EP0404723A2 - Mélange à base de polymères et d'amidon déstructuré - Google Patents

Mélange à base de polymères et d'amidon déstructuré Download PDF

Info

Publication number
EP0404723A2
EP0404723A2 EP90810434A EP90810434A EP0404723A2 EP 0404723 A2 EP0404723 A2 EP 0404723A2 EP 90810434 A EP90810434 A EP 90810434A EP 90810434 A EP90810434 A EP 90810434A EP 0404723 A2 EP0404723 A2 EP 0404723A2
Authority
EP
European Patent Office
Prior art keywords
vinyl
component
starch
copolymers
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP90810434A
Other languages
German (de)
English (en)
Other versions
EP0404723B1 (fr
EP0404723A3 (fr
Inventor
Jean-Pierre Dr. Sachetto
David John Dr. Lentz
Jakob Dr. Silbiger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Warner Lambert Co LLC
Original Assignee
Warner Lambert Co LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27004204&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0404723(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Warner Lambert Co LLC filed Critical Warner Lambert Co LLC
Publication of EP0404723A2 publication Critical patent/EP0404723A2/fr
Publication of EP0404723A3 publication Critical patent/EP0404723A3/fr
Application granted granted Critical
Publication of EP0404723B1 publication Critical patent/EP0404723B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L3/00Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08L3/02Starch; Degradation products thereof, e.g. dextrin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L57/00Compositions of unspecified polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C08L57/06Homopolymers or copolymers containing elements other than carbon and hydrogen
    • C08L57/10Homopolymers or copolymers containing elements other than carbon and hydrogen containing oxygen atoms

