EP0403332B1 - Acier inoxydable austénitique resulfuré à usinabilité améliorée - Google Patents

Acier inoxydable austénitique resulfuré à usinabilité améliorée Download PDF

Info

Publication number
EP0403332B1
EP0403332B1 EP90401511A EP90401511A EP0403332B1 EP 0403332 B1 EP0403332 B1 EP 0403332B1 EP 90401511 A EP90401511 A EP 90401511A EP 90401511 A EP90401511 A EP 90401511A EP 0403332 B1 EP0403332 B1 EP 0403332B1
Authority
EP
European Patent Office
Prior art keywords
inclusions
calcium
stainless steel
equal
fact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90401511A
Other languages
German (de)
English (en)
Other versions
EP0403332A1 (fr
Inventor
Olivier Bletton
Roger Duet
Marc Henry
Jean-Yves Cogne
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ugitech SA
Original Assignee
Ugine Savoie SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=9382842&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0403332(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Ugine Savoie SA filed Critical Ugine Savoie SA
Publication of EP0403332A1 publication Critical patent/EP0403332A1/fr
Application granted granted Critical
Publication of EP0403332B1 publication Critical patent/EP0403332B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Definitions

  • the present invention relates to a resulfurized austenitic stainless steel with improved machinability.
  • Such an austenitic steel is known from JP-A-160785.
  • This patent deals with a steel which can be machined and deformed cold and which, in weight composition, in particular, a sulfur content of less than 0.030%, calcium and oxygen contents respectively included in the ranges 10-300 ppm and 30-300 ppm , 0.8 to 5% copper and 0.01 to 0.25% lead.
  • austenitic stainless steels are difficult to machine, largely because of their low thermal conductivity, resulting in poor flow of heat produced at the tip of a cutting tool and rapid deterioration of the 'tool and their high hardening locally inducing high hardness areas.
  • One way to improve machinability is the introduction of the lead element, in particular in a proportion of 0.01 to 0.25%.
  • This element has the disadvantages of being difficult to dissolve homogeneously in a molten bath, and, because of its high density, of having a tendency to accumulate in the bottom of metallurgical vessels. In addition, it forms phases with a low melting point deteriorating the hot deformability.
  • FR-A-2,542,761 which describes a process manufacturing high machinability steel
  • another cause of the difficulty in machining stainless steels is the fact that they contain inclusions of hard oxides such as for example alumina or chromite which damage the cutting tools.
  • One way to reduce the harmfulness of hard oxide inclusions is to introduce into the steel one or more alkaline earth compounds, in order to replace in a good proportion the hard inclusions by inclusions of calcium-based oxides, for example. It is specified on the one hand, that a certain quantity of sulfur combined with hard inclusions reduces its harmfulness, the sulfur content being generally less than 0.5 10 ⁇ 4%, and on the other hand, that a Another way to reduce the harmfulness of inclusions is to reduce their quantity thanks to good deoxidation and good decantation of the molten bath during the production of steel.
  • an austenitic stainless steel which has good aptitude for hot work and whose weight composition is as follows: carbon between 0.03 and 0.15% silicon between 0.10 and 1.00% manganese between 1.00 and 2.00% phosphorus less than 0.20% except between 0.15 and 0.35% nickel between 8.00 and 10.00% chromium between 17.00 and 19.00% calcium between 20.10-4 and 60.10-4 oxygen less than 45.10-4 the rest being iron.
  • the problem which this document proposes to solve is to obtain a steel which has a good aptitude for hot working and which does not exhibit any tearing of the ends when the ingot is rolled in order to prevent the ends from rolling up. around the cylinders.
  • the subject of the present invention is a resulfurized austenitic steel with improved unisability containing on the one hand sulfur for the creation of a manganese and chromium sulfide having lubricating properties and on the other hand a determined proportion oxygen and calcium introduced in the form of lime silicoaluminate, in order to create, in number, specific inclusions improving the machinability.
  • Calcium is introduced, during the preparation, into the molten bath, by addition of silico-calcium under control of the oxygen contents.
  • the austenitic steel comprises sulfur in a proportion of between 0.15 and 0.35%.
  • the value of the ratio of the contents of calcium and oxygen elements is between 0.3 and 0.5.
  • the range of values of the Ca / O ratio is determined by machinability measurements of the various steels having the basic composition of the steel according to the invention and the calcium and oxygen contents are varied.
  • the manganese sulfide and chromium inclusions are coated with a lime silicoaluminate phase of the anorthite and / or pseudowollastonite type to form associated inclusions.
  • the creation of this type of inclusion is made possible by the introduction of calcium compounds into the liquid bath under the control of determined oxygen contents.
  • the associated inclusions have a form factor of between 3 and 6.
  • the form factor is determined by the ratio of the length to the width of the inclusion, the value of the form factor being a criterion for measuring the quality of steel machinability.
  • FIG. 1 represents the CaO-Al2O3-SiO2 ternary composition diagram locating the weight composition of the anorthite of pseudowollastonite and of gehlenite.
  • Figure 2 shows a sectional image of an associated inclusion.
  • FIG. 3 is a diagram representing the values of the machinability criterion VB30 / 0.3 as a function of the variation in oxygen concentration.
  • FIG. 4 is a diagram representing the values of the machinability criterion VB30 / 0.3 as a function of the variation in sulfur concentration.
  • FIG. 5 represents, in an example of steel given for comparison (steel according to the invention without sulfur), a diagram representing the values VB30 / 0.3 as a function of the ratio of the Ca / O contents.
  • the present invention relates to a resulfurized austenitic stainless steel alloy whose machinability is improved by the creation of associated inclusions, lime silicoaluminate / manganese sulfide and chromium.
  • Sulfur generates manganese sulfide inclusions also containing chromium in the steel.
  • the lime silico-aluminate oxides are created during the production of the steel by the introduction of calcium, preferably, in the form of a wire filled with silicocalcium, in the molten bath under control of the oxygen contents.
  • the vast majority of the oxides are linked to the sulphides and, with the inclusion of the sulphides, form associated inclusions, the sulphide being placed inside the oxide inclusions.
  • These sulfides are manganese sulfides, however, also containing chromium.
  • the lime silicoaluminate oxides in their chemical composition are preferably anorthite or pseudowollastonite, (the chemical composition of which is shown in the ternary diagram of FIG. 1), the majority of said oxides being anorthite. These oxides can also contain a little MnO.
  • the lime silicoaluminate oxides formed around the sulphides are malleable, low-melting oxides which can easily deform during rolling.
  • these inclusions play a lubricating role at the interface-steel to be machined-cutting tool, thus leading to reduced wear of cutting tools and better surface appearance of the machined parts.
  • FIG. 2 is a sectional image of a steel according to the invention containing an associated inclusion 2 of lenticular form composed of lime silicoaluminate 3 coating inclusions of sulfide 4 of manganese and chromium.
  • Table 1 gives some results obtained on steels whose basic composition is: C: 0.05%, Si: 0.5%, Mn: 1.8%, Ni: 8.6%, Cr: 17%, Mo: 0.2%, S: 0.3%, but whose calcuim and oxygen contents vary.
  • the average surface and the average form factor (length / width) of the sulfide inclusions and of the associated oxide / sulfide inclusions are given.
  • Steels No. 3 to 7 corresponding to a composition according to the invention.
  • the values of VB30 / 0.3 are higher by about 20%.
  • the mean surface and the mean form factor of the sulphide inclusions of steels No. 1 and No. 2 on the one hand and of steels No. 3 to No. 7 do not differ significantly.
  • the criteria used to compare the steels are on the one hand the time leading to an undercut wear of 0.15 mm under the cutting conditions given above and on the other hand the measurement of wear in skin after 30 minutes of cutting.
  • FIG. 3 presents a diagram giving the variations of the machinability criterion VB30 / 0.3 as a function of the oxygen concentration in a series of measurements corresponding on the one hand to the production of the steels according to the invention and, on the other hand, the development of calcium-free steel.
  • FIG. 4 represents a diagram giving the variations of the machinability criterion VB30 / 0.3 as a function of the sulfur concentration in a series of measurements corresponding on the one hand to the preparation according to the invention and, on the other hand , to the development of calcium-free steel.
  • Figures 3 and 4 show first of all that the evolution of grades of resulfurized austenitic stainless steels towards high oxygen contents or high sulfur contents does not make it possible to improve machinability significantly (criterion VB 30 / 0.3).
  • steels according to the invention constitutes a separate population, on the diagrams of FIGS. 3 and 4, with high machinability criteria.
  • These steels contain little or no sulfur compared to the steel according to the invention.
  • Table III gives the values of VB 30 / 0.3 of several steels as a function of the calcium and oxygen content and of the value of the ratio of element concentrations.
  • TABLE III STEEL N ° Ca (ppm) O (ppm) Ca
  • Steels No. 8 and No. 9 contain little or no calcium and are the reference steels for these measurements.
  • the oxide inclusions are of the polyphase silicate and chromite type.
  • Steel No. 13 has an oxygen content corresponding to that of the composition of the steel according to the invention without sulfur but a calcium content and a lower Ca / O ratio. The machinability is not significantly improved.
  • Steel No. 14 has contents corresponding to those of the composition of the steel according to the invention without sulfur, but a Ca / O ratio below 0.30.
  • the improvement in machinability is appreciable but remains far below that of steels N ° 10 and N ° 11.
  • the present invention relates to a resulfurized austenitic stainless steel whose machinability is improved thanks to the creation of associated inclusions of oxides of lime silico-aluminate / sulfide (Mn, Cr) S type.
  • oxides coating sulfide inclusions are lime silico-aluminates, preferably of the anorthite and pseudowollastonite type, the chemical compositions of which are determined in the ternary diagram CaO-SiO2-Al203 in FIG. 1.
  • These associated inclusions have a surface and a form factor (length / width) important. The high deformability of the inclusions and their lubricating effect at the cutting tool / chip interface allowing improved machinability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Laminated Bodies (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Catalysts (AREA)
  • Adornments (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Heat Treatment Of Steel (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Description

