EP0394796A2 - Heizsystem, insbesondere für Kraftfahrzeuge, mit einem Verbrennungsmotor und einem Heizgerät - Google Patents

Heizsystem, insbesondere für Kraftfahrzeuge, mit einem Verbrennungsmotor und einem Heizgerät Download PDF

Info

Publication number
EP0394796A2
EP0394796A2 EP90107176A EP90107176A EP0394796A2 EP 0394796 A2 EP0394796 A2 EP 0394796A2 EP 90107176 A EP90107176 A EP 90107176A EP 90107176 A EP90107176 A EP 90107176A EP 0394796 A2 EP0394796 A2 EP 0394796A2
Authority
EP
European Patent Office
Prior art keywords
internal combustion
combustion engine
heater
oil
coolant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP90107176A
Other languages
English (en)
French (fr)
Other versions
EP0394796B1 (de
EP0394796A3 (de
Inventor
Martin Kröner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eberspaecher Climate Control Systems GmbH and Co KG
Original Assignee
J Eberspaecher GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by J Eberspaecher GmbH and Co KG filed Critical J Eberspaecher GmbH and Co KG
Publication of EP0394796A2 publication Critical patent/EP0394796A2/de
Publication of EP0394796A3 publication Critical patent/EP0394796A3/de
Application granted granted Critical
Publication of EP0394796B1 publication Critical patent/EP0394796B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M11/00Component parts, details or accessories, not provided for in, or of interest apart from, groups F01M1/00 - F01M9/00
    • F01M11/0004Oilsumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M5/00Heating, cooling, or controlling temperature of lubricant; Lubrication means facilitating engine starting
    • F01M5/02Conditioning lubricant for aiding engine starting, e.g. heating
    • F01M5/021Conditioning lubricant for aiding engine starting, e.g. heating by heating