Definitions

  • the present invention relates to polymer compositions capable of being formed by heat and pressure into articles having dimensional stability and enhanced physical properties, and to pre-mixes useful for preparing these compositions.
  • These compositions and pre-mixes comprise destructurized starch and other polymers as described herein.
  • the destructurized starch used in the present invention has been heated to a high enough temperature and for a time long enough so that the specific endothermic transition analysis as represented by differential scanning calorimetry (DSC) indicates that a specific relatively narrow peak just prior to oxidative and thermal degradation has disappeared, as described in the above-mentioned European Patent Application No. 89810046.6 (Publication No. 326 517).
  • DSC differential scanning calorimetry
  • Destructurized starch is a new and useful material for many applications. An important property is its biodegradability. In humid air, however, destructurized starch takes up water from the air, thereby increasing its moisture content. As a consequence, a shaped article made from destructurized starch may under such conditions lose its dimensional stability. On the other hand such an article may dry out in low humidity and become brittle.
  • Thermoplastic starch has unique properties and while these are very useful, they may limit its utility in cases where a softer, more resilient or harder, tougher polymer is desired.
  • Thermoplastic starch as mentioned can be extruded and molded into numerous useful shapes and profiles.
  • the processing parameters such as water content, temperature, and pressure are generally critical and must be narrowly controlled to achieve reproducible quality products. This is a further disadvantage for many applications.
  • processing latitude increases the variety of shapes and composites and decreases the need for close controls. It would therefore also be useful to improve the control of the melt strength, e.g. increasing the processing latitude for extruding, injection molding, film blowing or fiber drawing and to control the surface tack and adhesion to other substrates.
  • thermoplastic materials are hydrophobic, substantially water-insoluble polymers which are conventially processed in the absence of water and volatile materials. Starch to the contrary forms a melt in the presence of water but decomposes at elevated temperature, i.e. around 240°C. It was therefore expected that such a starch melt could not be used as a thermoplastic component together with hydrophobic, substantially water-insoluble polymeric materials not only because starch forms a melt in the presence of water as described above, but also because of its chemical structure and hydrophilic nature.
  • starch when heated in a closed volume at proper moisture and temperature conditions, as described above, to form a melt of destructurized starch, is substantially compatible in its processing with melts formed by hydrophobic substantially water insoluble thermoplastic polymers and that the two types of molten materials show an interesting combination of properties, especially after the melt has solidified.
  • polymer compositions comprising: a) destructurized starch, b) at least one polymer which contains at least two different types of functional groups, one of said types being hydroxyl groups (referred to herein as "component b)”), and optionally c) a substantially water-insoluble polymer different from those defined as component b).
  • component b hydroxyl groups
  • the present invention relates to a composition comprising destructurized starch and component b). This composition is useful itself for making finished articles, but it is primarily useful as a "pre-mix” for combining with the substantially water-insoluble polymer.
  • the invention comprises the ternary composition of destructurized starch, component b), at least one substantially water-insoluble polymer (component c)).
  • component b destructurized starch
  • component c substantially water-insoluble polymer
  • the invention also includes methods for making and using both above-­described compositions and shaped articles made therefrom.
  • compositions of the first aspect of the invention comprise:
  • Such polymer composition may optionally contain further additives.
  • the first aspect of the present invention is a polymer composition capable of being formed into articles having substantial dimensional stability comprising:
  • this polymer composition additionally comprises at least one component c):
  • the present invention includes said polymer compositions in the form of powdery mixtures of their components, in the form of melts, or in solidified form.
  • Component b) is chosen as described herein to be substantially compatible with the starch and also to promote the compatibility of component c) with the combination of starch and component b).
  • the present invention further refers to a method of producing said polymer compositions in the molten or solid form as well as a method of producing shaped articles from said polymer compositions, and to the resulting shaped articles made therefrom.
  • the polymer compositions of the present invention are prepared by admixing destructurized starch, component b), and optionally component c) and any further additives. This mixture is then heated in a closed volume to elevated temperatures until a homogeneous melt is obtained, and shaped articles can be formed therefrom.
  • An alternate method of producing the polymer compositions of the present invention comprises: Heating starch, which is in a condition to be destructurized, in a closed volume to elevated temperatures and at elevated pressures for a time sufficient to destructurize the starch and form a melt; adding component b) as well as other polymers and/or additives before, during or after such starch destructurization; and continuing to heat the mixture until a homogenous melt is obtained. It is preferred that component b) and, if desired, component c), as well as other additives be combined with the starch and the combination formed into a melt. The starch in this combination may be already wholly or partially destructurized or the destructurization may take place during melt formation.
  • the present invention further refers to the process of working said polymer composition under controlled water content, temperature and pressure conditions as a thermoplastic melt wherein said working process is any known process, such as, for example injection molding, blow molding, extrusion, coextrusion, compression molding, vacuum forming, thermoforming or foaming. All of these processes are collectively referred to herein as "forming".
  • the term "functional group” as used herein includes all known polar groups that may be bound to the polymer chain such as, for example, hydroxy, alkoxy, carboxy, carboxyalkyl, alkyl carboxy, halo, pyrrolidono, acetal, and the like. These groups should be selected from those which will not degrade the starch.
  • starch as used herein includes chemically substantially non-modified starches as for example carbohydrates of natural, vegetable origin, composed mainly of amylose and/or amylopectin. They can be extracted from various plants, examples being potatoes, rice, tapioca, corn (maize), pea, and cereals such as rye, oats and wheat. Preferred is starch made from potatoes, corn, wheat or rice. Mixtures of starch obtained from these sources are contemplated. It further includes physically modified starches such as gelatinized or cooked starches, starches with a modified acid value (pH), e.g. where acid has been added to lower their acid value to a range of about 3 to about 6. Further included are starches, e.g.
  • PH modified acid value
  • potato starch in which the divalent ions like Ca+2 or Mg+2-ions associated with the phosphate groups have been partially or completely washed out from the starch or optionally wherein the ions present in the starch have been replaced partially or wholly by the same or different mono- or polyvalent ions. It further includes pre-extruded starches, as described in the above-referenced European Patent Application No. 88810548.3 (Publication No. 304,401).
  • starches e.g. with a water content within the range of about 5 to about 40% by weight based on the weight of the composition, undergo a specific narrow endothermic transition on heating to elevated temperatures and in a closed volume just prior to the endotherm change characteristic of oxidative and thermal degradation.
  • the specific endo­thermic transition can be determined by differential scanning calorimetric analysis (DSC) and is indicated on the DSC-diagram by a specific relatively narrow peak just prior to the endotherm characteristic of oxidative and thermal degradation. The peak disappears as soon as the mentioned specific endothermic transition has been undergone.
  • DSC differential scanning calorimetric analysis
  • starch includes also treated starches wherein said specific endothermic transition has been undergone. Such starch is described in the EP 89810046.6 (Publication No. 326,517).
  • destructurization of starch requires the presence of water in ranges disclosed herein, the present inventive compositions also contemplate the use of destructurized starch prepared by other methods, e.g. without the use of water.
  • the water content of such a starch/water composition is preferably about 5 to about 40 % water by weight of the starch/water component and preferably about 5 to about 30 %.
  • a water content of about 10 to about 22 %, preferably of about 14 to about 18 % by weight calculated based on the starch/water component should be used in processing and is preferred.
