensor und die entsprechende Elektronik beigeschaltet werden und in der auch die dritte Phase, nämlich der Abschuß, erfolgt.This acoustic detection defines, as it were, a second phase in which the infrared sensor and the corresponding electronics are switched on and in which the third phase, namely the launch, also takes place.

In Weiterbildung der Erfindung spaltet die elektronische Auswerteein­richtung die vom Mikrofon und/oder Infrarotsensor erzeugten Signale in verschiedene Zweige auf, bewertet diese getrennt, führt sie einem Komparator und dann einer logischen Verknüpfung zu. Bei einer speziellen Ausführungsform spaltet die elektronische Auswerteeinrichtung die vom Mikrofon erzeugten Signale in einen Zweig von 5 - 40 Hz und einen Zweig von 200 - 1000 Hz auf. Der zuerst genannte Bereich entspricht einem Schallfrequenzbereich (Infraschall), der durch den drehenden Rotor eines Hubschraubers verursacht wird, während in dem an zweiter Stelle genannten Bereich die Maschinengeräusche des Hubschraubers liegen. Nur wenn Signale beider Frequenzbereiche vorhanden sind sowie der Infrarot­ sensor anspricht, wird ein Abschuß bewirkt. Mit anderen Worten, bei der erfindungsgemäßen Lösung nimmt die Auswerteelektronik eine Aufspaltung in mehrere Bereiche vor, und die Mine wird nur dann gezündet, wenn Signale erzeugt werden, die in diese für Hubschrauber charakteristische Frequenzbereiche fallen. So ist der vorstehend erwähnte Frequenzbereich von 5 - 40 Hz, der das durch die Rotordrehung entstehende Geräusch repräsentiert, für Hubschrauber besonders charakteristisch.In a further development of the invention, the electronic evaluation device splits the signals generated by the microphone and / or infrared sensor into different branches, evaluates them separately, leads them to a comparator and then to a logic operation. In a special embodiment, the electronic evaluation device splits the signals generated by the microphone into a branch of 5-40 Hz and a branch of 200-1000 Hz. The first range corresponds to a sound frequency range (infrasound), which is caused by the rotating rotor of a helicopter, while the machine noise of the helicopter is in the second range. Only if signals of both frequency ranges are available as well as the infrared sensor responds, a launch is effected. In other words, in the solution according to the invention, the evaluation electronics split into several areas, and the mine is only ignited if signals are generated which fall within these frequency ranges characteristic of helicopters. The above-mentioned frequency range of 5 - 40 Hz, which represents the noise generated by the rotor rotation, is particularly characteristic of helicopters.

Durch die vorstehend erwähnte Aufteilung in mehrere Frequenzbereiche und die anschließende logische Verknüpfung werden Fehlauslösungen weitgehend vermieden, da auf diese Weise die Zahl der Kriterien erhöht wird, die für ein Auslösen der Mine erfüllt sein müssen. An jedem Zweig muß somit ein Signal anliegen, bevor ausgelöst wird.The above-mentioned division into several frequency ranges and the subsequent logical combination largely avoid false triggers, since this increases the number of criteria that must be met for the mine to be triggered. A signal must therefore be present on each branch before it is triggered.

Was die Ausbildung des Infrarotsensors anbetrifft, so besitzt bei einer Ausführungsform der Erfindung dieser eine strahlenförmige Richtkeule, in deren Richtung die Boden-Luft-Mine abfeuerbar ist. Der Begriff "Richtkeule" bezeichnet die Empfangscharakteristik eines Infrarotsensors oder eines Aggregates aus Infrarotsensoren. Sie ist im Funktionsbereich der erfindungsgemäßen Vorrichtung mehr oder weniger keulenförmig. Die Empfindlichkeit nimmt zur Achse hin zu.As far as the formation of the infrared sensor is concerned, in one embodiment of the invention the latter has a radial directional lobe, in the direction of which the surface-air mine can be fired. The term "directional lobe" denotes the reception characteristic of an infrared sensor or an aggregate of infrared sensors. It is more or less club-shaped in the functional area of the device according to the invention. The sensitivity increases towards the axis.