Definitions

  • the invention relates to a heating system, in particular for motor vehicles, which uses waste heat from an internal combustion engine and has a heater which can be operated with liquid fuel for generating heat independently of the operation of the internal combustion engine or in addition to the engine waste heat, the heater being spatially assigned to an oil reservoir of the internal combustion engine.
  • Heating devices for motor vehicles which can be operated with liquid fuel and which generate heat independently of or in addition to the operation of the internal combustion engine are known. Their most important area of application is the preheating of the motor vehicle interior and / or the internal combustion engine, so that when the vehicle starts moving, the motor vehicle user already finds a warm vehicle interior with defrosted windows and a drive motor of the motor vehicle that is no longer undercooled. Cold start wear on the internal combustion engine is significantly reduced. Exhaust emissions are also reduced during the warm-up phase.
  • the invention has for its object to integrate the heater more cheaply in such a heating system.
  • the heater is arranged with its main direction of extension substantially parallel to the crankshaft axis and off-center, mostly in the oil pan of the internal combustion engine.
  • the heater is located with its main direction of extension perpendicular to the crankshaft axis and overall below the crankshaft. This results in an overall increase in the overall height of the internal combustion engine. In contrast, there is no or at most a slight increase in the overall height of the internal combustion engine in the configuration of the heating system according to the invention. This is very desirable because modern motor vehicles endeavor to arrange the bonnet as low as possible or to make it flat, and because the internal combustion engine cannot be arranged at any depth for reasons of ground clearance.
  • the main area of the heater is - roughly speaking - cylindrical. In an embodiment of the invention, this main area is designed with the smallest possible diameter, the length being less restrictive.
  • the heater is spatially assigned to an oil reservoir of the internal combustion engine.
  • the oil reservoir can be the oil pan of the internal combustion engine.
  • the heater can instead be spatially assigned to an oil tank or can be largely arranged therein. In this case, the position of the main direction of extension of the heater relative to the crankshaft axis is not important.
  • the invention also provides a heating system in which the internal combustion engine is designed with liquid cooling and an electric circulating pump for the cooling liquid, in which the heating device is designed as a liquid heating device, and in which the heating device is integrated into the coolant system of the internal combustion engine is, so that the circulation pump can pump coolant through the heater when the internal combustion engine is stopped. Because of this design, the previously used liquid circulation pump of the heater is not necessary. Their function is taken over by the electric circulation pump of the internal combustion engine.
  • An electric circulation pump for the cooling liquid has the great advantage that it can work independently of the instantaneous speed of the internal combustion engine, in particular its delivery capacity can be adjusted to the current cooling requirement of the internal combustion engine or the heat requirement for heating the vehicle interior.
  • the invention also provides a heating system in which the lubricating oil circuit of the internal combustion engine is equipped with an electric oil pump, so that the stationary internal combustion engine can be heated by pumped-over lubricating oil heated by the heating device.
  • an electric oil pump has the essential advantage over an oil pump mechanically driven by the internal combustion engine that its delivery volume or delivery pressure can be selected independently of the instantaneous speed of the internal combustion engine. In particular, it is possible to increase the delivery volume or delivery pressure when idling or at low engine speeds compared to previous practice with a mechanical drive of the oil pump.
  • the described design of the coolant circuit with an electric circulating pump and integration of the heater and the described design of the lubricating oil circuit of the internal combustion engine with an electric oil pump and integration of the heater can also be implemented independently of the installation position of the heater specified in claim 1.
  • the measures described can therefore also be used if the heater is not arranged with a main direction of extension essentially parallel to the crankshaft axis and off-center, largely in the oil pan of the internal combustion engine. It is also noted that it the heater can also be a gas-operated heater.
  • the spatial assignment of the heater to the oil pan or the oil tank of the internal combustion engine can also be used according to the invention to extract heat from the hot lubricating oil of the internal combustion engine, in particular when the internal combustion engine is operating at high power and / or at high outside temperatures.
  • the oil pan or the oil tank is, so to speak, integrated into a heat exchanger through which the coolant of the internal combustion engine can flow.
  • the coolant of the internal combustion engine is at a lower temperature than the lubricating oil, which can be at a temperature of more than 140 ° C. under the conditions described.
  • the measure described in this paragraph can also be implemented independently of the measures described above. It is in particular possible to provide such a heat exchanger integration in the oil pan or the oil tank of the internal combustion engine, even if no heater or a heater is installed in another position in the vehicle under consideration.
  • the heater is either a so-called water heater, which emits the heat generated to a liquid as a heat carrier, or a so-called air heater, which primarily emits the heat generated to air as a heat carrier.
  • crankshaft 16 with crankshaft axis 18, and with an oil pan 20.
  • the oil pan 20 is without enlargement their vertical dimensions are used laterally in order to create a receiving space for a heater 22 off-center from the crankshaft axis 18.
  • FIG. 2 shows in more detail how the heat exchange area of the heater 22, which spatially makes up the main part of the heater 22, is integrated into the oil pan 20.
  • the indentation 26 is open to the front or rear end face of the internal combustion engine 2, otherwise closed everywhere, and with the rest of the oil pan 20 integrally formed.
  • the oil pan 20 together with the indentation 26 is preferably made of metal, in particular die-cast aluminum. Si can also consist of plastic, for example.
  • the indentation 26 can on its outside or the inside of the oil pan 20 Side with ribs 28 to improve the heat transfer.
  • the axial direction of extension of the indentation 26 is parallel to the crankshaft axis 18.
  • the length of the indentation 26 in the axial direction depends on the desired or required thermal output of the heater 22. The length can take up almost the entire length of the oil pan 20.
  • the indentation 26 can, however, also be shorter axially, for example in order to leave space axially in front for an oil pump or an intake system for the oil circuit of the internal combustion engine 2 (not shown).
  • the heater 22 itself, which is shown in part schematically in FIG. 2, essentially consists of a heater base part 30, an essentially cylindrical flame tube 32 that axially supports it, and a jacket 34 made of metal surrounding the flame tube 32.
  • the base part 30 essentially comprises a combustion air blower, a fuel pump which may also be arranged separately, a combustion chamber at the transition to the flame tube 32, an electrical ignition device in the combustion chamber and a temperature sensor (overheating switch), these elements not being shown separately.
  • the flame tube 32 is open at the front end removed from the base part 30.
  • the essentially cylindrical jacket 34 is closed at its end 34 adjacent to the open end of the flame tube 32.
  • the hot combustion gases flow axially forward in the flame tube 32 and then axially back in the annular space between the flame tube 32 and the jacket 34. They leave the heater 22 through an exhaust gas line 36.
  • a space 38 Between the overall deep cup-shaped jacket 34 and the overall deep cup-shaped indentation 26 there is a space 38 through which the coolant of the internal combustion engine 2 flows, a supply line 40 and a discharge line 42 being indicated schematically are.
  • a supply line 40 and a discharge line 42 being indicated schematically are.
  • this space 38 it can be divided, for example, in FIG. 2 below the plane of the drawing and in FIG. 2 above the plane of the drawing by an axially extending partition wall 44, which ends axially at the front where the jacket 34 ends. In this way, the coolant flows in the in FIG.
  • the base part 30 and the jacket 34 have flanges which are fastened to a corresponding outer flange 48 of the oil pan 20 by means of a common clamping ring 46.
  • the jacket 34 is provided on the inside and / or outside with elevations 50 or ribs, which can, for example, run spirally in order to make the liquid or gas flow through the corresponding space more turbulent and thus to increase the heat transfer.
  • the oil pan 20 with an indentation 26, but rather only to leave a corresponding opening on the rear side of the oil pan 20.
  • a heater 22 with the largest part of its length can be inserted into this opening, the heater in this case having an enclosing outer jacket essentially corresponding to the indentation 26 previously described.
  • This outer jacket is liquid-tight, for example with a flange, to be connected to the oil pan 20.
  • the solution drawn has the advantage that the oil pan has no potential leak.
  • indentation 26 even without a heater 22 for the fact that there are channels through which the coolant of the internal combustion engine 2 flows in order to achieve a faster heating of the lubricating oil in the warm-up phase of the internal combustion engine 2 and to achieve cooling of the lubricating oil by the coolant of the internal combustion engine 2 when the internal combustion engine 2 is operating at high power.
  • FIG 3 shows a preferred example of how the heater 22 can be integrated into the coolant circuit of the internal combustion engine 2. It is an embodiment in which the heater 22 does not have its own liquid pump and in which an electrically driven circulation pump 52 is provided for the coolant of the internal combustion engine 2.
  • a first part of the total coolant circuit of the internal combustion engine 2 essentially consists of the circulation pump 52, which is connected on the output side via a line 76 to coolant flow-through spaces in the internal combustion engine 2, a line 54 which is arranged from the other end of these coolant flow-through spaces to one in the bow of the vehicle , the cooler 56 exposed to the wind, a further line 58 which leads from the cooler 56 back to the circulation pump 52, and a bypass line 60 which leads past the cooler 56 and which leads from the line 54 to the line 58.
  • a thermostatic valve 62 is installed, which conducts the cooling liquid through the bypass line 60 when the internal combustion engine 2 is cold and through the cooler 56 when the internal combustion engine 2 is hot.
  • a second part of the coolant system essentially contains a first line 64, one assigned to the vehicle interior Heat exchanger 66 and a second line 68.
  • the first line 64 is connected to the previously described line 54 near the internal combustion engine 2 with a T-piece.
  • the second line 68 is also connected downstream of the line 54 with a T-piece.
  • a heating valve 70 arranged in the second line 68 is opened, a partial flow of the cooling liquid flows through the heat exchanger 66, as a result of which the interior of the motor vehicle is heated.
  • a check valve 72 determines the flow direction of line 68.
  • a third part of the coolant system leads from an adjustable valve 74, which is provided in line 76, to the heater 22 and from there with a T-piece into the described first line 64.
  • the coolant circuit operates like a conventional coolant circuit without an additional heater. If the adjusting valve 74 is set in the direction of the straight arrow 80, all of the coolant downstream of the pump 52 first flows through the heater 22, where it is heated when the heater 22 is switched on. If the heating valve 70 is open, the heated coolant first flows through the heat exchanger 66, so that part of the heat is released to the vehicle interior. Then the coolant flows through the bypass line 60, provided that the thermostatic valve 62 has the appropriate position, and from there back to the pump 52.
  • the heating valve 70 is closed, the coolant flows through the first line 64 to line 54.
  • the adjusting valve 74 is set to an intermediate position , The coolant flow coming from the pump 52 is divided into two partial flows, namely a first partial flow through the Ver internal combustion engine 2 and a second partial flow through the heat exchanger 66, provided the heating valve 70 is open.
  • the heat generated by the heater 22 not only benefits the heating of the vehicle interior but also the heating of the internal combustion engine 2 via the coolant.
  • This position of the adjusting valve 74 is therefore suitable for heating the internal combustion engine 2 in addition to the vehicle interior not only via the content of the oil pan 20 but also via the coolant.
  • this position is also suitable for operating situations in which the internal combustion engine 2 does not generate enough heat, for example short-distance traffic in winter, so that the heater 22 works as an additional heater.
  • Such additional heating tasks are viewed by the applicant as increasingly important, in particular for applications in which the internal combustion engine of a motor vehicle does not produce sufficient heat in numerous operating phases. In particular, it deals with the cases of small-volume drive motors, drive motors with high efficiency and therefore low waste heat production, as well as diesel engines.
  • the coolant circuit described with reference to FIG. 3 is only one - albeit preferred - exemplary embodiment. There are a number of other ways in which the coolant circuit can be designed. If one uses a heater 22 with its own circulation pump for the heat transfer fluid and a conventionally mechanically driven circulation pump 52 for the coolant of the internal combustion engine, one can interconnect the heater 22 with the heat exchanger 66, for example, in such a way that the heat transfer fluid heated in the heater 22 flows to the heat exchanger 66 and from there directly back to the heater 22. Or you can switch the heater 22 in the bypass to the circulation pump 52, so that heated heat transfer fluid flows through the internal combustion engine 2 to heat it and also - when switched on - flows through the heat exchanger 66.
  • the main part of the heater 22 protruding into the oil pan 20 and the indentation can alternatively also decrease slightly conically with forward Menden diameter or be arranged instead of the indentation so that part of the circumference is directly integrated into the wall of the oil pan.
  • the heater 22 can alternatively also be an air heater.
  • air flows through the space 38 described with reference to FIG. 2.
  • the oil in the oil pan 20 is still heated by the air flowing through the space 38.
  • the air flowing out of space 38 and still having part of its heat content can be blown into the vehicle interior, for example.
  • the heating system according to the invention is not only suitable for motor vehicles, such as cars, trucks, buses, ships, construction machines and the like, but also in other fields of application wherever an internal combustion engine is present. Pump stations, power generation stations and the like may be mentioned as examples of this.
  • the heater 22 is operated with the same fuel as the internal combustion engine 2, in particular with gasoline or diesel fuel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Lubrication Of Internal Combustion Engines (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