  • the polymer of component b) is preferably a polymer containing vinyl alcohol units. More preferably component b) is a poly(vinyl ester) wherein the ester groups are partially hydrolyzed or a copolymer containing vinyl alcohol units as well as other units as are obtained by copolymerization of vinyl esters, preferably vinyl acetate, with monomers such as ethylene, vinyl chloride, vinyl ethers, acrylo-nitrile, acryl amide, omega-octadecene, vinyl-butyl ether, vinyl-octadecyl ether, vinyl pyrrolidone and other known monomers, with subsequent hydrolysis of at least some of the vinyl-ester groups.
  • monomers such as ethylene, vinyl chloride, vinyl ethers, acrylo-nitrile, acryl amide, omega-octadecene, vinyl-butyl ether, vinyl-octadecyl ether, vinyl pyrrolidone and other known mono
  • polymers of component b) have preferably from about 20 to about 99 mol % hydroxyl containing units such as vinyl alcohol units, preferably from about 30 to about 99 mol % and most preferably from about 40 to about 95 mol % of the hydroxyl containing unit, the remaining units being as mentioned above.
  • component b) can be a polymer or copolymer as obtained from polymerizing or copolymerizing monomers of the formula: wherein R2 is hydrogen or methyl; and X is an organic moiety with up to 8 carbon atoms substituted by 1 to 3 hydroxyl groups and/or containing 1 or 2 carboxylate groups; and does not form a vinyl alcohol.
  • Such X can be exemplified by the moiety X1wherein X1 is -CH2OH, -O-CH2-CH2-OH, -C(O)OCH2-CH2OH or -C6H4-O-CH2-CH2OH.
  • Such polymers and copolymers are known.
  • the polymer does not contain hydroxyl groups together with carboxyl groups bound directly to the same main polymer chain because crosslinking may occur prior to or during processing. However, this does not necessarily always happen and such useful combinations are included within the scope of the present invention.
  • the amount of hydroxyl containing monomer will depend on the type of copolymer used carrying the other functional group. The preferred molar ratios are given above and are generally applicable. However, if the monomer carrying the functional group which is not hydroxyl has an elevated molecular weight compared to the hydroxyl carrying moiety, then a higher proportion of the latter moiety will be required. In this sense it is recommended that the weight % of the hydroxyl moiety (-OH) is from 4.5 to 35 and preferably from 9.0 to 25 weight percent of the component b). If the monomer carries a hydroxyl and at the same time another functional group e.g. an ester group no comonomer may be needed because the homopolymer carries two different functional groups. It is no problem to the person skilled in the art to optimize component b), e.g. by combining different molar ratios of known monomers or combining other monomers than indicated here. Many of these polymers and copolymers are known.
  • the polymers of component b) may have a general formula wherein the number of repeating units varies for each individual type of copolymer and is known per se as e.g. described in "Encyclopaedia of Polymer Science and Technology, Interscience Publ. Vol. 14, 1971.” These copolymers may be described by the following general formulas incorporating the mer units described above. The units within the brackets represent the individual mer units within each copolymer. These units may be combined in any known fashion, including random or block copolymerization. The molecular weight of the copolymer may be within known ranges.
  • R3 H, a saturated or unsaturated C1-C21- hydrocarbon, preferably H, -CH3, -C2H5, C3H7
  • Preferred copolymers of the component b) are those which can be described as containing vinyl alcohol (I) units together with vinyl ether (II) and/or vinyl ester (III) units. Such copolymer types correspond to compounds of the formulas (VI) to (X) from which compounds of the formulas (VI), (VII) and (VIII) are preferred.
  • copolymers of component b) are copolymers as obtained by polymerization of a vinyl ester with one or more monomers selected from the group consisting of ethylene, vinyl ethers, with subsequent hydrolysis of at least some of the vinyl ester groups.
  • Such preferred copolymers of component b) are e.g. polyvinylalcohol-co-vinyl-acetate; ethylene/ vinyl alcohol/vinyl acetate copolymers; ethylene/ vinyl chloride/vinyl alcohol/vinyl acetate graft copolymers; vinyl alcohol/vinyl acetate/vinyl chloride copolymers; vinyl alcohol/vinyl acetate/vinyl chloride/ diacryl amide copolymers; vinyl alcohol/vinyl butyral copolymers; vinyl alcohol/vinyl acetate/ vinyl pyrrolidone copolymers; vinyl alcohol/ styrene copolymers. Combinations or mixtures of these copolymers are included within the scope of component b).
  • the polymer composition comprising the components a) and b) optionally contains one or more essentially water-insoluble hydrophobic polymers (component c), as well as further additives.
  • the component c) is an essentially water-insoluble polymer or a mixture of such essentially water-insoluble polymers.
  • Component c) is preferably present in an amount effective to enhance the physical properties of articles made from the composition of the invention (which amount is sometimes referred to herein as an "effective amount" of component c)).
  • an "essentially water-insoluble thermoplastic polymer” is a polymer which preferably absorbs water at a rate of less than 10 %, preferably less than 5 % per 100 grams of the polymer at room temperature and preferably at a rate of less than 2 % per 100 grams of the polymer at room temperature.
  • thermoplastic materials are polyolefines, such as polyethylene (PE), polyisobutylenes, polypropylenes; vinyl polymers such as poly(vinyl chloride) (PVC), poly(vinyl acetates); polystyrenes; polyacrylonitriles (PAN); poly(vinyl carbazoles) (PVK); essentially water-insoluble polyacrylates or polymethacrylates; polyacetals; thermoplastic polycondensates such as polyamides (PA), polyesters, polyurethanes, polycarbonates, poly(alkylene terephthalates); polyarylethers and thermoplastic polyimides; and high molar-mass, essentially water-insoluble or crystallizable poly(alkylene oxides) such as polymers of ethylene oxide and propylene oxide as well as their copolymers.
  • PE polyethylene
  • PVC poly(vinyl chloride)
  • PVK polystyrenes
  • PVK polyacrylonitriles
  • PVK poly(vin
  • thermoplastic copolymers known such as alkylene/vinyl ester-copolymers preferably ethylene/vinyl acetate-copolymers (EVA); ethylene/vinyl alcohol-copolymers (EVAL); alkylene/acrylates or methacrylate copolymers preferably ethylene/acrylic acid-copolymers (EAA); ethylene/ethyl acrylate-copolymers (EEA); ethylene/methyl acrylate-copolymers (EMA); ABS-­ copolymers; styrene/acrylonitrile-copolymers (SAN); alkylene/maleic anhydride copolymer preferably ethylene/­maleic anhydride copolymer; partially hydrolyzed polyacrylates or polymethacrylates; partially hydrolyzed copolymers of acrylates and methacrylates; acrylic acid esters/acrylonitrile copolymers and hydrolysates thereof; acrylamide/acrylonitrile copolymers
  • EVA ethylene/
  • copolymers useful as a component c) are exemplified hereinbelow schematically by the following general formulas.
  • the units within brackets represent the individual component mer units within each copolymer. These units may be combined in any known fashion, including random or block copolymerization, and the molecular weight of the polymer may be within known ranges.
  • Preferred from these are those which undergo melt formation at a set processing temperature preferably within the range of 95°C to 240°C, preferably within the range of 95°C to 220°C and more preferably within the range of 95°C to 190°C.
  • polymers containing polar groups such as ether, acid, ester, amide, or urethane groups.
  • Such polymers include e.g. copolymers of ethylene, propylene or isobutylene with vinyl compounds or acrylates such as ethylene/vinyl acetate-copolymers (EVA), ethylene/vinyl alcohol-copolymers (EVAL), ethylene/acrylic acid-copolymers (EAA),ethylene/ ethyl acrylate-copolymers (EEA), ethylene/methacrylate- copolymers (EMA), styrene/acrylonitrile-copolymers (SAN); polyacetals; block copolymers of amide-ethers, amide-esters; block copolymers of urethane-ethers, urethane-esters; as well as their mixtures.
  • EVA ethylene/vinyl acetate-copolymers
  • EVAL ethylene/vinyl alcohol-copolymers
  • polymers containing one type of functional group which is the same type of functional group as that of component b) which is not hydroxyl.
  • thermoplastic polymers may be added in any desired amount as described herein.
  • Such polymers may be used in any known form. Their molecular weight is also generally known in the art. It is also possible to use such polymers of relatively low molecular weight (oligomers). Which molecular weight to chose is a matter of optimization and known to the one skilled in the art.
  • the two components a) and b) or the three components a), b) and c) always add up to 100 % and the values of the components (in %) given hereinbelow refer to this sum of 100 %.
  • the ratio of destructurized starch to the component b) and optionally to the sum of the components b) and c) can be 1:99 to 99:1. It is however preferred that the destructurized starch contributes noticeably to the properties of the final material. Therefore, it is preferred that the destructurized starch is present in an amount of at least 20%, more preferably 50% and most preferably in the range of 70% to 99% by weight of the entire composition. That is, component b) is and optionally the sum of the components b) and c) are present in amounts of about 80% or less, more preferably less than or equal to 50% and most preferably in the range of 30% to 1% by weight of the entire composition.