  • La présente invention concerne un acier inoxydable austénitique resulfuré à usinabilité améliorée.
  • Un tel acier austénitique est connu dans le JP-A-160785. Ce brevet traite d'un acier usinable et déformable à froid et ayant, en composition pondérale, notamment, une teneur en soufre inférieure à 0,030%, des teneurs en calcium et oxygène respectivement comprises dans les intervalles 10-300 ppm et 30-300 ppm, de 0,8 à 5% de cuivre et de 0,01 à 0,25% de plomb.
  • Dans cet acier inoxydable austénitique, on introduit de l'oxygène et du calcium, ce qui permet de transformer des inclusions dures en inclusions à base d'oxyde de calcium. L'amélioration de l'usinabilité est générée par l'introduction, dans la composition, d'une quantité variable de plomb.
  • Il est bien connu que les aciers inoxydables austénitiques sont difficiles à usiner, en grande partie à cause de leur faible conductibilité thermique, d'où un mauvais écoulement de la chaleur produite à la pointe d'un outil de coupe et une détérioration rapide de l'outil et de leur forte écrouissabilité induisant localement des zones de dureté élevée.
  • Un moyen d'améliorer l'usinabilité est l'introduction de l'élément plomb notamment dans une proportion de 0,01 à 0,25%. Cet élément à les inconvénients d'être difficile à dissoudre de façon homogène en bain fondu, et, en raison de sa densité élevée, d'avoir tendance à s'accumuler dans le fond des récipients métallurgiques. De plus il forme des phases à bas point de fusion détériorant la déformabilité à chaud.
  • Dans le FR-A-2.542.761 qui décrit un procédé de fabrication d'acier à haute usinabilité, il est précisé qu'une autre cause de la difficulté d'usiner les aciers inoxydables est le fait qu'ils contiennent des inclusions d'oxydes durs comme par exemple de l'alumine ou de la chromite qui détériorent les outils de coupe.
  • Un moyen de réduire la nocivité des inclusions d'oxydes durs est d'introduire dans l'acier un ou plusieurs composés alcalinoterreux, afin de remplacer dans une bonne proportion les inclusions dures par des inclusions d'oxydes à base de calcium, par exemple. Il est précisé d'une part, qu'une certaine quantité de soufre combiné à des inclusions dures en réduit la nocivité, la teneur en soufre étant généralement inférieure à 0,5 10⁻⁴ %, et d'autre part, qu'un autre moyen de réduire la nocivité des inclusions est de réduire leur quantité grâce à une bonne désoxydation et une bonne décantation du bain fondu lors de la réalisation de l'acier.
  • Dans les documents mentionnés ci-dessus, l'amélioration de l'usinabilité de l'acier est réalisée :
    • par introduction de plomb en tant que lubrifiant,
    • par introduction d'oxygène ou de calcium pour réduire les inclusions dures en inclusions à base de composés alcalinoterreux.
    • en réduisant le nombre d'inclusions dures par désoxydation du bain fondu, lors de l'élaboration.
  • On connaît également dans le brevet JP-A-56.090.959 un acier inoxydable austénitique qui présente une bonne aptitude au travail à chaud et dont la composition pondérale est la suivante :
       carbone entre 0,03 et 0,15%
       silicium entre 0,10 et 1,00%
       manganèse entre 1,00 et 2,00%
       phosphore moins de 0,20%
       saufre entre 0,15 et 0,35%
       nickel entre 8,00 et 10,00%
       chrome entre 17,00 et 19,00%
       calcium entre 20.10-4 et 60.10-4
       oxygène moins de 45.10-4
       le reste étant constitué par du fer.
  • Le problème que se propose de résoudre ce document est d'obtenir un acier qui présente une bonne aptitude au travail à chaud et qui ne présente pas de déchirement d'extrémité au moment du laminage du lingot afin d'éviter que les extrémités s'enroulent autour des cylindres.
  • La présente invention a pour objet un acier austénitique resulfuré à unisabilité améliorée contenant d'une part, du soufre pour la création d'un sulfure de manganèse et chrome ayant des propriétés lubrifiantes et, d'autre part, une proportion déterminée d'oxygène et de calcium introduite sous forme de silicoaluminate de chaux, afin de créer, en nombre, des inclusions spécifiques améliorant l'usinabilité.
  • L'acier inoxydable austénitique se caractérise par la composition suivante exprimée en pourcentages pondéraux :
    • Carbone inférieur ou égal à 0,15%
    • Silicium inférieur ou égal à 2%
    • Manganèse inférieur ou égal à 2%
    • Molybdène inférieur ou égal à 3%
    • Nickel compris entre 7 et 12%
    • Chrome compris entre 15 et 25%
    • Soufre compris entre 0,10 et 0,40%
    • Calcium supérieur ou égal à 30 10⁻⁴%
    • Oxygène supérieur ou égal à 70 10⁻⁴%
    • Le rapport de la teneur en calcium et en oxygène Ca/O étant compris entre 0,2 et 0,6,
  • le reste étant du fer et en ce qu'il contient des inclusions de silicoaluminate de chaux de type anorthite et/ou pseudowollastonite.
  • Le calcium est introduit, Lors de l'élaboration, dans le bain fondu, par addition de silico-calcium sous contrôle des teneurs en oxygène.