Heizsystem, insbesondere für Kraftfahrzeuge, das Abwärme eines Verbrennungsmotors (2) nutzt und ein mit flüssigem Brennstoff betreibbares Heizgerät (22) zur Wärmeerzeugung unabhängig vom Betrieb des Verbrennungsmotors (2) oder zusätzlich zur Motorabwärme aufweist, wobei das Heizgerät (22) einem Ölvorratsraum des Verbrennungsmotors (2) räumlich zugeordnet ist. Das Heizgerät (22) ist mit seiner Haupterstreckungsrichtung im wesentlichen parallel zur Kurbelwellenachse (18) und außermittig, größtenteils in der Ölwanne (20) des Verbrennungsmotors angeordnet.

Description

  • Die Erfindung bezieht sich auf ein Heizsystem, insbesondere für Kraft­fahrzeuge, das Abwärme eines Verbrennungsmotors benutzt und ein mit flüssigem Brennstoff betreibbares Heizgerät zur Wärmeerzeugung unab­hängig vom Betrieb des Verbrennungsmotors oder zusätzlich zur Motor­abwärme aufweist, wobei das Heizgerät einem Ölvorratsraum des Verbren­nungsmotors räumlich zugeordnet ist.
  • Mit flüssigem Brennstoff betreibbare Heizgeräte für Kraftfahrzeuge, die unabhängig vom Betrieb des Verbrennungsmotors oder zusätzlich hierzu Wärme erzeugen, sind bekannt. Ihr wichtigstes Einsatzgebiet ist die Vorwärmung des Kraftfahrzeuginnenraums und/oder des Verbrennungs­motors, so daß der Kraftfahrzeugbenutzer beim Losfahren bereits einen warmen Fahrzeuginnenraum mit abgetauten Scheiben und einen nicht mehr so stark unterkühlten Antriebsmotor des Kraftfahrzeugs vorfindet. Der Kaltstartverschleiß des Verbrennungsmotors wird entscheidend verrin­gert. Außerdem sind die Abgasemissionen in der Warmlaufphase verrin­gert.
  • Es ist bekannt (DE-OS 37 12 670), das Heizgerät der Ölwanne des Ver­brennungsmotors räumlich derart zuzuordnen, daß von dem Heizgerät nicht nur Wasser für die Fahrzeugheizung erwärmt wird, sondern auch Wärme auf kürzestem Weg dem in der Ölwanne befindlichen Öl des Ver­brennungsmotors zugeführt wird.
  • Der Erfindung liegt die Aufgabe zugrunde, bei einem derartigen Heiz­system das Heizgerät günstiger zu integrieren.
  • Zur Lösung dieser Aufgabe ist erfindungsgemäß das Heizgerät mit seiner Haupterstreckungsrichtung im wesentlichen parallel zur Kurbelwellen­achse und außermittig, größtenteils in der Ölwanne des Verbrennungs­motors angeordnet.
  • Bei dem beschriebenen bekannten Heizsystem liegt das Heizgerät mit seiner Haupterstreckungsrichtung rechtwinklig zur Kurbelwellenachse und insgesamt unterhalb der Kurbelwelle. Dadurch ergibt sich insgesamt eine Vergrößerung der Bauhöhe des Verbrennungsmotors. Demgegenüber ergibt sich bei der erfindungsgemäßen Ausbildung des Heizsystems keine oder höchstens eine geringfügige Vergrößerung der Bauhöhe des Verbren­nungsmotors. Dies ist sehr erwünscht, weil man bei modernen Kraftfahr­zeugen bestrebt ist, die Motorhaube möglichst niedrig anzuordnen bzw. flach zu gestalten und weil der Verbrennungsmotor aus Gründen der Bodenfreiheit nicht beliebig tief angeordnet werden kann.
  • Der Hauptbereich des Heizgeräts ist in der Regel - grob gesprochen - zylindrisch. In Ausgestaltung der Erfindung wird dieser Hauptbereich mit möglichst kleinem Durchmesser ausgeführt, wobei man in der Länge weniger einschneidenden Beschränkungen unterliegt.
  • Weiter vorn ist angesprochen, daß das Heizgerät einem Ölvorratsraum des Verbrennungsmotors räumlich zugeordnet ist. Der Ölvorratsraum kann die Ölwanne des Verbrennungsmotors sein. Beispielsweise bei Verbren­nungsmotoren mit Trockensumpfschmierung oder sonstwie gesondertem Ölvorrat kann das Heizgerät statt dessen einem Öltank räumlich zuge­ordnet sein bzw. größtenteils in diesem angeordnet sein. In diesem Fall kommt es auf die Lage der Haupterstreckungsrlchtung des Heiz­gerätes relativ zur Kurbelwellenachse nicht an.
  • Die Erfindung schafft ferner ein Heizsystem, bei dem der Verbrennungs­motor mit Flüssigkeitskühlung und einer elektrischen Umwälzpumpe für die Kühlflüssigkelt ausgebildet ist, bei dem das Heizgerät als Flüs­sigkeitserwärmungs-Heizgerät ausgebildet ist, und bei dem das Heiz­gerät in das Kühlflüssigkeitssystem des Verbrennungsmotors integriert ist, so daß die Umwälzpumpe bei stehendem Verbrennungsmotor Kühlflüs­sigkeit durch das Heizgerät pumpen kann. Aufgrund dieser Ausbildung ist die bisher übliche Flüssigkeits-Umwälzpumpe des Heizgeräts ent­behrlich. Deren Funktion wird von der elektrischen Umwälzpumpe des Verbrennungsmotors mit übernommen. Eine elektrische Umwälzpumpe für die Kühlflüssigkelt hat den großen Vorteil, daß sie unabhängig von der momentanen Drehzahl des Verbrennungsmotors arbeiten kann, insbesondere in ihrer jeweiligen Förderleistung auf den aktuellen Kühlungsbedarf des Verbrennungsmotors bzw. Wärmebedarf für die Erwärmung des Fahr­zeuginnenraums eingestellt werden kann.
  • Die Erfindung schafft ferner ein Heizsystem, bei dem der Schmieröl­kreislauf des Verbrennungsmotors mit einer elektrischen Ölpumpe ausge­stattet ist, so daß der stehende Verbrennungsmotor über umgepumptes, mittels des Heizgeräts erwärmtes Schmieröl erwärmbar ist. Hierdurch ergibt sich eine umfänglichere Vorwärmung des Verbrennungsmotors, da der Schmierölkreislauf praktisch durch den gesamten Verbrennungsmotor führt. Außerdem hat eine elektrische Ölpumpe im Vergleich zu einer mechanisch von dem Verbrennungsmotor angetriebenen Ölpumpe den wesent­lichen Vorteil, daß deren Fördervolumen bzw. Förderdruck unabhängig von der momentanen Drehzahl des Verbrennungsmotors gewählt werden kann. Insbesondere ist eine Anhebung des Fördervolumens bzw. Förder­drucks bei Leerlauf bzw. niedrigen Drehzahlen im Vergleich zur bis­herigen Praxis mit mechanischem Antrieb der Ölpumpe möglich.