  • Component b) is a relatively polar material. When it functions in the present compositions in combination with component c), it is able to mix more readily with a more polar component c) than with a less polar one. Accordingly, with more polar components c), relatively less of component b) will be required than with less polar ones. The skilled worker will be able to select appropriate ratios of components b) and c) to obtain a substantially homogenous melt composition.
  • a mixture of 1 to 15% by weight of the components b) or optionally of the sum of the components b) and c) and 99 to 85% of the destructurized starch shows already a significant improvement in the properties of the obtained materials.
  • a ratio of said components b) or optionally of the sum of the components b) and c) to the destructurized starch component of 1-­10% to 99-90% by weight is preferred. If the destructurized starch contains water, the percentage of this destructurized starch component is meant to be the destructurized starch/water component, i.e. including the weight of water.
  • the starch may be mixed with the additives as named hereinbelow to yield a free flowing powder useful for continuous processing and is destructurized and granulated before it is mixed with the components b) and optionally c) or the other optionally added components.
  • the other components to be added are preferably granulated to an equal granular size as the granulated destructurized starch.
  • the components a), b) and c) and the additives be mixed in a conventional mixer.
  • This mixture can then be passed through an extruder to produce granulates or pellets as one form of shaped articles useful for further processing.
  • the sheets can be used for thermoforming.
  • fillers, lubricants and/or plasticizers are added to the starch before destructurization while the addition of the coloring agents as well as of the components b), c) and the other additives can be added before, during or after destructurization.
  • the essentially destructurized starch/water component or granules have a preferred water content in the range of about 10 to 22 % by weight of the starch/water component, preferably 12 to 19% and especially 14 to 18% by weight of the starch/water component.
  • the water content described above refers to the percentage of water relative to the weight of the starch/water component within the total composition and not to the weight of the total composition itself, which would include also the weight of any added essentially water-insoluble thermoplastic polymer.
  • the starch and/or to form a melt of the new polymeric composition according to this invention is suitably heated in a screw and barrel of an extruder for a time long enough to effect destructurization and melt formation.
  • the temperature is preferably within the range of 105°C to 240°C, more preferably within the range of 130°C to 190°C depending on the type of starch used.
  • the composition is heated preferably in a closed volume.
  • a closed volume can be a closed vessel or the volume created by the sealing action of the unmolten feed material as happens in the screw and barrel of injection molding or extrusion equipment.
  • the screw and barrel of an injection molding machine or an extruder is to be understood as being a closed vessel.
  • Pressures created in a closed vessel correspond to the vapour pressure of water at the used temperature but of course additional pressure may be applied and/or generated as normally occurs in a screw and barrel.
  • the preferred applied and/or generated pressures are in the range of pressures which occur in extrusion and are known per se , e.g. from 5 to 150 x 105 N/m2 preferably from 5 to 75 x 105 N/m2 and most particularly from 5 to 50 x 105 N/m2.
  • the thus-obtained composition is just destructurized starch, it may be granulated and ready to be mixed with the further components according to a chosen mixing and processing procedure to obtain the granular mixture of the destructurized starch/polymer starting material to be fed to the screw barrel.
  • the obtained melt in the screw and barrel may be e.g. injection molded directly into a suitable mold, i.e. directly further processed to a final product if all necessary components are already present.
  • the granular mixture obtained as described above is heated to a temperature which is generally within the range of about 80°C to 240°C, preferably within the range of about 120°C to 220°C and especially within the range of about 130°C to 190°C.
  • a temperature which is generally within the range of about 80°C to 240°C, preferably within the range of about 120°C to 220°C and especially within the range of about 130°C to 190°C.
  • such mixture is heated to a sufficiently high temperature and for a time long enough until the endothermic transition analysis (DSC) indicates that the specific relatively narrow peak just prior to the endotherm characteristic of oxidative and thermal degradation of starch has disappeared.
  • DSC endothermic transition analysis
  • the minimum pressures under which the melts are formed correspond to the water vapour pressures produced at said temperatures.
  • the process is carried out in a closed volume as explained above, i.e. in the range of the pressures which occur in extrusion or molding processes and known per se, e.g. from zero to 150 x 105 N/m2 preferably from zero to 75 x 105 N/m2 and most particularly from zero to 50 x 105 N/m2.
  • the pressures are preferably as mentioned above. If the melt according to this invention is, e.g., injection molded, the normal range of injection pressures used in injection molding is applied, e.g. from 300 x 105 N/m2 to 3000 x 105 N/m2 and preferably from 700 x 105 to 2200 x 105 N/m2.
  • thermoplastic destructurized-starch substantially homogenous melt formed by the process comprising:
  • thermoplastic destructurized-starch product having substantial dimensional stability formed by the process comprising:
  • the mixture provided in step 1) of either above-described processes may additionally contain component c) and additives as described herein.
  • hydrophilic polymers may be used as additives. These include water-soluble and water-swellable polymers. As such it includes animal gelatin, vegetable gelatins resp. proteins such as sunflower protein, soybean proteins, cotton seed proteins, peanut proteins, rape seed proteins, acrylated proteins; water-soluble polysaccharides, alkylcelluloses, hydroxyalkylcelluloses and hydroxyalkylalkylcelluloses, such as: methylcellulose, hydroxymethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, hydroxyethylmethylcellulose, hydroxpropylmethylcellulose, hydroxybutylmethylcellulose, cellulose esters and hydroxyalkylcellulose esters such as: cellulose acetylphtalate (CAP), Hydroxypropylmethyl­cellulose (HPMCP); carboxyalkylcelluloses, carboxyalkyl-alkylcelluloses, carboxyalkylcellulose, analogous known polymers made from starch; carboxymethylcellulose and their alkalimetal salts; water-soluble or water-s
  • synthetic polymers most preferred are synthetic polymers such as polyacrylic acids, polyacrylic acid esters, polymethacrylic acids, polymethacrylic acid esters, polyvinyl alcohols, polyvinyl pyrrolidone.
  • Such hydrophilic polymers may optionally be added up to 50 % based on the starch/water component, preferably up to 30 % and most preferably between 5% and 20% based on the starch/water component. If any hydrophilic polymer is added, its mass should be considered along with the starch in determining the appropriate amount of water in the composition.
  • additives may be e.g. adjuvants, fillers, lubricants, mold release agents, plasticizers, foaming agents, stabilizers, coloring agents, pigments, extenders, chemical modifiers, flow accelerators, and mixtures thereof.
  • fillers are inorganic fillers, such as the oxides of magnesium, aluminum, silicon, titanium, etc. preferably in a concentration in the range of about 0.02 to 50 % by weight preferably 0.20 to 20 % based on the total weight of all the components.
  • lubricants examples include stearates of aluminum, calcium, magnesium and tin as well as talc, silicones, etc. which may be present in concentrations of about 0.1 - 5% preferably at 0.1 - 3% based upon the weight of the total composition.
  • plasticizers include low molecular poly(alkylene oxides), such as poly(ethylene glycols), poly(propylene glycols), poly(ethylene-propylene glycols); organic plasticizers of low molar masses, such as glycerol, pentaerythritol, glycerol monoacetate, diacetate or triacetate; propylene glycol, sorbitol, sodium diethylsulfosuccinate, etc., added in concentrations ranging from 0.5 to 35%, preferably ranging from 0.5 to 10 % based on the total weight of all the components.
  • examples of colouring agents include known azo dyes, organic or inorganic pigments, or colouring agents of natural origin. Inorganic pigments are preferred, such as the oxides of iron or titanium, these oxides, known per se, being added in concentrations ranging from 0.001 to 10%, preferably 0.5 to 3%, based on the weight of all the components.
  • starch material such as animal or vegetable fats, preferably in their hydrogenated form, especially those which are solid at room temperature.
  • animal or vegetable fats preferably in their hydrogenated form, especially those which are solid at room temperature.
  • These fats have preferably a melting point of 50°C or higher.
  • triglycerides of C12 -, C14 -, C16-, and C18 - fatty acids are preferred.
  • These fats can advantageously be added alone or together with mono- and/or diglycerides or phosphatides, especially lecithin.