Der Infrarotsensor muß mit einer Richtcharakteristik ein geeignetes Auslöseverhalten sicherstellen. Bei einer größeren Höhe erscheint jedoch der Hubschrauber bzw. dessen Infrarotquelle (Turbine) recht klein gegenüber dem Streukegel der Mine. Somit ergibt ein Infrarotdetektor, dessen Empfindlichkeit direkt auf den Streukegel abgestimmt ist, nur ein relativ schwaches Infrarotsignal. Dadurch ist eine gewisse Anfälligkeit für Störungen (z.B. ziehende Wolken) nicht auszuschließen. Außerdem ist es technisch aufwendig, eine scharfe Begrenzung eines so großen Gesichtsfeldes zu erreichen. Eine scharfe Begrenzung ist notwendig, um ein in weiten Grenzen von der Hubschraubergeschwindigkeit unabhängiges Auslöseverhalten zu gewährleisten.The infrared sensor must ensure a suitable tripping behavior with a directional characteristic. At a higher altitude, however, the helicopter or its infrared source (turbine) appears quite small compared to the mine cone. An infrared detector, the sensitivity of which is directly matched to the scattering cone, therefore only gives a relatively weak infrared signal. As a result, a certain susceptibility to faults (eg moving clouds) cannot be excluded. It is also technically complex to sharply limit such a large one To achieve visual field. A sharp limitation is necessary in order to ensure trigger behavior that is independent of the helicopter speed within wide limits.

Zur Behebung dieser Nachteile bei der vorstehend beschriebenen Ausführungsform schlägt die Erfindung eine weitere Alternative vor, bei der der Infrarotsensor eine Empfindlichkeitsverteilung besitzt, bei der sich eine Vielzahl von Segmenten maximaler Empfindlichkeit innerhalb eines Wirkkegels befindet. Eine solche Empfindlichkeitsverteilung des Infrarotsensors läßt sich problemlos durch segmentierte Infrarotlinsen oder -spiegel erreichen. Hierbei ergibt sich beim Flug des Hubschraubers durch eines der Segmente ein sehr deutliches Signal, und die Empfind­lichkeit gegen Störungen wird verringert.To overcome these disadvantages in the embodiment described above, the invention proposes a further alternative in which the infrared sensor has a sensitivity distribution in which a multiplicity of segments of maximum sensitivity are located within an active cone. Such a sensitivity distribution of the infrared sensor can easily be achieved by segmented infrared lenses or mirrors. This gives a very clear signal when the helicopter is flying through one of the segments, and the sensitivity to interference is reduced.

Was das erfindungsgemäß eingesetzte Mikrofon anbetrifft, so besteht die Bedingung, daß dieses für Hubschraubergeräusche empfindlich ist, insbesondere für solche im Infraschallbereich (verursacht durch Rotor­drehung). Ein solches Mikrofon braucht keine spezielle Richt­charakteristik zu besitzen. Man kann jedoch auch für die erfindungs­gemäße Lösung ein auf das Zielgebiet gerichtetes Richtmikrofon mit kegelförmiger akustisches Richtcharakteristik einsetzen, das mit seiner akustischen Richtcharakteristik ein Zielfeld definiert. Hierbei verläuft dann vorzugsweise die gegenüber der akustischen Richtcharakteristik schmale Richtkeule des Infrarotsensors im Zentrum des Zielfeldes der akustischen Richtcharakteristik. Mit dem Begriff "akustische Richtcharakteristik" wird die Empfangscharakteristik eines Richtmi krofon bezeichnet. Sie ist im Funktionsbereich bei dieser Ausführungsform der Erfindung mehr oder weniger kegelförmig geschaltet, wobei die Empfindlichkeit zum Zentrum des Kegels hin zunimmt.As for the microphone used in accordance with the invention, there is the condition that it is sensitive to helicopter noises, especially those in the infrasound range (caused by rotor rotation). Such a microphone does not need to have a special directional characteristic. However, it is also possible to use a directional microphone with a conical acoustic directional characteristic directed at the target area for the solution according to the invention, which defines a target field with its acoustic directional characteristic. In this case, the directional lobe of the infrared sensor, which is narrow compared to the acoustic directional characteristic, then preferably runs in the center of the target field of the acoustic directional characteristic. The term “acoustic directional characteristic” denotes the reception characteristic of a directional microphone. In the functional area in this embodiment of the invention, it is connected more or less conically, the sensitivity increasing towards the center of the cone.