  • Es wird darauf hingewiesen, daß die beschriebene Gestaltung des Kühl­flüssigkeitskreislaufs mit elektrischer Umwälzpumpe und Integration des Heizgeräts sowie die beschriebene Gestaltung des Schmierölkreis­laufs des Verbrennungsmotors mit elektrischer Ölpumpe und Integration des Heizgeräts auch unabhängig von der im Anspruch 1 angegebenen Ein­baulage des Heizgeräts verwirklichbar sind. Die beschriebenen Maßnah­men können also auch angewendet werden, wenn das Heizgerät nicht mit einer Haupterstreckungsrichtung im wesentlichen parallel zur Kurbel­wellenachse und außermittig, größtenteils in der Ölwanne des Verbren­nungsmotors angeordnet ist. Ferner wird darauf hingewiesen, daß es sich bei dem Heizgerät auch um ein mit Gas betriebenes Heizgerät han­deln kann.
  • Die räumliche Zuordnung des Heizgeräts zu der Ölwanne bzw. dem Öltank des Verbrennungsmotors kann erfindungsgemäß auch dazu genutzt werden, dem heißen Schmieröl des Verbrennungsmotors, insbesondere bei Betrieb des Verbrennungsmotors mit hoher Leistung und/oder bei hohen Außen­temperaturen, Wärme zu entziehen. Der Ölwanne bzw. dem Öltank ist aufgrund der Erfindung sozusagen ein Wärmetauscher integriert, der von der Kühlflüssigkeit des Verbrennungsmotors durchströmbar ist. Beim Betrieb des Verbrennungsmotors mit hoher Leistung und/oder bei hohen Außentemperaturen hat die Kühlflüssigkeit des Verbrennungsmotors mit eine niedrigere Temperatur als das Schmieröl, das sich unter den geschilderten Bedingungen durchaus auf einer Temperatur von über 140 °C befinden kann. Es wird betont, daß die im vorliegenden Absatz beschriebene Maßnahme auch unabhängig von den weiter vorn beschrie­benen Maßnahmen verwirklicht sein kann. Es ist insbesondere möglich, eine derartige Wärmetauscherintegration in der Ölwann oder dem Öltank des Verbrennungsmotors vorzusehen, auch wenn bei dem betrachteten Fahrzeug kein Heizgerät oder ein Heizgerät in anderer Positionierung eingebaut ist.
  • Schließlich wird betont, daß es sich bei dem Heizgerät entweder um ein sogenanntes Wasserheizgerät handelt, das die erzeugte Wärme an eine Flüssigkeit als Wärmeträger abgibt, oder auch um ein sogenanntes Luft­heizgerät, das die erzeugte Wärme primär an Luft als Wärmeträger ab­gibt.
  • Die Erfindung und Ausgestaltungen der Erfindung werden im folgenden anhand von zeichnerisch dargestellten Ausführungsbeispielen noch näher erläutert. Es zeigt:
    • Fig. 1 eine schmatisierte Stirnansicht eines Verbrennungs­motors mit in die Ölwanne integriertem Heizgerät, und zwar in Richtung der Kurbelwellenlängsachse und von der Hinterseite des Verbrennungsmotors her gesehen;
    • Fig. 2 einen horizontalen Teil-Längsschnitt des Verbrennungs­motors von Fig. 1 gemäß II-II, und zwar in vergrößer­tem Maßstab und beschränkt auf den Anordnungsbereich des Heizgeräts;
    • Fig. 3 die Gestaltung eines Kühlflüssigkeitskreislaufs eines Verbrennungsmotors mit zugeordnetem Heizgerät.
  • In Fig. 1 erkennt man einen Verbrennungsmotor 2 mit Zylinderblock 4, Zylinderkopf 6, Ventildeckel 8, Luftansaugsystem 10, Luftfilter 12, Beginn des Abgassystems 14, schematisch angedeuteter Kurbelwelle 16 mit Kurbelwellenachse 18, und mit einer Ölwanne 20. Die Ölwanne 20 ist ohne Vergrößerung ihrer Vertikalabmessungen seitlich ausgebraucht, um außermittig von der Kurbelwellenachse 18 einen Aufnahmeraum für ein Heizgerät 22 zu schaffen.
  • Fig. 2 zeigt mehr im Detail, wie der Wärmetauschbereich des Heizgerä­tes 22, der räumlich den Hauptteil des Heizgeräts 22 ausmacht, in die Ölwanne 20 integriert ist. Im Bereich der beschriebenen Ausbauchung 24 der Ölwanne 20 befindet sich eine - grob gesprochen - zylinderförmige Einstülpun oder Tasche 26 in der Ölwanne 20. Die Einstülpung 26 ist zur vorderen oder hinteren Stirnseite des Verbrennungsmotors 2 offen, ansonsten überall geschlossen, und mit der restlichen Ölwanne 20 ein­stückig ausgebildet. Die Ölwanne 20 mitsamt Einstülpung 26 besteht vorzugsweise aus Metall, insbesondere Aluminiumdruckgruß. Si kann aber auch beispielsweise aus Kunststoff bestehen. Die Einstülpung 26 kann auf ihrer Außenseite bzw. der dem Inneren der Ölwanne 20 zugewandten Seite mit Rippen 28 zur Verbesserung des Wärmeübergangs versehen wer­den. Die axiale Erstreckungsrichtung der Einstülpung 26 ist parallel zur Kurbelwellenachse 18. Die Länge der Einstülpung 26 in Axialrich­tung hängt von der gewünschten bzw. benötigten Wärmeleistung des Heiz­geräts 22 ab. Die Länge kann nahezu die Gesamtlänge der Ölwanne 20 einnehmen. Die Einstülpung 26 kann aber axial auch kürzer sein, bei­spielsweise um axial davor Raum für eine Ölpumpe bzw. ein Ansaugsystem für den nicht eingezeichneten Ölkreislauf des Verbrennungsmotors 2 zu lassen.