  • the mono- and diglycerides are preferably derived from the types of fats described above, i.e. from C12 -, C14 -, C16 -, and C18 - fatty acids.
  • the total amount of fats, mono-, diglycerides and/or lecithins used are up to 5% and preferably within the range of about 0.5 to 2% by weight of the total weight of starch and any added hydrophilic polymer.
  • the materials may further contain stabilizers, such as antioxydants, e.g. thiobisphenols, alkylidenbisphenols secondary aromatic amines; light stabilizers such as UV-absorbers and UV-quenchers; hydroperoxide decomposer; free-radical scavengers; stabilizers against microorganisms.
  • stabilizers such as antioxydants, e.g. thiobisphenols, alkylidenbisphenols secondary aromatic amines; light stabilizers such as UV-absorbers and UV-quenchers; hydroperoxide decomposer; free-radical scavengers; stabilizers against microorganisms.
  • compositions of the invention form thermoplastic melts on heating and in a closed volume, i.e. under conditions of controlled water-content and pressure.
  • Such melts can be processed just like conventional thermoplastic materials, using, for example, conventional apparatus for injection molding, blow molding, extrusion and coextrusion (rod, pipe and film extrusion), compression molding, foaming, to produce known articles.
  • the articles include bottles, sheets, films, packaging materials, pipes, rods, laminated films, sacks, bags, pharmaceutical capsules, granules, powders or foams.
  • these compositions may be used to prepare low density packaging materials (e.g. foams) by well-known methods.
  • Conventional blowing agents may be utilized if desired or, for certain compositions, the water itself may act as the blowing agent.
  • Open cell and closed cell foams may be produced as desired by varying the composition and processing condtions. These foams produced from the present compositions will demonstrate improved properties (e.g., dimensional stability, moisture resistance, etc.) when compared with foams made of starch without incorporation of the components b) and c) according to this invention.
  • compositions may be used as carrier materials for active substances, and may be mixed with active ingredients such as pharmaceuticals and/or agriculturally active compounds such as insecticides or pesticides for subsequent release applications of these ingredients.
  • active ingredients such as pharmaceuticals and/or agriculturally active compounds such as insecticides or pesticides for subsequent release applications of these ingredients.
  • the resulting extruded materials can be granulated or worked to fine powders.
  • the extrudate was cut into granulates and stored for further processing.
  • test pieces were of standard DIN design (DIN No. 53455).
  • the break stress goes from 32.72 MPa to 37.22 MPa indicating an increase of the strength of the blend.
  • the break strain (elongation at break) going from 15.82 % to 33.33 % and break energy from 194.30 kJ/m2 to 415.75 kJ/m2 showing a considerable increase in the toughness of the blend material over the unblended one.
  • Example 1 is repeated with the following blends as per the Examples 2 to 10 whereby analogous results as given in Table 1 are obtained.
  • Example 1 is repeated except that the ratio of the components is varied as given in Table 2. For comparison perspective, Example 1 is shown as Blend No. 1. Table 2 Blend No. starch: component b)+c) (weight ratio) component b): component c) (weight ratio) 2 50 : 50 100 : 0 3 60 : 40 99 : 1 4 70 : 30 50 : 1 5 80 : 20 20 : 1 Ex.1 91.5: 8.5 10 : 1 6 90 : 10 1 : 1 7 94 : 6 1 : 10 8 98 : 2 1 : 50 9 99 : 1 1 : 99
  • the resulting injection molded polymers are tougher and more resistant to humid air than the unmodified starch polymer.
  • the toughness as judged by resistance to breaking upon bending increases from blend 9 to blend 2 in concert with the combined increase in vinyl alcohol content. While the resistance to softening in humid atmosphere is improved in all cases relative to unmodified starch, the resistance of blends 1,4,5 and 6 are particularly good.
  • Example 1 is repeated by replacing component (b) (polyvinyl alcohol-co-vinyl acetate) by poly(hydroxyethyl methacrylate) (HEMA).
  • component (c) polyethylene-co-­vinyl acetate is replaced by polymethyl methacrylate.
  • the resulting injection molded polymer is tougher and more resistant to humid than unmodified starch polymer.
  • Example 1 is repeated by replacing component (b) (polyvinyl alcohol-co-vinyl acetate) by poly(hydroxyethyl methacrylate) (HEMA).
  • HEMA poly(hydroxyethyl methacrylate)
  • Polyethylene-co-vinyl acetate 86 % ethylene, 14 % vinyl acetate
  • the resulting injection molded polymer is tougher and more resistant to humid air than unmodified starch polymer.
  • Example 1 is repeated by increasing component b) to 850 g and replacing component c) by 85 g of polystyrene.
  • the resulting injection molded polymer is tougher and more resistant to humid air than unmodified starch polymer.
  • Example 1 is repeated by increasing component b) to 1700 g and replacing component c) by 42 g of polyvinyl chloride-co-vinyl acetate (91 % vinyl chloride - 9 % vinyl acetate).
  • the resulting injection molded polymer is tougher and more resistant to humid air than unmodified starch polymer.
  • Example 1 is repeated by replacing component (b) polyvinyl alcohol-co-vinyl butyral (40 % vinyl alcohol, 60 % vinyl butyral). Component (c) is replaced by 42 g polyvinyl butyral. The resulting injection molded polymer is tougher and more resistant to humid air than unmodified starch polymer.
  • Example 1 is repeated by increasing component b) to 3400 g and replacing component b) by 38 g polypropylene.
  • the resulting injection molded polymer is tougher and more resistant to humid air than unmodified starch polymer.
  • the temperature profile of the four sections of the barrel was respectively 20°C/ 180°C/ 180°C/ 80°C.
  • Extrusion was carried out with a mixture output of 8 kg/hr (screw speed 200 rpm). Water was added at the inlet with a flow rate of 2 kgs/hr. The water content of the material during extrusion was therefore 31.5 %. In the last section of the extruder 80 mbar reduced pressure was applied to remove part of the water as water vapour.
  • the water content of the granulates was 17.15 % as measured after they had equilibrated at room temperature.
  • the shot weight was 8g, the residence time 450 sec., the injection pressure 2082 bar, the back pressure 80 bar, the screw speed 180 rpm.
  • the tensile test pieces thus produced were conditioned in a climatic cabinet at 50 % R.H. for five days as an arbitrary standard condition.
  • test pieces were of standard DIN design (DIN No. 53455).
  • the temperature profile of the four sections of the barrel was respectively 20°C/ 50°C/ 100°C/ 50°C. Extrusion was carried out with a mixture output of 8 kg/hr (screw speed 200 rpm). Water was added at the inlet with a flow rate of 1 kg/hr. The water content of the material during extrusion was therefore 25 %. In the last section of the extruder 22 mbar reduced pressure was applied to remove part of the water as water vapour.
  • the water content of the granulates was 14.8 % as measured after they had equilibrated at room temperature. They were brought to a water content of 17 % by spraying water under stirring in a conventional mixer.
  • the shot weight was 7.9 g, the residence time 450 sec., the injection pressure 2200 bar, the back pressure 80 bar, the screw speed 180 rpm.
  • the tensile test pieces thus produced were conditioned in a climatic cabinet at 50 % R.H. for five days as an arbitrary standard condition to equilibrate them at a water content of about 14 %.
  • test pieces were of standard DIN design (DIN No. 53455).
  • the water content of the granulates was 17.12 % as measured after they had equilibrated at room temperature.
  • the water content of the granulates was 17.20 % after they had equilibrated at room temperature.
  • the water content of the granulates was 16.9 % after they had equilibrated at room temperature.
  • the water content of the granulates was 16.8 % after they had equilibrated at room temperature.
  • Example 14 was repeated with the differences that (i) potato starch was decreased to 5000 g, (ii) polyvinyl alcohol-co-vinyl acetate (Airvol 540S) was increased to 1770 g, (iii) polyamide (Pebax-4011) was decreased to 531 g and (iv) the polyurethane (Pellethane 2103-80-AE) was decreased to 531 g.
  • the water content of the granulates was 16.8 % after they had equilibrated at room temperature.
  • the granulates were brought to a water content of 17 % by spraying water under stirring in a conventional mixer.
  • Example 1 (Sections a) and b)) is repeated except that the water content is adjusted to 22 %, and the cutter is removed from the die face. A continuous extrudate is obtained which is foamed as a result of the excess water evaporation. The foam is chopped into 30-40 mm lengths and is useful as a loose-fill, packaging insulation material.
  • Example 1 The granulates from Example 1 are mixed with polystyrene in the proposition of 30 to 70 parts by weight and are treated according to Example 18
  • the resulting foamed extrudate contains a very fine and uniform all structure suitable for a variety of uses including structural foam.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Seasonings (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Orthopedics, Nursing, And Contraception (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
EP90810434A 1989-06-19 1990-06-14 Mélange à base de polymères et d'amidon déstructuré Expired - Lifetime EP0404723B1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US36848689A 1989-06-19 1989-06-19
US43171589A 1989-11-02 1989-11-02
US368486 1989-11-02
US431715 1989-11-02