  • Dans une composition préférentielle de l' invention, l'acier austénitique comprend du soufre dans une proportion comprise entre 0,15 et 0,35%. Le saufre forme avec le manganèse et dans une plus faible proportion, avec le chrome, un sulfure de manganèse et chrome (Mn, Cr) S qui génère-sous forme d'inclusions une lubrification à chaud de l'outil de coupe lors de l'usinage de l'acier.
  • Dans une autre forme de l'invention, la valeur du rapport des teneurs en éléments calcium et oxygène est comprise entre 0,3 et 0,5.
  • L'intervalle des valeurs du rapport Ca/O est déterminé par des mesures d'usinabilité des différents aciers ayant la composition de base de l'acier selon l'invention et dont on fait varier les teneurs en calcium et oxygène.
  • Particulièrement les inclusions de sulfure de manganèse et chrome sont enrobées d'une phase de silicoaluminate de chaux de type anorthite et/ou pseudowollastonite pour former des inclusions associées. La création de ce type d'inclusion est rendue possible grâce à l'introduction de composés de calcium, dans le bain liquide sous contrôle de teneurs déterminées en oxygène.
  • De plus, les inclusions associées ont un facteur de forme compris entre 3 et 6. Le facteur de forme est déterminé par le rapport de la longueur sur la largeur de l'inclusion, la valeur du facteur de forme étant un critère de mesure de la qualité de l'usinabilité de l'acier.
  • Les essais décrits ci-dessous et les figures annexées feront mieux comprendre l'invention.
  • La figure 1 représente le diagramme de composition ternaire CaO-Al₂O₃-SiO₂ situant la composition pondérale de l'anorthite de la pseudowollastonite et de gehlenite.
  • La figure 2 représente une image en coupe d'une inclusion associée.
  • La figure 3 est un diagramme représentant les valeurs du critère d'usinabilité VB30/0,3 en fonction de la variation de concentration d'oxygène.
  • La figure 4 est un diagramme représentant les valeurs du critère d'usinabilité VB30/0,3 en fonction de la variation de concentration de soufre.
  • La figure 5 représente, dans un exemple d'acier donné à titre de comparaison (acier selon l'invention sans soufre), un diagramme représentant les valeurs VB30/0,3 en fonction du rapport des teneurs Ca/O.
  • La présente invention concerne un alliage d'acier inoxydable austénitique resulfuré dont l'usinabilité est améliorée par la création d'inclusions associées, silicoaluminate de chaux/sulfure de manganèse et chrome.
  • L'alliage comprend, en poids :
    • Carbone inférieur ou égal à 0,15%
    • Silicium inférieur ou égal à 2%
    • Manganèse inférieur ou égal à 2%
    • Molybdène inférieur ou égal à 3%
    • Nickel compris entre 7 et 12%
    • Chrome compris entre 15 et 25%
    • soufre compris entre 0,10 et 0,40%
    • oxygène supérieur ou égal à 70 ppm
    • Calcium supérieur ou égal à 30 ppm.
  • Le rôle bénéfique du soufre sur l'usinabilité est bien connu. Le soufre engendre dans l'acier des inclusions de sulfure de manganèse contenant également du chrome.
  • L'addition de soufre, ou encore par exemple du sélénium, permet d'améliorer l'usinabilité des aciers inoxydables austénitiques mais au détriment d'autres propriétés comme par exemple une diminution de la résistance à la corrosion et de la déformabilité à chaud et à froid.
  • Malgré l'effet défavorable d'une réduction de la résistance à la corrosion engendré par le soufre, les essais sur l'usinabilité des aciers austénitiques se sont orientés vers l'introduction, dans un acier resulfuré, d'oxydes silicoaluminates de chaux. Ces oxydes ne détériorent pas la résistance à la corrosion.
  • Le oxydes silico-aluminates de chaux sont créés lors de l'élaboration de l'acier grâce à l'introduction de calcium, préférentiellement ,sous forme de fil fourré de silicocalcium, dans le bain fondu sous contrôle des teneurs en oxygène.
  • Selon l'invention, les oxydes sont en grande majorité liés aux sulfures et forment avec les inclusion de sulfures, des inclusions associées, le sulfure se plaçant à l'intérieur des inclusions d'oxyde. Ces sulfures sont des sulfures de manganèse contenant toutefois également du chrome.
  • Les oxydes silicoaluminates de chaux dans leur composition chimique sont préférentiellement de l'anorthite ou de la pseudowollastonite, (dont la composition chimique est représentée sur le diagramme ternaire de la figure 1), la majorité desdits oxydes étant de l'anorthite. Ces oxydes peuvent de plus contenir un peu de MnO.
  • Les oxydes silicoaluminates de chaux formés autour des sulfures sont des oxydes malléables, à bas point de fusion qui peuvent se déformer facilement lors du laminage. Pendant l'usinage de l'acier, du fait des températures de coupe élevées, ces inclusions jouent un rôle lubrifiant à l'interface-acier à usiner-outil de coupe, conduisant ainsi à une usure réduire des outils de coupe et à un meilleur aspect de surface des pièces usinées.