Die Erfindung wird nachfolgend anhand von Ausführungsbeispielen in Verbindung mit der Zeichnung im einzelnen erläutert. Es zeigen:

  • Figur 1 perspektivisch eine Boden-Luft-Mine mit akustischer Richt­charakteristik und Richtkeule einer ersten Ausführungsform einer erfindungsgemäßen Vorrichtung;
  • Figur 2 die Verhältnisse beim Ansprechen der Vorrichtung;
  • Figur 3 perspektivisch eine Boden-Luft-Mine mit Infrarotsensor gemäß einer zweiten Ausführungsform der Erfindung; und
  • Figur 4 ein Blockdiagramm der elektronischen Auswerteeinrichtung der erfindungsgemäßen Vorrichtung.
The invention is explained in detail below using exemplary embodiments in conjunction with the drawing. Show it:
  • 1 shows in perspective a surface-air mine with acoustic directional characteristic and directional lobe of a first embodiment of a device according to the invention;
  • Figure 2 shows the conditions when the device is activated;
  • Figure 3 is a perspective of a surface-air mine with infrared sensor according to a second embodiment of the invention; and
  • Figure 4 is a block diagram of the electronic evaluation device of the device according to the invention.

Die in Figur 1 dargestellte Boden-Luft-Mine 1 dient der Hubschrauberbe­kämpfung. Sie besitzt ein Richtmikrofon mit kegelförmiger akustischer Richtcharakteristik 2. Das Richtmikrofon ist für Hubschraubergeräusche, insbesondere die Frequenzbereiche 5 - 40 Hz und 200 - 1000 Hz, empfindlich. In Figur 1 sind verschiedene Kegel dieser Richt­charakteristik 2 dargestellt. Die Vorrichtung besitzt ferner einen Infrarotsensor mit strahlenförmiger Richtkeule 3. Aus Maßstabsgründen sind das Richtmikrofon und der Infrarotsensor in Figur 1 nicht erkennbar. Sie bilden gleichsam die Wurzeln von 2 und 3. In Richtung der Achse der akustischen Richtcharakteristik 2 und damit in Richtung der Achse der Richtkeule 3 ist die Boden-Luft-Mine 1 abfeuerbar. Sie besitzt im übrigen eine elektronische Auswerteeinrichtung.The surface-air mine 1 shown in FIG. 1 is used to combat helicopters. It has a directional microphone with a cone-shaped acoustic directional characteristic 2. The directional microphone is sensitive to helicopter noises, in particular the frequency ranges 5 - 40 Hz and 200 - 1000 Hz. Various cones of this directional characteristic 2 are shown in FIG. The device also has an infrared sensor with a beam-shaped directional lobe 3. The directional microphone and the infrared sensor cannot be seen in FIG. 1 for reasons of scale. They form, as it were, the roots of 2 and 3. In the direction of the axis of the acoustic directional characteristic 2 and thus in the direction of the axis of the directional lobe 3, the ground-air mine 1 can be fired. It also has an electronic evaluation device.

In Figur 2 sind die als Meßschrieb 4 über eine Zeitachse aufgetragenen Hubschraubergeräusche, die die elektronische Auswerteeinrichtung aufnimmt, sowie das Infrarotsignal 5, welches die elektronische Aus­werteeinrichtung vom Infrarotsensor übernimmt, dargestellt. Man erkennt, daß das Richtmikrofon auf das Zielgebiet gerichtet ist und mit seiner akustischen Richtcharakeristik 2 ein Zielfeld definiert, in dessen Zentrum die gegenüber der akustischen Richtcharakteristik 2 schmale Richtkeule 3 verläuft. Die elektronische Auswerteeinrichtung analysiert die Hubschraubergeräusche. Bei Erreichen einer vorgegebenen Intensität der Hubschraubergeräusche sowie bei gleichzeitigem Ansprechen des Infrarotsensors wird die Boden-Luft-Mine 1 abgefeuert, d.h. die Zündung für die Marschbewegung der Boden-Luft-Mine 1 bewirkt.FIG. 2 shows the helicopter noises, which are recorded as measurement record 4 over a time axis and which are picked up by the electronic evaluation device, and the infrared signal 5 which the electronic evaluation device takes over from the infrared sensor. It can be seen that the directional microphone is aimed at the target area and, with its acoustic directional characteristic 2, defines a target field, in the center of which the directional lobe 3, which is narrow in relation to the acoustic directional characteristic 2, extends. The electronic evaluation device analyzes the helicopter noise. When a predetermined intensity of the helicopter noise is reached and the infrared sensor responds at the same time, the surface-air mine 1 is fired, i.e. the ignition for the marching movement of the surface-air mine 1 causes.