Publications (3)

Publication Number Publication Date
EP0404723A2 true EP0404723A2 (fr) 1990-12-27
EP0404723A3 EP0404723A3 (fr) 1991-05-22
EP0404723B1 EP0404723B1 (fr) 1994-08-10

Family

ID=27004204

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90810434A Expired - Lifetime EP0404723B1 (fr) 1989-06-19 1990-06-14 Mélange à base de polymères et d'amidon déstructuré

Country Status (20)

Country Link
EP (1) EP0404723B1 (fr)
JP (1) JPH075788B2 (fr)
KR (1) KR0178389B1 (fr)
CN (1) CN1048552A (fr)
AT (1) ATE109813T1 (fr)
AU (1) AU633928B2 (fr)
BR (1) BR9002792A (fr)
CA (1) CA2018785C (fr)
DE (1) DE69011431T2 (fr)
DK (1) DK0404723T3 (fr)
ES (1) ES2058868T3 (fr)
FI (1) FI102478B (fr)
HU (1) HUT54392A (fr)
IE (1) IE66344B1 (fr)
IL (1) IL94587A (fr)
NO (1) NO902602L (fr)
NZ (1) NZ234018A (fr)
PL (1) PL285673A1 (fr)
PT (1) PT94364B (fr)
YU (1) YU114690A (fr)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992016584A1 (fr) * 1991-03-19 1992-10-01 Parke, Davis & Company Compositions biodegradables contenant de l'amidon
DE4116404A1 (de) * 1991-05-18 1992-11-19 Tomka Ivan Polymermischung fuer die herstellung von folien
EP0524920A1 (fr) * 1991-07-26 1993-01-27 Mundigler, Norbert, Dipl.-Ing. Nouveaux objets moules
US5234977A (en) * 1990-07-25 1993-08-10 Novamont S.P.A. Starchy polymeric mixture particularly for the production of films and the like and a method for its production
EP0560244A2 (fr) * 1992-03-10 1993-09-15 NOVAMONT S.p.A. Composition filmogène à base d'amidon et de polymère et objets formés, comme par exemple des films ou des feuilles
US5258430A (en) * 1989-08-07 1993-11-02 Novamont S.P.A. Polymer compositions for the production of articles of biodegradable plastics material and methods of their preparation
US5262458A (en) * 1989-03-09 1993-11-16 Novamont S.P.A. Biodegradable articles based on starch and process for producing them
US5286770A (en) * 1991-08-01 1994-02-15 Novamont S.P.A. Disposable absorbent articles
US5288765A (en) * 1989-08-03 1994-02-22 Spherilene S.R.L. Expanded articles of biodegradable plastics materials and a method for their production
US5292782A (en) * 1991-02-20 1994-03-08 Novamont S.P.A. Biodegradable polymeric compositions based on starch and thermoplastic polymers
US5334634A (en) * 1989-05-30 1994-08-02 Novamont S.P.A. Polymer compositions for the production of articles of biodegradable plastics material and methods for their preparation
US5374671A (en) * 1993-02-16 1994-12-20 The Goodyear Tire & Rubber Company Hydrophilic polymer composite and product containing same
US5384187A (en) * 1991-05-15 1995-01-24 Nippon Gohsei Kagaku Kogyo Kabushiki Kaisha Biodegradable resin compositions and laminates based thereon
US5384170A (en) * 1990-08-09 1995-01-24 Novamont S.P.A. Laminated film with a starchy matrix and low permeability and methods for its production
US5409973A (en) * 1989-08-07 1995-04-25 Butterfly S.R.L. Polymer composition including destructured starch and an ethylene copolymer
US5412005A (en) * 1991-05-03 1995-05-02 Novamont S.P.A. Biodegradable polymeric compositions based on starch and thermoplastic polymers
US5436078A (en) * 1991-10-08 1995-07-25 Ems-Inventa Ag Starch mixture and process for the production thereof
US5462982A (en) * 1989-05-30 1995-10-31 Novamont S.P.A. Method for the preparation of destructured-starch-based compositions and compositions produced thereby
US5500465A (en) * 1994-03-10 1996-03-19 Board Of Trustees Operating Michigan State University Biodegradable multi-component polymeric materials based on unmodified starch-like polysaccharides
US5534150A (en) * 1991-05-03 1996-07-09 Novamont S.P.A. Selectively-permeable membrane and the use thereof
WO1996035748A1 (fr) * 1995-05-11 1996-11-14 Teich Aktiengesellschaft Utilisation de plastifiants pour la thermoplastification d'amidon
US5910520A (en) * 1993-01-15 1999-06-08 Mcneil-Ppc, Inc. Melt processable biodegradable compositions and articles made therefrom
WO2001064421A1 (fr) * 2000-03-01 2001-09-07 Pvaxx Technologies Ltd. Procede et dispositif de moulage par soufflage de capsules d'alcool polyvinylique, et de telles capsules ainsi produites
WO2001066082A2 (fr) * 2000-03-10 2001-09-13 Swiss Caps Rechte Und Lizenzen Ag Corps forme comprenant une enveloppe et un contenu, notamment capsules a enveloppe monobloc, et procede de production de corps formes et de couches de protection
WO2002048198A1 (fr) 2000-12-11 2002-06-20 Biop Biopolymer Technologies Ag Materiau a base d'amidon thermoplastique et resistant a la deformation dans l'eau et son procede de production
EP1229075A1 (fr) 2001-02-01 2002-08-07 Biop Biopolymer GmbH Composite de polymère thermoplastique à base d'amidon contenant des particules integrées nanoscopiques et leur procédé de préparation
US6933335B1 (en) * 1999-08-06 2005-08-23 Biop Biopolymer Technologies Ag Thermoplastic polymer blend produced from thermoplastic starch and method for the production thereof
US6958369B2 (en) 1997-11-17 2005-10-25 Biop Biopolymer Technologies Ag Component for producing polymer mixtures on the basis of starch and a method for producing the same
US7026375B1 (en) 1998-08-26 2006-04-11 Pvaxx Research And Development Limited PVA-containing compositions
WO2008071717A2 (fr) * 2006-12-12 2008-06-19 Novamont S.P.A. Composition biodégradable à caractéristiques mécaniques élevées
CN112608568A (zh) * 2020-12-14 2021-04-06 宁波保税区君一汽配科技有限公司 一种可降解塑料及其制备方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL285925A1 (en) * 1989-07-11 1991-03-11 Warner Lambert Co Polymer mixture, method for manufacturing a thermoplastic product and a method for manufacturing a thermoplastic alloy
JPH05215522A (ja) * 1992-02-06 1993-08-24 Nippon Denki Computer Syst Kk 粒径分布測定方式
JPH0570253U (ja) * 1992-03-06 1993-09-24 小久保 賢治 苗木栽培用ポット
KR100496901B1 (ko) * 2002-03-21 2005-06-23 한국과학기술원 비닐알콜-스티렌 블록 공중합체의 제조방법 및 그에의하여 제조된 공중합체
NZ554682A (en) * 2004-10-18 2010-04-30 Plantic Technologies Ltd Gas barrier film comprising starch, a water soluble polymer, a plasticizer, a fatty acid and an emulsifier