  • Les recherches réalisées ont permis de conduire à la définition d'une composition d'acier de haute usinabilité à partir d'une base dont la composition a été donnée ci-dessus et ayant essentiellement :
    • une teneur en soufre de 0,15 à 0,35%.
    • une teneur en calcium supérieure ou égale à 30 ppm sur produit fini,
    • une teneur en oxygène supérieure ou égale à 70 ppm sur produit fini,
    • un rapport des teneurs en élément Ca/O compris entre 0,3 et 0,5. Il en découle :
    • la présence d'inclusions oxydes de silico-aluminates de chaux préférentiellement d'anorthite (majoritaire) ou de pseudowollastonite (minoritaire) enrobant généralement des sulfures de manganèse et chrome.
  • La figure 2 est une image en coupe d'un acier selon l'invention contenant une inclusion 2 associée de forme lenticulaire composée de silicoaluminate de chaux 3 enrobant des inclusions de sulfure 4 de manganèse et chrome.
  • De manière nette, il n'y a pas formation de sulfure de calcium, sulfure reconnu comme nocif, pour l'usinabilité des aciers et la résistance à la corrosion.
  • Les essais suivants illustrent de façon comparative les qualités d'usinabilité de l'acier selon l'invention.
  • Des essais de tournage avec outil en carbure (de référence P20 ISO) ont été réalisés. Pour une profondeur de passe de 1,5 mm, une avance de 0,25 mm/tour, plusieurs vitesses de coupe sont fixées. Pour chaque vitesse de coupe, l'outil est démonté toutes les 4 mn pour mesure de l'usure en dépouille. Ainsi, pour plusieurs vitesses V1, V2, V3..., une courbe donnant l'usure en dépouille de l'outil en fonction du temps ce l'usinage est tracée. La vitesse de coupe, conduisant à une usure en dépouille de 0,3 mm en 30 mn, peut ainsi être déterminée pour chaque élaboration, et être prise en référence sous le critère VB30/0,3.
  • Le tableau 1 ci-dessous donne quelques résultats obtenus sur des aciers dont la composition de base est : C : 0,05%, Si : 0,5%, Mn : 1,8%, Ni : 8,6%, Cr : 17%, Mo : 0,2%, S : 0,3%, mais dont les teneurs en calcuim et oxygène varient. De plus, pour chaque élaboration, la surface moyenne et le facteur de forme moyen (longueur/largeur) des inclusions de sulfure et des inclusions associées oxyde/sulfure sont donnés. TABLEAU I
    ACIER N° CA (ppm) O (ppm) Ca|O VB 30/0,3 (m/mn) SURFACE INCLUSIONS ASSOCIEES (mm)² FACTEUR DE FORME INCLUSIONS ASSOCIEES SURFACE SULFURE (mm)² FACTEUR DE FORME SULFURES
    1 5 94 0,05 245 2,4 1,8 39,3 3,1
    2 5 70 0,07 250 2,1 2,1 31,1 3,2
    3 45 120 0,38 300 24,9 4,5 31,4 3,1
    4 43 105 0,41 295 41,9 5 21,7 2,8
    5 40 96 0,42 303 39,8 5,4 31,4 3,1
    6 47 102 0,46 300 39,2 4,8 27,4 3,4
    7 35 73 0,48 308 45,5 5,6 35,3 3,7
  • Les aciers N° 1 et N° 2 constituent des références et ne contiennent pas de silicoaluminate de chaux.
  • Les inclusions associées sont très peu nombreuses, très petites et peu déformées.
  • Les aciers N° 3 à 7 correspondant à une composition selon l'invention. Les valeurs de VB30/0,3, sont plus élevées d'environ 20%. La surface moyenne et le facteur de forme moyen des inclusions de sulfure des aciers N° 1 et N° 2 d'une part et des aciers N° 3 à N° 7 ne diffèrent pas significativement.
  • Par contre, les inclusions associées des aciers selon l'invention (N° 3 à 7) ont une surface beaucoup plus grande et sont beaucoup plus déformées donc beaucoup plus déformables.
  • Ainsi, ces inclusions associées de silico-aluminates de chaux enrobant les inclusions de sulfure de manganèse et de chrome sont à l'origine de l'élévation importante de la valeur du critère d'usinabilité VB 30/0,3.
  • De même, des essais de tournage avec outil en carbure revêtu TiN ont été réalisés. Ces outils sont de plus en plus utilisés par les usineurs. Pour une avance de 0,25 mm/tour, une passe de 1,5 mm et une vitesse de 340 m/mn, il a été mesuré l'usure en dépouille de l'outil en fonction du temps. Le tableau II ci-dessous donne quelques valeurs obtenues sur les aciers N° 1, 4, 5 et 6 du tableau précédent. TABLEAU II
    ACIER N° Ca (ppm) O (ppm) Ca/O Temps pour usure 0,15 mm (mn) Usure au bout de 30 mn de coupe (mm)
    1 5 94 0,05 5 0,27
    4 43 105 0,41 22 0,16
    5 40 96 0,42 24 0,16
    6 47 102 0,46 24 0,17
  • Dans ces essais, les critères retenues pour comparer les aciers sont d'une part le temps conduisant à une usure en dépouille de 0,15 mm dans les conditions de coupe données ci-dessus et d'autre part la mesure de l'usure en dépouille après 30 mn de coupe.
  • Ainsi, par rapport à l'acier de référence N° 1 ne correspondant pas à une composition selon l'invention, les essais réalisés sur les aciers N° 4, 5 et 6 montrent que le temps de coupe avant usure de 0,15 mm est multiplié d'un facteur 4 et que l'usure, mesurée sur l'outil après 30 mn de coupe, est réduite de 60% environ.
  • Cette amélioration est liée aux inclusions associées décrites, et introduites dans l'acier selon l'invention.