  • Das Heizgerät 22 selbst, das in Fig. 2 zum Teil schematisiert gezeich­net ist, besteht im wesentlichen aus einem Heizgerät-Basisteil 30, einem axial davon fortragenden, im wesentlichen zylindrischen Flamm­rohr 32 und einem das Flammrohr 32 umgebenden Mantel 34 aus Metall. Das Basisteil 30 beinhaltet im wesentlichen ein Verbrennungsluft­gebläse, eine ggf. auch getrennt angeordnete Brennstoffpumpe, eine Brennkammer am Übergang zu dem Flammrohr 32, eine elektrische Zündein­richtung in der Brennkammer und einen Temperaturfühler (Überhitzungs­schalter), wobei diese Elemente nicht gesondert eingezeichnet sind. Das Flammrohr 32 ist an dem von dem Basisteil 30 entfernten Stirnende offen. Der im wesentlichen zylindrische Mantel 34 ist an seinem dem offenen Ende des Flammrohrs 32 benachbarten Ende 34 geschlossen. Die heißen Verbrennungsgase strömen in dem Flammrohr 32 axial nach vorn und dann im Ringraum zwischen dem Flammrohr 32 und dem Mantel 34 axial zurück. Sie verlassen das Heizgerät 22 durch eine Abgasleitung 36. Zwischen dem insgesamt tiefbecherförmigen Mantel 34 und der insgesamt tief-becherförmigen Einstülpung 26 befindet sich ein Raum 38, der von der Kühlflüssigkeit des Verbrennungsmotors 2 durchströmt wird, wobei eine Zuleitung 40 und eine Ableitung 42 schematisch angedeutet sind. Um eine gezielte Durchströmung dieses Raums 38 zu erreichen, kann er beispielsweise in Fig. 2 unterhalb der Zeichnungsebene und in Fig. 2 oberhalb der Zeichnungsebene durch eine axial verlaufende Trennwand 44 unterteilt sein, die axial vorn dort endet, wo auch der Mantel 34 endet. Auf diese Weise strömt die Kühlflüssigkeit in der in Fig. 1 linken Hälfte des Raums 38 zu, gelangt axial vorn von der linken Hälfte in die rechte Hälfte und strömt auf der in Fig. 1 rechten Seite axial zurück. Analog könnte man auch eine Hinströmung in der oberen Hälfte des Raums 38 und eine Rückströmung in der unteren Hälfte des Raums 38 vorsehen. Es bestehen weitere Möglichkeiten einer geeigneten Strömungslenkung, beispielsweise Hinströmung im Raum 38 insgesamt und Rückströmung durch eine gesonderte Leitung. Die Verbrennungsgase des Heizgeräts 22 geben den größten Teil ihrer Wärme durch den mantel 34 an die durch den Raum 38 strömende Kühlflüssigkeit ab, und die Kühl­flüssigkeit gibt mindestens einen Teil ihrer Wärme durch die Wand der Einstülpung 26 an das Schmieröl in der Ölwanne 20 ab.
  • Das Basisteil 30 und der Mantel 34 weisen Flansch auf, die mittels eines gemeinsamen Spannrings 46 an einem korrespondierenden, äußeren Flansch 48 der Ölwanne 20 befestigt sind. Der Mantel 34 ist innen­seitig und/oder außenseitig mit Erhebungen 50 bzw. Rippen versehen, die beispielsweise spiralförmig verlaufen können, um die Flüssigkeits- bzw. Gasströmung durch den entsprechenden Raum turbulenter zu gestal­ten und damit die Wärmeübertragung zu erhöhen.
  • Es ist alternativ möglich, die ölwanne 20 nicht mit einer Einstülpung 26 zu versehen, sondern nur eine entsprechende Öffnung an der Hinter­seite der Ölwanne 20 zu lassen. In diese Öffnung kann man ein Heiz­gerät 22 mit dem größten Teil seiner Länge einsetzen, wobei das Heiz­gerät in diesem Fall einen umschließenden Außenmantel im wesentlichen entsprechend der vorher beschriebenen Einstülpung 26 hat. Dieser Außenmantel ist flüssigkeitsdicht, beispielsweise mit einem Flansch, an die Ölwanne 20 anzuschließen.
  • Die gezeichnete Lösung hat den Vorteil, daß die Ölwanne keine poten­tielle Leckstelle aufweist.
  • Wenn der Käufer eines Kraftfahrzeugs kein Zusatz-Heizgerät wünscht, kann entweder die beschriebene Ölwanne 20 dennoch verwendet werden, wobei bei der gezeichneten Variante einfach die Einstülpung 26 innen freibleibt oder bei der nicht gezeichneten Variante die Öffnung mit einem Deckel verschlossen ist. Man kann aber auch für diesen Fall eine herkömmliche Ölwanne 20 ohne Ausbauchung 24 einbauen.
  • Es ist ferner möglich, die Einstülpung 26 auch ohne Heizgerät 22 dafür zu nutzen, daß dort Kanäle vorhanden sind, die von der Kühlflüssigkeit des Verbrennungsmotors 2 durchströmt werden, um auf diese Weise in der Warmlaufphase des Verbrennungsmotors 2 eine raschere Erwärmung des Schmieröls zu erreichen und bei Betrieb des Verbrennungsmotors 2 mit hoher Leistung eine Kühlung des Schmieröls durch die Kühlflüssigkeit des Verbrennungsmotors 2 zu erreichen.
  • In Fig. 3 ist ein bevorzugtes Beispiel gezeichnet, wie man das Heiz­gerät 22 in den Kühlmittelkreislauf des Verbrennungsmotors 2 integrie­ren kann. Es handelt sich um eine Ausführungsform, bei der das Heiz­gerät 22 keine eigene Flüssigkeitspumpe aufweist und bei der eine elektrisch angetriebene Umwälzpumpe 52 für die Kühlflüssigkeit des Verbrennungsmotors 2 vorgesehen ist.
  • Ein erster Teil des Gesamt-Kühlflüssigkeitskreislaufs des Verbren­nungsmotors 2 besteht im wesentlichen aus der Umwälzpumpe 52, die aus­gangsseitig über eine Leitung 76 an Kühlmitteldurchströmungsräume im Verbrennungsmotor 2 angeschlossen ist, einer Leitung 54, die von dem anderen Ende dieser Kühlmitteldurchströmungsräume zu einem im Bug des Fahrzeugs angeordneten, dem Fahrtwind ausgesetzten Kühler 56 führt, einer weiteren Leitung 58, die von dem Kühler 56 zurück zur Umwälz­pumpe 52 führt, und einer an dem Kühler 56 vorbei führenden Bypass-­Leitung 60, die von der Leitung 54 zu der Leitung 58 führt. Am Anfang der Bypass-Leitung 60 ist ein Thermostatventil 62 eingebaut, das bei kaltem Verbrennungsmotor 2 die Kühlflüssigkelt durch die Bypass-­Leitung 60 leitet und bei heißem Verbrennungsmotor 2 durch den Kühler 56.