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2190093A (en) * 1986-05-05 1987-11-11 Warner Lambert Co Mouldable starch compositions
EP0400532A1 (fr) * 1989-05-30 1990-12-05 NOVAMONT S.p.A. Compositions de polymère pour la production d'articles en matière plastique biodégradables et leur procédé de préparation

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IN160476B (fr) * 1983-02-18 1987-07-11 Warner Lambert Co
JPS6144935A (ja) * 1984-08-09 1986-03-04 Kuraray Co Ltd 高分子組成物
JPS62288643A (ja) * 1986-06-06 1987-12-15 Kuraray Co Ltd 高分子組成物
JPH0284450A (ja) * 1988-09-19 1990-03-26 Kuraray Co Ltd 高分子組成物
IL93620A0 (en) * 1989-03-09 1990-12-23 Butterfly Srl Biodegradable articles based on starch and process for producing them

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2190093A (en) * 1986-05-05 1987-11-11 Warner Lambert Co Mouldable starch compositions
EP0400532A1 (fr) * 1989-05-30 1990-12-05 NOVAMONT S.p.A. Compositions de polymère pour la production d'articles en matière plastique biodégradables et leur procédé de préparation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
IND. ENG. CHEM. PROD. RES. DEV., vol. 23, 1984, pages 594-595; B.T. NWUTO et al.: "Extrusion of starch-extended water-soluble polyvinyl alcohol" *

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5262458A (en) * 1989-03-09 1993-11-16 Novamont S.P.A. Biodegradable articles based on starch and process for producing them
US5462982A (en) * 1989-05-30 1995-10-31 Novamont S.P.A. Method for the preparation of destructured-starch-based compositions and compositions produced thereby
US5334634A (en) * 1989-05-30 1994-08-02 Novamont S.P.A. Polymer compositions for the production of articles of biodegradable plastics material and methods for their preparation
US5360830A (en) * 1989-08-03 1994-11-01 Novamont S.P.A. Expanded articles of biodegradable plastic materials
US5288765A (en) * 1989-08-03 1994-02-22 Spherilene S.R.L. Expanded articles of biodegradable plastics materials and a method for their production
US5258430A (en) * 1989-08-07 1993-11-02 Novamont S.P.A. Polymer compositions for the production of articles of biodegradable plastics material and methods of their preparation
US5409973A (en) * 1989-08-07 1995-04-25 Butterfly S.R.L. Polymer composition including destructured starch and an ethylene copolymer
US5234977A (en) * 1990-07-25 1993-08-10 Novamont S.P.A. Starchy polymeric mixture particularly for the production of films and the like and a method for its production
US5384170A (en) * 1990-08-09 1995-01-24 Novamont S.P.A. Laminated film with a starchy matrix and low permeability and methods for its production
US5292782A (en) * 1991-02-20 1994-03-08 Novamont S.P.A. Biodegradable polymeric compositions based on starch and thermoplastic polymers
WO1992016584A1 (fr) * 1991-03-19 1992-10-01 Parke, Davis & Company Compositions biodegradables contenant de l'amidon
US5412005A (en) * 1991-05-03 1995-05-02 Novamont S.P.A. Biodegradable polymeric compositions based on starch and thermoplastic polymers
US5534150A (en) * 1991-05-03 1996-07-09 Novamont S.P.A. Selectively-permeable membrane and the use thereof
US5384187A (en) * 1991-05-15 1995-01-24 Nippon Gohsei Kagaku Kogyo Kabushiki Kaisha Biodegradable resin compositions and laminates based thereon
DE4116404A1 (de) * 1991-05-18 1992-11-19 Tomka Ivan Polymermischung fuer die herstellung von folien
EP0524920A1 (fr) * 1991-07-26 1993-01-27 Mundigler, Norbert, Dipl.-Ing. Nouveaux objets moules
US5286770A (en) * 1991-08-01 1994-02-15 Novamont S.P.A. Disposable absorbent articles
US5436078A (en) * 1991-10-08 1995-07-25 Ems-Inventa Ag Starch mixture and process for the production thereof
US5462980A (en) * 1992-03-10 1995-10-31 Novamont S.P.A. Film-forming, starchy, polymeric composition and shaped articles, particularly films and sheets, which can be produced from the composition and have a good barrier effect, and a method of producing the articles
EP0560244A3 (fr) * 1992-03-10 1994-03-23 Novamont Spa
EP0560244A2 (fr) * 1992-03-10 1993-09-15 NOVAMONT S.p.A. Composition filmogène à base d'amidon et de polymère et objets formés, comme par exemple des films ou des feuilles
US5910520A (en) * 1993-01-15 1999-06-08 Mcneil-Ppc, Inc. Melt processable biodegradable compositions and articles made therefrom
US5545680A (en) * 1993-02-16 1996-08-13 The Goodyear Tire & Rubber Company Hydrophilic polymer composite and product containing same
US5374671A (en) * 1993-02-16 1994-12-20 The Goodyear Tire & Rubber Company Hydrophilic polymer composite and product containing same
US5500465A (en) * 1994-03-10 1996-03-19 Board Of Trustees Operating Michigan State University Biodegradable multi-component polymeric materials based on unmodified starch-like polysaccharides
WO1996035748A1 (fr) * 1995-05-11 1996-11-14 Teich Aktiengesellschaft Utilisation de plastifiants pour la thermoplastification d'amidon
US5773495A (en) * 1995-05-11 1998-06-30 Teich Aktiengellschaft Use of plasticisers for thermo-plasticizing starch
US6958369B2 (en) 1997-11-17 2005-10-25 Biop Biopolymer Technologies Ag Component for producing polymer mixtures on the basis of starch and a method for producing the same
US7026375B1 (en) 1998-08-26 2006-04-11 Pvaxx Research And Development Limited PVA-containing compositions
US6933335B1 (en) * 1999-08-06 2005-08-23 Biop Biopolymer Technologies Ag Thermoplastic polymer blend produced from thermoplastic starch and method for the production thereof
WO2001064421A1 (fr) * 2000-03-01 2001-09-07 Pvaxx Technologies Ltd. Procede et dispositif de moulage par soufflage de capsules d'alcool polyvinylique, et de telles capsules ainsi produites
US7195777B2 (en) 2000-03-01 2007-03-27 Pvaxx Research & Development Limited Method and apparatus for blowmoding capsules of polyvinylalcohol and blowmolded polyvinylalcohol capsules
WO2001066082A3 (fr) * 2000-03-10 2002-01-24 Greither Peter Corps forme comprenant une enveloppe et un contenu, notamment capsules a enveloppe monobloc, et procede de production de corps formes et de couches de protection
WO2001066082A2 (fr) * 2000-03-10 2001-09-13 Swiss Caps Rechte Und Lizenzen Ag Corps forme comprenant une enveloppe et un contenu, notamment capsules a enveloppe monobloc, et procede de production de corps formes et de couches de protection
WO2002048198A1 (fr) 2000-12-11 2002-06-20 Biop Biopolymer Technologies Ag Materiau a base d'amidon thermoplastique et resistant a la deformation dans l'eau et son procede de production
EP2380915A1 (fr) 2000-12-11 2011-10-26 BIOP Biopolymer Technologies AG Matériau à base d'amidon thermoplastique et résistant à la déformation dans l'eau et son procédé de fabrication
EP1229075A1 (fr) 2001-02-01 2002-08-07 Biop Biopolymer GmbH Composite de polymère thermoplastique à base d'amidon contenant des particules integrées nanoscopiques et leur procédé de préparation
WO2008071717A2 (fr) * 2006-12-12 2008-06-19 Novamont S.P.A. Composition biodégradable à caractéristiques mécaniques élevées
WO2008071717A3 (fr) * 2006-12-12 2008-09-18 Novamont Spa Composition biodégradable à caractéristiques mécaniques élevées
CN112608568A (zh) * 2020-12-14 2021-04-06 宁波保税区君一汽配科技有限公司 一种可降解塑料及其制备方法