  • La figure 3 présente un diagramme donnant les variations du critère d'usinabilité VB30/0,3 en fonction de la concentration en oxygène dans une série de mesures correspondant d'une part à l'élaboration des aciers selon l'invention et, d'autre part, à l'élaboration de l'acier sans calcium.
  • La Figure 4 représente un diagramme donnant les variations du critère d'usinabilité VB30/0,3 en fonction de la concentration en soufre dans une série de mesures correspondant d'une part à l'élaboration selon l'invention et, d'autre part, à l'élaboration de l'acier sans calcium.
  • Les figures 3 et 4 montrent tout d'abord que l'évolution de nuances d'aciers inoxydables austénitiques resulfurés vers des teneurs en oxygène élevées ou des teneurs en soufre élevées ne permet pas d'améliorer l'usinabilité de façon significative (critère VB 30/0,3). Par contre, les aciers selon l'invention constituent une population à part, sur les diagrammes des figures 3 et 4, avec des critères d'usinabilité élevés.
  • A titre de comparaison, il a été réalisé les mêmes essais d'usinabilité en utilisant le critère d'usinabilité VB 30/0,3 sur des aciers austénitiques dont la composition de base est la suivante :
    C : 0,06%, Si : 0,45%, Mn : 0,6%, Ni : 8,6%, Cr : 18%, Mo : 0.2%, S : 0.02%.
  • Ces aciers ne contiennent pas ou très peu de soufre comparativement à l'acier selon l'invention.
  • Les essais ont porté sur la variation du calcium et de l'oxygène, en utilisant le même mode opératoire d'introduction du silicoaluminate de chaux que dans l'élaboration des aciers selon l'invention.
  • Le tableau III ci-dessous donne les valeurs de VB 30/0,3 de plusieurs aciers en fonction de la teneur en calcium et oxygène et de la valeur du rapport des concentrations en élément. TABLEAU III
    ACIER N° Ca (ppm) O (ppm) Ca|O VB 30|0,3 (m/mn)
    8 2 57 0,04 168
    9 6 123 0,05 160
    10 32 79 0,4 200
    11 43 118 0,36 200
    12 26 47 0,55 155
    13 17 117 0,15 172
    14 32 129 0,25 180
  • Les aciers N° 8 et N° 9 ne comportent pas ou très peu de calcium et sont les aciers de références pour ces mesures. Les inclusions d'oxydes sont du type silicate polyphasé et chromite.
  • L'évolution vers des teneurs en oxygène élevées seules n'entraîne pas d'amélioration de l'usinabilité (comparaison des valeurs de VB 30/0,3 entre les aciers N° 8 et 9).
  • Les aciers n° 10 et N° 11 ayant :
    • une teneur en calcium supérieure à 30 ppm sur produit fini,
    • une teneur en oxygène supérieure à 70 ppm sur produit fini,
    • un rapport des teneurs en élément Ca/O compris entre 0,30 et 0,50 ont seulement des inclusions d'oxydes de type anorthite. On remarque, à l'usinage, une augmentation des valeurs du critère d'usinabilité VB 30/0,3 comme représentée en exemple sur la figure 5.
  • L'acier N° 12 a des teneurs en calcium et oxygène faibles et un rapport Ca/O très élevé. L'usinabilité reste médiocre. Les inclusions analysées chimiquement sont de type gehlenite (Figure 1).
  • L'acier N° 13 a une teneur en oxygène correspondant à celle de la composition de l'acier selon l'invention sans soufre mais une teneur en calcium et un rapport Ca/O plus faible. L'usinabilité n'est pas améliorée significativement.
  • L'acier N° 14 a des teneurs correspondant à celles de la composition de l'acier selon l'invention sans soufre, mais un rapport Ca/O en dessous de 0,30. L'amélioration de l'usinabilité est sensible mais reste très en-dessous de celle des aciers N° 10 et N° 11.
  • La comparaison des valeurs VB 30/0,3 des tableaux I et III montre l'importance de l'effet des inclusions d'anorthite seules et de l'effet des inclusions contenues dans l'acier resulfuré selon l'invention.
  • La présente invention a pour objet un acier inoxydable austénitique resulfuré dont l'usinabilité est améliorée grâce à la création d'inclusions associées oxydes de type silico-aluminate de chaux/sulfure (Mn, Cr)S.
  • Les caractéristiques permettant d'obtenir une usinabilité améliorée sont :
    • une teneur en soufre compris entre 0,10 et 0,40% et de préférence entre 0,15 et 0,35%
    • une teneur en calcium supérieure ou égale à 30 ppm,
    • une teneur en oxygène supérieure ou égale à 70 ppm,
    • un rapport de la teneur en calcium et en oxygène Ca/O compris entre 0,2 et 0,6 et préférentiellement entre 0,3 et 0,5.
  • Ces résultats entraînent la présence d'inclusions associées et déformées d'oxydes enrobant des inclusions de sulfure. Les oxydes sont des silico-aluminates de chaux, préférentiellement de type anorthite et pseudowollastonite dont les compositions chimiques sont déterminées dans le diagramme ternaire CaO-SiO2-Al203 de la figure 1. Ces inclusions associées ont une surface et un facteur de forme (longueur/largeur) importants. La déformabilité élevée des inclusions et leur effet lubrifiant à l'interface outil de coupe/copeau permettant une amélioration de l'usinabilité.