  • Ein zweiter Teil des Kühlflüssigkeitssystems beinhaltet im wesent­lichen eine erste Leitung 64, einen dem Fahrzeuginnenraum zugeordneten Wärmetauscher 66 und eine zweite Leitung 68. Die erste Leitung 64 ist an die zuvor beschriebene Leitung 54 nahe dem Verbrennungsmotor 2 mit einem T-Stück angeschlossen. Die zweite Leitung 68 ist, ein Stück strömungsabwärts, ebenfalls an die Leitung 54 mit einem T-Stück ange­schlossen. Wenn ein in der zweiten Leitung 68 angeordnetes Heizungs­ventil 70 geöffnet ist, wird der Wärmetauscher 66 von einem Teilstrom der Kühlflüssigkeit durchströmt, wodurch der Innenraum des Kraftfahr­zeugs erwärmt wird. Ein Rückschlagventil 72 legt die Durchströmungs­richtung der Leitung 68 fest.
  • Ein dritter Teil des Kühlflüssigkeitssystems führt von einem einstell­baren Ventil 74, das in der Leitung 76 vorgesehen ist, zu dem Heiz­gerät 22 und von dort mit einem T-Stück in die beschriebene, erste Leitung 64.
  • Wenn das Einstellventil 74 in Richtung des abknickenden Pfeils 78 ge­stellt ist und das Heizgerät 22 nicht eingeschaltet ist, arbeitet der Kühlmittelkreislauf wie ein konventioneller Kühlmittelkreislauf ohne zusätzliches Heizgerät. Wenn das Einstellventil 74 in Richtung des ge­raden Pfeils 80 gestellt ist, durchströmt das gesamte Kühlmittel hin­ter der Pumpe 52 zunächst das Heizgerät 22, wo es bei eingeschaltetem Heizgerät 22 erwärmt wird. Das erwärmte Kühlmittel durchströmt, sofern das Heizungsventil 70 geöffnet ist, zunächst den Wärmetauscher 66, so daß ein Teil der Wärme an den Fahrzeuginnenraum abgegeben wird. Dann durchströmt das Kühlmittel die Bypass-Leitung 60, entsprechende Stel­lung des Thermostatventils 62 vorausgesetzt, und von dort zurück zur Pumpe 52. Dies ist sonst die Ventilstellung, bei der die im Heizgerät 22 erzeugte Wärme einerseits zur Vorwärmung des Schmieröls in der Öl­wanne 20 und andererseits zur Erwärmung des Fahrzeuginnenraums über den Wärmetauscher 66 dient, und zwar - wenn man will - bei stehendem Verbrennungsmotor 2. Wenn das Heizungsventil 70 geschlossen ist, strömt die Kühlflüssigkeit durch die erste Leitung 64 zur Leitung 54. Wenn das Einstellventil 74 auf eine Zwischenstellung eingestellt ist, wird der von der Pumpe 52 kommende Kühlflüssigkeitsstrom auf zwei Teilströme aufgeteilt, nämlich einen ersten Teilstrom durch den Ver­ brennungsmotor 2 und einen zweiten Teilstrom durch den Wärmetauscher 66, geöffnetes Heizungsventil 70 vorausgesetzt. Die vom Heizgerät 22 erzeugte Wärme kommt infolgedessen nicht nur der Erwärmung des Fahr­zeuginnenraumes sondern auch der Erwärmung des Verbrennungsmotors 2 über die Kühlflüssigkeit zugute. Diese Stellung des Einstellventils 74 ist daher dafür geeignet, zusätzlich zu dem Fahrzeuginnenraum den Ver­brennungsmotor 2 nicht nur über den Inhalt der Ölwanne 20 sondern auch über die Kühlflüssigkeit aufzuwärmen. außerdem eignet sich diese Stel­lung für Betriebssituationen, in denen der Verbrennungsmotor 2 nicht genügend Wärme erzeugt, beispielsweise Kurzstreckenverkehr im Winter, so daß das Heizgerät 22 als Zusatzheizung arbeitet. Derartige Zusatz­helzungs-Aufgaben werden von der Anmelderin als zunehmend wichtig an­gesehen, insbesondere für Einsatzfälle, bei denen der Verbrennungs­motor eines Kraftfahrzeugs in zahlreichen Betriebsphasen nicht aus­reichend Wärme produziert. Ganz besonders geht es dabei um die Fälle kleinvolumiger Antriebsmotoren, Antriebsmotoren mit hohem Wirkungsgrad und daher geringer Abwärmeproduktion sowie Dieselmotoren.
  • Es versteht sich, daß der anhand von Fig. 3 beschriebene Kühlflüssig­keitskreislauf lediglich ein - wenn auch bevorzugtes - Ausführungs­beispiel ist. Es gibt eine Reihe weiterer Möglichkeiten, wie man den Kühlmittelkreislauf gestalten kann. Wenn man ein Heizgerät 22 mit eigener Umwälzpumpe für die Wärmeträgerflüssigkeit und eine konventio­nell mechanische angetriebene Umwälzpumpe 52 für die Kühlflüssigkeit des Verbrennungsmotors verwendet, kann man das Heizgerät 22 beispiels­weise derart mit dem Wärmetauscher 66 zusammenschalten, daß die im Heizgerät 22 erwärmte Wärmeträgerflüssigkeit zu dem Wärmetauscher 66 strömt und von dort direkt zurück zum Heizgerät 22. Oder man kann das Heizgerät 22 im Bypass zur Umwälzpumpe 52 schalten, so daß erwärmte Wärmeträgerflüssigkeit durch den Verbrennungsmotor 2 zu dessen Erwär­mung und außerdem - wenn zugeschaltet - durch den Wärmetauscher 66 strömt.
  • Der in die Ölwanne 20 ragende Hauptteil des Heizgerätes 22 und die Einstülpung können alternativ auch leicht konisch mit nach vorn abneh­ menden Durchmesser sein oder anstelle der Einstülpung so angeordnet werden, daß ein Teil des Umfangs direkt in die Wandung der Ölwanne integriert ist.
  • Es wird darauf hingewiesen, daß das Heizgerät 22 alternativ auch ein Luftheizgerät sein kann. In diesem Fall strömt durch den anhand von Fig. 2 beschriebenen Raum 38 Luft. Nach wie vor wird das Öl in der Ölwanne 20 über die durch den Raum 38 strömende Luft erwärmt. Die aus dem Raum 38 abströmende, noch einen Teil ihres Wärmeinhalts auf­weisende Luft kann beispielsweise in den Fahrzeuginnenraum geblasen werden.
  • Schließlich wird darauf hingewiesen, daß das erfindungsgemäße Heiz­system nicht nur für Kraftfahrzeuge, wie Personenkraftwagen, Last­kraftwagen, Omnibusse, Schiffe, Baumaschinen und dgl. geeignet ist, sondern auch auf anderern Anwendungsgebieten, wo immer ein Verbren­nungsmotor vorhanden ist. Als Beispiele hierfür seien Pumpstationen, Stromerzeugungsstationen und dgl. genannt.
  • Das Heizgerät 22 wird mit dem gleichen Brennstoff betrieben wie der Verbrennungsmotor 2, insbesondere mit Benzin oder Dieselkraftstoff.