Figur 3 zeigt eine perspektivische Ansicht einer Boden-Luft-Mine 10 ähnlich Figur 1, wobei bei diesem Ausführungsbeispiel eine besonders bevorzugte Ausführungsform eines Infrarotsensors (nicht gezeigt) Anwendung findet. Dieser Infrarotsensor besitzt eine Vielzahl von Wirkkegeln 3, die Segmente maximaler Empfindlichkeit bilden, welche in einem Gesamtwirkkegel 20 angeordnet sind. Eine solche Empfindlichkeits­verteilung kann durch segmentierte Infrarotlinsen oder -spiegel erreicht werden. Beim Flug des Hubschraubers durch eines der Segmente 30 ergibt sich ein sehr deutliches Signal. Die Lücken zwischen den Segmenten 30 führen dazu, daß der Hubschrauber beim Durchgang durch den Kegel mit gewisser Wahrscheinlichkeit nicht erfaßt wird. Diese Wahrscheinlichkeit nimmt mit steigendem Abstand zur Mine immer mehr zu. Ein solches Verhalten ist sehr erwünscht, da die Wirksamkeit der Mine auf eine bestimmte Entfernung (beispielsweise 100 m) begrenzt ist. Damit ist ein gewisser Schutz gegenüber Fehlauslösungungen durch in zu großer Höhe fliegende Hubschrauber gegeben.FIG. 3 shows a perspective view of a ground-air mine 10 similar to FIG. 1, a particularly preferred embodiment of an infrared sensor (not shown) being used in this exemplary embodiment. This infrared sensor has a plurality of active cones 3, which form segments of maximum sensitivity, which are arranged in an overall active cone 20. Such a sensitivity distribution can be achieved by segmented infrared lenses or mirrors. When the helicopter flies through one of the segments 30, a very clear signal is produced. The gaps between the segments 30 lead to the probability that the helicopter will not be detected when passing through the cone. This probability increases with increasing distance from the mine. Such behavior is very desirable because the effectiveness of the mine is limited to a certain distance (for example 100 m). This provides a certain level of protection against false triggering caused by helicopters flying at great heights.

Figur 4 zeigt ein Blockdiagramm der Auswerteelektronik, die bei den Ausführungsformen der Figuren 1 bis 3 Anwendung findet. Die Einrichtung umfaßt ein Mikrofon 40, dessen in Abhängigkeit vom Hubschraubergeräusch erzeugte elektrische Signale durch Filter 41, 41 in verschiedene Zweige aufgespalten werden. Bei dieser Ausführungsform sind 2 Filter dargestellt; es können jedoch auch weitere Unterteilungen getroffen werden. Die aufgespaltenen Signale werden dann getrennt bewertet und über jeweilige Komparatoren 42 einem Verknüpfungsglied 43 zugeführt.FIG. 4 shows a block diagram of the evaluation electronics which are used in the embodiments of FIGS. 1 to 3. The device comprises a microphone 40, the electrical signals generated as a function of the helicopter noise are split up into different branches by filters 41, 41. In this embodiment, two filters are shown; however, further subdivisions can also be made. The split signals are then evaluated separately and fed to a logic element 43 via respective comparators 42.

Figur 4 zeigt desweiteren einen Infrarotsensor 44. Dessen Signale werden ebenfalls über ein Filter 45 und einen Komparator 46 dem Verknüpfungs­glied 43 zugeführt. Auch hierbei kann eine Aufspaltung in mehrere Zweige erfolgen, wie in gestrichelter Weise angedeutet ist. Das Verknüpfungs­glied 43 bewirkt eine Auslösung der Zündeinrichtung der Mine, wenn dort Signale der beiden Zweige des Mikrofons bei Anliegen eines Signal es vom Infrarotsensor anstehen.FIG. 4 also shows an infrared sensor 44. Its signals are also fed to the link 43 via a filter 45 and a comparator 46. Here, too, a split into several branches can take place, as is indicated in dashed lines. The link 43 triggers the ignition device of the mine when there are signals from the two branches of the microphone when a signal is present from the infrared sensor.