Claims (7)

  1. Acier inoxydable austénitique resulfuré à usinabilité améliorée, caractérisé en ce que sa composition pondérale est la suivante :
    - Carbone inférieur ou égal à 0,15 %
    - Silicium inférieur ou égal à 2 %
    - Manganèse inférieur ou égal à 2 %
    - Molybdène inférieur ou égal à 3 %
    - Nickel compris entre 7 et 12 %
    - Chrome compris entre 15 et 25 %
    - Soufre compris entre 0,10 et 0,40 %
    - Calcium supérieur à 30 10⁻⁴%
    - Oxygène supérieur à 70 10⁻⁴%
    - Le rapport de la teneur en calcium et en oxygène Ca/O étant compris entre 0,2 et 0,6, le reste étant du fer et en ce qu'il
    contient des inclusions de silicoaluminate de chaux de type anorthite et/ou pseudowollastonite.
  2. Acier inoxydable selon la revendication 1, caractérisé en ce qu'il comprend du soufre dans une proportion comprise entre 0,15 et 0,35%.
  3. Acier inoxydable selon les revendications 1 et 2, caractérisé en ce qu'il contient des inclusions de sulfure, de manganèse et de chrome (Mn, Cr)S.
  4. Acier inoxydable selon la revendication 1, caractérisé en ce que la valeur du rapport des teneurs en élément calcium et oxygène est comprise entre 0,3 et 0,5.
  5. Acier inoxydable selon les revendications 1 à 4, caractérisé en ce que les inclusion de sulfure, de manganèse et de chrome sont enrobés par une phase de silico-aluminate de chaux de type anorthite et/ou pseudowollastonite pour former des inclusions associées.
  6. Acier inoxydable selon la revendication 5, caractérisé en ce que les inclusions associées sont engendrées par l'addition de calcium introduit dans le bain en fusion sous forme de fil fourré de silicocalcium.
  7. Acier inoxydable selon la revendication 5, caractérisé en ce que les inclusions ont un facteur de forme compris entre 3 et 6.
EP90401511A 1989-06-16 1990-06-05 Acier inoxydable austénitique resulfuré à usinabilité améliorée Expired - Lifetime EP0403332B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8908060A FR2648477B1 (fr) 1989-06-16 1989-06-16 Acier inoxydable austenitique resulfure a usinabilite amelioree
FR8908060 1989-06-16