Claims (3)

1. Heizsystem, insbesondere für Kraftfahrzeuge, das Abwärme eines Verbrennungsmotors nutzt und ein mit flüssigem Brennstoff betreib­bares Heizgerät zur Wärmeerzeugung unabhängig vom Betrieb des Verbrennungsmotors oder zusätzlich zur Motorabwärme aufweist, wobei das Heizgerät einem Ölvorratsraum des Verbrennungsmotors räumlich zugeordnet ist,
dadurch gekennzeichnet,
daß das Heizgerät mit seiner Haupterstreckungsrichtung im wesent­lichen parallel zur Kurbelwellenachse und außermittig, größtenteils in der Ölwanne des Verbrennungsmotors angeordnet ist.
2. Heizsystem nach Anspruch 1, dadurch gekennzeichnet, daß der Verbrennungsmotor mit Flüssigkeitskühlung und einer elektrischen Umwälzpumpe für die Kühlflüssigkeit ausgebildet ist, daß das Heiz­gerät als Flüssigkeitserwärmungs-Heizgerät ausgebildet ist, und daß das Heizgerät in das Kühlflüssigkeitssystem des Verbrennungsmotors integriert ist, so daß die Umwälzpumpe bei stehendem Verbrennungs­motor Kühlflüssigkeit durch das Heizgerät pumpen kann.
3. Heizsystem nach Anspruch 1 oder 2, dadurchg gekennzeichnet, daß der Schmierölkreislauf des Verbrennungsmotors mit einer elektrischen Ölpumpe ausgestattet ist, so daß der stehende Verbrennungsmotor über umgepumptes, mittels des Heizgeräts erwärmtes Schmieröl erwärmbar ist.
EP90107176A 1989-04-28 1990-04-14 Heizsystem, insbesondere für Kraftfahrzeuge, mit einem Verbrennungsmotor und einem Heizgerät Expired - Lifetime EP0394796B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3914154 1989-04-28
DE3914154A DE3914154A1 (de) 1989-04-28 1989-04-28 Heizsystem, insbesondere fuer kraftfahrzeuge, mit einem verbrennungsmotor und einem heizgeraet

Publications (3)

Publication Number Publication Date
EP0394796A2 true EP0394796A2 (de) 1990-10-31
EP0394796A3 EP0394796A3 (de) 1991-04-03
EP0394796B1 EP0394796B1 (de) 1993-01-13

Family

ID=6379732

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90107176A Expired - Lifetime EP0394796B1 (de) 1989-04-28 1990-04-14 Heizsystem, insbesondere für Kraftfahrzeuge, mit einem Verbrennungsmotor und einem Heizgerät

Country Status (7)