Es versteht sich, daß anstelle des beschriebenen Verknüpfungsgliedes ein diese Funktion ausführender Prozessor eingesetzt werden kann. Die zugeführten Signale werden dann über jeweilige A/D-Wandler geführt.It goes without saying that a processor performing this function can be used instead of the described link. The supplied signals are then passed through respective A / D converters.

Claims (7)

1.Vorrichtung für die Zielerkennung und Abschußauslösung für abzu­feuernde Boden-Luft-Minen bei der Hubschrauberbekämpfung, gekennzeichnet durch
ein Mikrofon (40), welches für Hubschraubergeräusche empfindlich ist,
einen Infrarotsensor (44), der mit seiner Richtcharakteristik (3, 20) auf den Streübereich des Wirkkörpers abgestimmt ist, und
eine elektronische Auswerteeinrichtung, die die Hubschraubergeräusche analysiert und bei Erreichen einer vorgegebenen Intensität sowie bei gleichzeitigem Ansprechen des Infrarotsensors (44) den Abschuß bewirkt.
1.Device for target detection and launching for surface-to-fire mines to be fired in helicopter combat, characterized by
a microphone (40) which is sensitive to helicopter noise,
an infrared sensor (44), which is matched with its directional characteristic (3, 20) to the scattering area of the active body, and
an electronic evaluation device which analyzes the helicopter noises and, when a predetermined intensity is reached and the infrared sensor (44) responds at the same time, causes the firing.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die elektronische Auswerteeinrichtung die vom Mikrofon (40) und/oder Infrarotsensor (44) erzeugten Signale in verschiedene Zweige aufspaltet, getrennt bewertet, einem Komparator(42)und dann einer logischen Verknüpfung (43) zuführt.2. Device according to claim 1, characterized in that the electronic evaluation device splits the signals generated by the microphone (40) and / or infrared sensor (44) into different branches, evaluates them separately, a comparator (42) and then a logic operation (43) feeds. 3. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, daß die elektronische Auswerteeinrichtung die vom Mikrofon (40) erzeugten Signale in einen Zweig von 5 - 40 Hz und einen Zweig von 200 - 1000 Hz aufspaltet.3. Apparatus according to claim 2, characterized in that the electronic evaluation device splits the signals generated by the microphone (40) into a branch of 5 - 40 Hz and a branch of 200 - 1000 Hz. 4. Vorrichtung nach einem der vorangehenden Ansprüche, dadurch gekenn­zeichnet, daß der Infrarotsensor (44) eine Empfindlichkeitsverteilung besitzt, bei der sich eine Vielzahl von Segmenten (30) maximaler Empfindlichkeit innerhalb eines Wirkkegels (20) befindet.4. Device according to one of the preceding claims, characterized in that the infrared sensor (44) has a sensitivity distribution in which there are a plurality of segments (30) of maximum sensitivity within an active cone (20). 5. Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der Infrarotsensor (44) eine strahlenförmige Richtkeule (3) besitzt, in deren Richtung die Boden-Luft-Mine abfeuerbar ist.5. Device according to one of claims 1 to 3, characterized in that the infrared sensor (44) has a radial directional lobe (3), in the direction of which the surface-air mine can be fired. 6. Vorrichtung nach einem der vorangehenden Ansprüche, dadurch gekenn­zeichnet, daß das Mikrofon (40) ein auf das Zielgebiet gerichtetes Richtmikrofon mit kegelförmiger akustischer Richtcharakteristik (2) ist und mit seiner akustischen Richtcharakteristik (2) ein Zielfeld definiert.6. Device according to one of the preceding claims, characterized in that the microphone (40) is a directional microphone aimed at the target area with a conical acoustic directional characteristic (2) and with its acoustic directional characteristic (2) defines a target field. 7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, daß die gegenüber der akustischen Richtcharakteristik (2) schmale Richtkeule (3) im Zentrum des Zielfeldes der akustischen Richtcharakteristik (2) verläuft.7. The device according to claim 6, characterized in that the directional lobe (3) which is narrow in relation to the acoustic directional characteristic (2) runs in the center of the target field of the acoustic directional characteristic (2).
EP90115901A 1989-08-22 1990-08-20 Detection device for the typical signals of a helicopter and for firing ground-air mines Expired - Lifetime EP0418566B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3927663 1989-08-22
DE3927663A DE3927663C3 (en) 1989-08-22 1989-08-22 Device for target detection and launching of ground-to-air mines to be fired in helicopter combat