Publications (2)

Publication Number Publication Date
EP0403332A1 EP0403332A1 (fr) 1990-12-19
EP0403332B1 true EP0403332B1 (fr) 1995-08-30

Family

ID=9382842

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90401511A Expired - Lifetime EP0403332B1 (fr) 1989-06-16 1990-06-05 Acier inoxydable austénitique resulfuré à usinabilité améliorée

Country Status (15)

Country Link
US (1) US5089224A (fr)
EP (1) EP0403332B1 (fr)
AT (1) ATE127163T1 (fr)
CA (1) CA2019105C (fr)
DD (1) DD298434A5 (fr)
DE (1) DE69021941T2 (fr)
DK (1) DK0403332T3 (fr)
EG (1) EG19821A (fr)
ES (1) ES2076346T3 (fr)
FI (1) FI98533C (fr)
FR (1) FR2648477B1 (fr)
GR (1) GR3018176T3 (fr)
IL (1) IL94622A (fr)
NO (1) NO177392C (fr)
TR (1) TR26587A (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2690169B1 (fr) * 1992-04-17 1994-09-23 Ugine Savoie Sa Acier inoxydable austénitique à haute usinabilité et à déformation à froid améliorée.
FR2706489B1 (fr) * 1993-06-14 1995-09-01 Ugine Savoie Sa Acier inoxydable martensitique à usinabilité améliorée.
FR2720410B1 (fr) * 1994-05-31 1996-06-28 Ugine Savoie Sa Acier inoxydable ferritique à usinabilité améliorée.
FR2732694B1 (fr) * 1995-04-07 1997-04-30 Ugine Savoie Sa Acier inoxydable austenitique resulfure a usinabilite amelioree, utilise notamment dans le domaine de l'usinage a tres grande vitesse de coupe et le domaine du decolletage
FR2740783B1 (fr) * 1995-11-03 1998-03-06 Ugine Savoie Sa Acier inoxydable ferritique utilisable pour la production de laine d'acier
FR2805829B1 (fr) * 2000-03-03 2002-07-19 Ugine Savoie Imphy Acier inoxydable austenitique a haute usinabilite, resulfure, et comportant une resistance a la corrosion amelioree
JP2002206148A (ja) * 2001-01-09 2002-07-26 Nisshin Steel Co Ltd 加工割れ感受性が低いオーステナイト系ステンレス鋼板およびその製造方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5690959A (en) * 1979-12-24 1981-07-23 Sanyo Tokushu Seikou Kk Austenitic s free-cutting stainless steel

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1305801A (fr) * 1961-11-06 1962-10-05 Universal Cyclops Steel Corp Alliages austénitiques facilement usinables
US3598574A (en) * 1968-03-08 1971-08-10 Daido Steel Co Ltd Free cutting stainless steels
US4434006A (en) * 1979-05-17 1984-02-28 Daido Tokushuko Kabushiki Kaisha Free cutting steel containing controlled inclusions and the method of making the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5690959A (en) * 1979-12-24 1981-07-23 Sanyo Tokushu Seikou Kk Austenitic s free-cutting stainless steel