Also Published As

Publication number Publication date
JPH0379645A (ja) 1991-04-04
CA2018785C (fr) 2003-10-21
DE69011431T2 (de) 1995-01-26
DK0404723T3 (da) 1994-11-21
EP0404723B1 (fr) 1994-08-10
ES2058868T3 (es) 1994-11-01
HUT54392A (en) 1991-02-28
HU903817D0 (en) 1990-11-28
IE902117A1 (en) 1991-01-02
AU5703490A (en) 1990-12-20
CN1048552A (zh) 1991-01-16
IL94587A (en) 1997-04-15
ATE109813T1 (de) 1994-08-15
DE69011431D1 (de) 1994-09-15
BR9002792A (pt) 1991-08-20
YU114690A (en) 1991-10-31
NO902602D0 (no) 1990-06-12
IE902117L (en) 1990-12-19
KR910000884A (ko) 1991-01-30
IL94587A0 (en) 1991-04-15
FI902931A0 (fi) 1990-06-12
FI102478B1 (fi) 1998-12-15
EP0404723A3 (fr) 1991-05-22
NO902602L (no) 1990-12-20
PT94364B (pt) 1997-04-30
KR0178389B1 (ko) 1999-05-15
AU633928B2 (en) 1993-02-11
PT94364A (pt) 1991-02-08
CA2018785A1 (fr) 1990-12-19
PL285673A1 (en) 1991-04-08
FI102478B (fi) 1998-12-15
IE66344B1 (en) 1995-12-27
JPH075788B2 (ja) 1995-01-25
NZ234018A (en) 1991-08-27

Similar Documents

Publication Publication Date Title
CA2018785C (fr) Composition polymerique renfermant de l'amidon destructure
CA2020405C (fr) Compositions a base de polymere, renfermant de l'amidon destructure
EP0404727B1 (fr) Mélange à base de polymères et d'amidon déstructuré
EP0409782B1 (fr) Mélange à base de polymères et d'amidon destructuré
EP0409788B1 (fr) Mélange à base de polymères et d'amidon déstructuré
EP0409781A2 (fr) Mélange à base de polymères et d'amidon destructuré
EP0408502A2 (fr) Compositions à base d'un mélange de polymères contenant de l'amidon déstructuré
EP0408501A2 (fr) Compositions à base d'un mélange de polymères contenant de l'amidon déstructuré
EP0407350A2 (fr) Compositions à base d'un mélange de polymères contenant de l'amidon déstructuré
EP0404728A2 (fr) Mélange à base de polymères et d'amidon déstructuré
EP0409783B1 (fr) Mélange à base de polymères et d'amidon destructuré
EP0409789A2 (fr) Mélange à base de polymères et d'amidon destructuré

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19900618

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

17Q First examination report despatched

Effective date: 19921222

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

REF Corresponds to:

Ref document number: 109813

Country of ref document: AT

Date of ref document: 19940815

Kind code of ref document: T

REF Corresponds to:

Ref document number: 69011431

Country of ref document: DE

Date of ref document: 19940915

ET Fr: translation filed
ITF It: translation for a ep patent filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2058868

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

EAL Se: european patent in force in sweden

Ref document number: 90810434.2

REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3013927

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19950614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19950630

26N No opposition filed
BERE Be: lapsed

Owner name: WARNER-LAMBERT CY

Effective date: 19950630

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19950614

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: CH

Ref legal event code: AEN

Free format text: DAS PATENT IST AUFGRUND DES AM 20.03.1996 EINGEREICHTEN WEITERBEANDLUNGSANTRAGS WIEDER AKTIVIERT WORDEN.

REG Reference to a national code

Ref country code: FR

Ref legal event code: RN

REG Reference to a national code

Ref country code: FR

Ref legal event code: FC

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20070326

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20070427

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20070507

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20070509

Year of fee payment: 18

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: BRAUNPAT BRAUN EDER AG

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20070419

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20080530

Year of fee payment: 19

Ref country code: SE

Payment date: 20080609

Year of fee payment: 19

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090107

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20090625

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090605

Year of fee payment: 20

Ref country code: IT

Payment date: 20090620

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090630

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090106

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20100101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100101

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20100615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20100615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20100614