Publications (2)

Publication Number Publication Date
EP0418566A1 true EP0418566A1 (en) 1991-03-27
EP0418566B1 EP0418566B1 (en) 1994-05-18

Family

ID=6387603

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90115901A Expired - Lifetime EP0418566B1 (en) 1989-08-22 1990-08-20 Detection device for the typical signals of a helicopter and for firing ground-air mines

Country Status (6)

Country Link
US (1) US5147977A (en)
EP (1) EP0418566B1 (en)
AT (1) ATE105931T1 (en)
DE (2) DE3927663C3 (en)
ES (1) ES2056320T3 (en)
ZA (1) ZA906603B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2682470A1 (en) * 1991-10-10 1993-04-16 Diehl Gmbh & Co PROCESS OF ACTIVATION OF A MINE.

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19906970C2 (en) 1999-02-19 2003-03-27 Rheinmetall W & M Gmbh reconnaissance probe
US7957225B2 (en) * 2007-12-21 2011-06-07 Textron Systems Corporation Alerting system for a facility
US10741037B2 (en) * 2018-05-16 2020-08-11 Avaya Inc. Method and system for detecting inaudible sounds

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3614723A (en) * 1967-08-19 1971-10-19 Licentia Gmbh Aiming arrangement
US3902172A (en) * 1962-03-29 1975-08-26 Us Navy Infrared gated radio fuzing system
FR2495762A1 (en) * 1980-12-05 1982-06-11 Diehl Gmbh & Co Detonator circuit for anti-tank mine - includes acoustic detectors analysing frequencies of received sound for identification using pass-band filters, A=D converters and memories
DE3101722A1 (en) * 1981-01-21 1982-08-12 Messerschmitt-Bölkow-Blohm GmbH, 8000 München Device for weapon release
GB2108246A (en) * 1981-10-14 1983-05-11 Messerschmitt Boelkow Blohm Apparatus for combatting targets
EP0152516A2 (en) * 1983-07-25 1985-08-28 Fried. Krupp Gesellschaft mit beschränkter Haftung Mine

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1590594A (en) * 1968-05-17 1970-04-20
FR2205186A5 (en) * 1972-11-02 1974-05-24 Lacroix E
DE2336040C3 (en) * 1973-07-14 1980-06-19 Messerschmitt-Boelkow-Blohm Gmbh, 8000 Muenchen Defense system with several floors
DE2829239C1 (en) * 1978-07-04 1983-06-09 Eltro GmbH, Gesellschaft für Strahlungstechnik, 6900 Heidelberg Method and arrangement for detecting an approaching helicopter for the purpose of a countermeasure
FR2541444A1 (en) * 1982-06-25 1984-08-24 Thomson Csf Remote-detection device of the mine type and firing system comprising such devices
FR2599860B1 (en) * 1984-03-22 1989-12-01 France Etat Armement METHOD AND DEVICE FOR THE PASSIVE SOUND DETECTION OF AIRCRAFT, ESPECIALLY HELICOPTERS
DE3538785A1 (en) * 1985-10-31 1987-05-07 Diehl Gmbh & Co MINE WITH ALARM AND TRIGGER SENSORS
IL86525A0 (en) * 1988-05-27 1988-11-15 Cohen David Promixity detector mine system
DE3837483A1 (en) * 1988-11-04 1990-05-10 Diehl Gmbh & Co Mine which can be aimed by a motor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3902172A (en) * 1962-03-29 1975-08-26 Us Navy Infrared gated radio fuzing system
US3614723A (en) * 1967-08-19 1971-10-19 Licentia Gmbh Aiming arrangement
FR2495762A1 (en) * 1980-12-05 1982-06-11 Diehl Gmbh & Co Detonator circuit for anti-tank mine - includes acoustic detectors analysing frequencies of received sound for identification using pass-band filters, A=D converters and memories
DE3101722A1 (en) * 1981-01-21 1982-08-12 Messerschmitt-Bölkow-Blohm GmbH, 8000 München Device for weapon release
GB2108246A (en) * 1981-10-14 1983-05-11 Messerschmitt Boelkow Blohm Apparatus for combatting targets
EP0152516A2 (en) * 1983-07-25 1985-08-28 Fried. Krupp Gesellschaft mit beschränkter Haftung Mine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2682470A1 (en) * 1991-10-10 1993-04-16 Diehl Gmbh & Co PROCESS OF ACTIVATION OF A MINE.
US5371502A (en) * 1991-10-10 1994-12-06 Diehl Gmbh & Co. Method for the activation of a mine