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
T0624/91 *

Also Published As

Publication number Publication date
DK0403332T3 (da) 1995-11-20
FI98533B (fi) 1997-03-27
NO177392B (no) 1995-05-29
DE69021941D1 (de) 1995-10-05
NO902659D0 (no) 1990-06-14
GR3018176T3 (en) 1996-02-29
FI98533C (fi) 1997-07-10
CA2019105C (fr) 2000-04-25
TR26587A (tr) 1995-03-15
NO177392C (no) 1995-09-06
ES2076346T3 (es) 1995-11-01
IL94622A (en) 1995-07-31
EP0403332A1 (fr) 1990-12-19
DD298434A5 (de) 1992-02-20
DE69021941T2 (de) 1996-03-07
NO902659L (no) 1990-12-17
FR2648477A1 (fr) 1990-12-21
EG19821A (fr) 1996-02-29
IL94622A0 (en) 1991-04-15
ATE127163T1 (de) 1995-09-15
US5089224A (en) 1992-02-18
FI902985A0 (fi) 1990-06-14
FR2648477B1 (fr) 1993-04-30
CA2019105A1 (fr) 1990-12-16

Similar Documents

Publication Publication Date Title
EP1751321B1 (fr) Acier a haute resistance mecanique et a l'usure
CA2506349C (fr) Procede pour fabriquer une tole en acier resistant a l'abrasion et tole obtenue
EP0629714B1 (fr) Acier inoxydable martensitique à usinabilité améliorée
CA2291694C (fr) Fil fourre de soudage a basse teneur en azote
FR2838138A1 (fr) Acier pour la fabrication de moules d'injection de matiere plastique ou pour la fabrication de pieces pour le travail des metaux
EP2171112A1 (fr) Procede de fabrication de tôles d'acier a hautes caracteristiques de resistance et de ductilite, et tôles ainsi produites
EP0403332B1 (fr) Acier inoxydable austénitique resulfuré à usinabilité améliorée
EP0567365B1 (fr) Acier inoxydable austénitique à haute usinabilité et à déformation à froid améliorée
CA1052133A (fr) Acier de decolletage
CA2150445C (fr) Acier inoxydable ferritique a usinabilite amelioree
JP2001131684A (ja) 切り屑処理性に優れた機械構造用鋼
FR2516942A1 (fr)
FR2813317A1 (fr) Materiau d'alliage fritte pour guides de soupape
FR2740063A1 (fr) Electrode de soudage a l'arc enrobee du type a faible teneur en hydrogene pour des aciers cr-mo a haute resistance
EP0736610B1 (fr) Acier inoxydable austénitique resulfuré à usinabilité améliorée, utilisé notamment dans le domaine de l'usinage à très grande vitesse de coupe et le domaine du décolletage
CA2004294C (fr) Acier doux pour decolletage et son mode d'elaboration
EP0020792B1 (fr) Acier de décolletage à haute résistance, capable de supporter les sollicitations dynamiques
JPH0978187A (ja) メッキ用快削鋼
EP0538158B1 (fr) Acier à usinage facile, faiblement allié et résulfuré
BE533501A (fr)
FR1465791A (fr) Procédé et électrode pour former un dépôt soudé résistant à l'usure
FR2566000A1 (fr) Acier de construction a haute resistance presentant une bonne usinabilite et une grande aptitude au durcissement superficiel par nitruration, utilisation de cet acier avant ou apres nitruration comme acier de construction et procede pour la fabrication de cet acier
BE431320A (fr)
CH300093A (fr) Electrode pour l'usinage des métaux.
BE464329A (fr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19901031

17Q First examination report despatched

Effective date: 19930604

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

REF Corresponds to:

Ref document number: 127163

Country of ref document: AT

Date of ref document: 19950915

Kind code of ref document: T

REF Corresponds to:

Ref document number: 69021941

Country of ref document: DE

Date of ref document: 19951005

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2076346

Country of ref document: ES

Kind code of ref document: T3

ITF It: translation for a ep patent filed

Owner name: GUZZI E RAVIZZA S.R.L.

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19951208

REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3018176

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: UGINE SAVOIE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: KIRKER & CIE SA

Ref country code: CH

Ref legal event code: PFA

Free format text: UGINE SAVOIE TRANSFER- UGINE-SAVOIE IMPHY

NLS Nl: assignments of ep-patents

Owner name: UGINE-SAVOIE IMPHY

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: UGITECH

Free format text: UGINE-SAVOIE IMPHY#AVENUE PAUL GIROD#73400 UGINE (FR) -TRANSFER TO- UGITECH#AVENUE PAUL GIROD#73400 UGINE (FR)

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Ref country code: FR

Ref legal event code: CD

Ref country code: FR

Ref legal event code: CA

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20090623

Year of fee payment: 20

Ref country code: DK

Payment date: 20090525

Year of fee payment: 20

Ref country code: NL

Payment date: 20090527

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20090626

Year of fee payment: 20

Ref country code: FR

Payment date: 20090617

Year of fee payment: 20

Ref country code: SE

Payment date: 20090518

Year of fee payment: 20

Ref country code: IT

Payment date: 20090626

Year of fee payment: 20

Ref country code: AT

Payment date: 20090519

Year of fee payment: 20

NLT1 Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1

Owner name: UGITECH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20090515

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090604

Year of fee payment: 20

Ref country code: DE

Payment date: 20090611

Year of fee payment: 20

Ref country code: GR

Payment date: 20090529

Year of fee payment: 20

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20090701

Year of fee payment: 20

REG Reference to a national code

Ref country code: NL

Ref legal event code: V4

Effective date: 20100605

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DK

Ref legal event code: EUP

BE20 Be: patent expired

Owner name: UGITECH

Effective date: 20100605

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20100604

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20100607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20100607

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20100605

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20100604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20100605