Also Published As

Publication number Publication date
DE3927663C3 (en) 1998-11-12
ATE105931T1 (en) 1994-06-15
DE3927663C2 (en) 1993-04-22
EP0418566B1 (en) 1994-05-18
ZA906603B (en) 1991-06-26
ES2056320T3 (en) 1994-10-01
DE59005728D1 (en) 1994-06-23
DE3927663A1 (en) 1991-03-14
US5147977A (en) 1992-09-15

Similar Documents

Publication Publication Date Title
Griffin et al. The resistance of bats to jamming
DE3510469C2 (en)
DE3002148A1 (en) Moving target classification using Doppler radar - standardising video signals from echo signals and frequency values of give Doppler frequency
DE2710877A1 (en) BURGLAR ALARM SYSTEM
DE2202793A1 (en) Method and apparatus for indicating the passage of a projectile through an area of air
DE3041765A1 (en) APPROXIMATE IGNITION
DE3233327C2 (en) Circuit arrangement for the discovery and detection of helicopters
WO1991006874A1 (en) Process for determining the direction and range of noise-generating targets
EP0418566B1 (en) Detection device for the typical signals of a helicopter and for firing ground-air mines
EP0213541B1 (en) Ship detection method
DE3503919C1 (en) Device for triggering a mine with a housing designed as a sphere or a rotating body
DE2528402A1 (en) PASSIVE IR DISTANCE TRANSMITTER
EP3396404B1 (en) Method for locating objects
EP0213418B1 (en) Method of and apparatus for the direction finding of targets
DE2622419C3 (en) Device to prevent deliberate interference in wireless location and command transmission systems by sending out system-independent signals
EP0241737B1 (en) Method for identifying submarine objects
EP0414203B1 (en) Device for target acquisition and firing or horizontal mines to be launched for defense against tanks
DE3101928C2 (en) Device for the discrimination of overflying aircraft
EP0548689B1 (en) Process for detecting and discriminating helicopters from other vehicles at a distance
DE4204165C1 (en) Opto-electronic snow fall detection method for guided missile - evaluating noise component in reflected laser light beam signal caused by reflection from individual snowflakes
DE2947779C1 (en) Directional fuse with interference suppression for land or sea mines
DE3125696C1 (en) Infrared detector arrangement
EP0961099B1 (en) Igniting system for penetrator projectiles
DE3220175A1 (en) METHOD AND DEVICE FOR ACOUSTIC CORRELATION BEARING
DE3526776C1 (en) Radar system to monitor the airspace

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19901220

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

17Q First examination report despatched

Effective date: 19920903

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

REF Corresponds to:

Ref document number: 105931

Country of ref document: AT

Date of ref document: 19940615

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59005728

Country of ref document: DE

Date of ref document: 19940623

ITF It: translation for a ep patent filed

Owner name: BUGNION S.P.A.

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19940831

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940824

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2056320

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3012991

EAL Se: european patent in force in sweden

Ref document number: 90115901.2

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: SENSYS AG TRANSFER- HIRTENBERGER AKTIENGESELLSCHAF

Ref country code: CH

Ref legal event code: NV

Representative=s name: HEPP, WENGER & RYFFEL AG

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19970828

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19980831

Year of fee payment: 9

Ref country code: GR

Payment date: 19980831

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19980907

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19981112

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990831

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990831

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990831

BERE Be: lapsed

Owner name: SENSYS A.G.

Effective date: 19990831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000301

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20000301

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20000823

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20000828

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20000831

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20000907

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20010622

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010821

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010821

EUG Se: european patent has lapsed

Ref document number: 90115901.2

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20010820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020430

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020820

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20020911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050820