Country Link
US (1) US5018490A (de)
EP (1) EP0394796B1 (de)
CA (1) CA2015369C (de)
CZ (1) CZ281406B6 (de)
DD (1) DD298893A5 (de)
DE (2) DE3914154A1 (de)
ES (1) ES2038013T3 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996038692A1 (de) * 1995-06-01 1996-12-05 Firma J. Eberspächer Wasserheizgerät zur erwärmung des kühlwassers in einem wassergekühlten kraftfahrzeug-verbrennungsmotor (zusatzheizeinrichtung oder zuheizer)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0431611A (ja) * 1990-05-24 1992-02-03 Nippondenso Co Ltd 内燃機関の潤滑装置
DE4402215A1 (de) * 1993-07-12 1995-01-19 Man Nutzfahrzeuge Ag Verfahren zur Verbesserung des Kaltstartverhaltens von Verbrennungsmaschinen
US5407130A (en) * 1993-07-20 1995-04-18 Honda Giken Kogyo Kabushiki Kaisha Motor vehicle heat storage device with coolant bypass
DE10143458B4 (de) * 2001-09-05 2008-09-25 Webasto Ag Zusatzheizgerät mit einem Wärmeübertrager
DE10210734B4 (de) * 2002-03-12 2004-01-29 J. Eberspächer GmbH & Co. KG Wärmetauscheranordnung, insbesondere für ein Fahrzeugheizgerät
DE10240712A1 (de) * 2002-09-04 2004-03-18 Robert Bosch Gmbh System und Verfahren zur Regulierung des Wärmehaushalts eines Fahrzeugs
US7966988B2 (en) * 2005-01-11 2011-06-28 Exxonmobil Research And Engineering Company Method for controlling soot induced lubricant viscosity increase
EP2308708B1 (de) * 2009-09-16 2016-08-17 swissauto powersport llc Elektrofahrzeug mit Reichweitenverlängerung
US9187083B2 (en) 2009-09-16 2015-11-17 Polaris Industries Inc. System and method for charging an on-board battery of an electric vehicle
DE102010036773B4 (de) * 2010-07-30 2022-01-20 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verbrennungsmotor
DE102011005496A1 (de) 2011-03-14 2012-09-20 Ford Global Technologies, Llc Schmierungssystem für einen Verbrennungsmotor und Verfahren zum Schmieren
RU2527230C1 (ru) * 2013-08-23 2014-08-27 Николай Борисович Болотин Двигатель внутреннего сгорания с регенерацией тепла
RU2527229C1 (ru) * 2013-09-10 2014-08-27 Николай Борисович Болотин Двигатель внутреннего сгорания с регенерацией тепла
US10300786B2 (en) 2014-12-19 2019-05-28 Polaris Industries Inc. Utility vehicle
CA3019194A1 (en) 2016-03-30 2017-10-05 Marine Canada Acquisition Inc. Vehicle heater and controls therefor
IL296644B2 (en) 2016-06-14 2023-12-01 Polaris Inc Hybrid vehicle
DE102016114007A1 (de) * 2016-07-29 2018-02-01 Elringklinger Ag Flüssigkeitskreis und Verfahren zu dessen Betrieb
US10780770B2 (en) 2018-10-05 2020-09-22 Polaris Industries Inc. Hybrid utility vehicle
US11370266B2 (en) 2019-05-16 2022-06-28 Polaris Industries Inc. Hybrid utility vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2122585A (en) * 1937-04-27 1938-07-05 Pollack Paul Heating apparatus for the oil in the crankcase and water in the cooling system of internal combustion engines
US2435041A (en) * 1945-02-10 1948-01-27 Frederic W Hild Regulating device for cooling systems
US4099488A (en) * 1975-06-09 1978-07-11 Hunter Investment Company Diesel fueled engine coolant heater
US4309967A (en) * 1980-01-11 1982-01-12 Southard Edward S Variation of engine coolant heater
DE3521372A1 (de) * 1985-06-14 1986-12-18 Webasto-Werk W. Baier GmbH & Co, 8035 Gauting Heizung fuer kraftfahrzeuge

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1909161A1 (de) * 1969-02-24 1970-09-10 Bals Wilhelm Heizung fuer Kraftfahrzeuge,insbesondere solcher mit luftgekuehlten Motoren
US4156407A (en) * 1976-02-23 1979-05-29 Moll Hans H Driving arrangement for internal combustion engine auxiliaries in the form of pumps
IT1071519B (it) * 1976-10-13 1985-04-10 Fiat Spa Coppa per l olio di lubrificazione di motori a combustione interna
DE2932448A1 (de) * 1979-08-10 1981-02-26 Kloeckner Humboldt Deutz Ag Einrichtung zum beheizen der bedienungskabine einer von einer brennkraftmaschine angetriebenen maschine
US4249491A (en) * 1979-09-04 1981-02-10 Kim Hotstart Manufacturing Co., Inc. Multiple liquid heating and circulating system
US4245593A (en) * 1979-09-04 1981-01-20 Kim Hotstart Manufacturing Co., Inc. Liquid heating and circulating system
DE3115314C2 (de) * 1981-04-15 1984-10-04 Motorenfabrik Hatz Gmbh & Co Kg, 8399 Ruhstorf Brennkraftmaschine zur Heizwärmeerzeugung
JPS6085211A (ja) * 1983-10-14 1985-05-14 Toyota Motor Corp 車輛用内燃機関の潤滑油冷却装置
DE3403916A1 (de) * 1984-02-04 1985-08-08 Webasto-Werk W. Baier GmbH & Co, 8035 Gauting Heizgeraet, insbesondere fahrzeug-zusatzheizgeraet
US4936505A (en) * 1987-01-30 1990-06-26 Hall Donald O Gas-fired coaxial water/air vehicle heater
DE3712670A1 (de) * 1987-04-14 1988-11-03 Webasto Ag Fahrzeugtechnik Heizungsanlage fuer kraftfahrzeuge

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2122585A (en) * 1937-04-27 1938-07-05 Pollack Paul Heating apparatus for the oil in the crankcase and water in the cooling system of internal combustion engines
US2435041A (en) * 1945-02-10 1948-01-27 Frederic W Hild Regulating device for cooling systems
US4099488A (en) * 1975-06-09 1978-07-11 Hunter Investment Company Diesel fueled engine coolant heater
US4309967A (en) * 1980-01-11 1982-01-12 Southard Edward S Variation of engine coolant heater
DE3521372A1 (de) * 1985-06-14 1986-12-18 Webasto-Werk W. Baier GmbH & Co, 8035 Gauting Heizung fuer kraftfahrzeuge

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996038692A1 (de) * 1995-06-01 1996-12-05 Firma J. Eberspächer Wasserheizgerät zur erwärmung des kühlwassers in einem wassergekühlten kraftfahrzeug-verbrennungsmotor (zusatzheizeinrichtung oder zuheizer)

Also Published As

Publication number Publication date
DE59000741D1 (de) 1993-02-25
ES2038013T3 (es) 1993-07-01
EP0394796B1 (de) 1993-01-13
CS9001969A2 (en) 1991-09-15
DD298893A5 (de) 1992-03-19
EP0394796A3 (de) 1991-04-03
CA2015369A1 (en) 1990-10-28
CA2015369C (en) 1993-09-14
US5018490A (en) 1991-05-28
CZ281406B6 (cs) 1996-09-11
DE3914154A1 (de) 1990-11-08

Similar Documents

Publication Publication Date Title
EP0394796B1 (de) Heizsystem, insbesondere für Kraftfahrzeuge, mit einem Verbrennungsmotor und einem Heizgerät
DE19809123B4 (de) Wasserpumpe für den Kühlkreislauf einer Brennkraftmaschine
EP0361053B1 (de) Heizvorrichtung für den Fahrgastraum eines eine flüssigkeitsgekühlte Brennkraftmaschine aufweisenden Kraftfahrzeuges
DE19606202B4 (de) Kühlsystem für einen Verbrennungsmotor
EP0751877B1 (de) Zusatzheizungs-anordnung
EP2758644B1 (de) Wärmetauscher für eine dosiereinheit einer scr-abgasnachbehandlungseinrichtung
DE19637817A1 (de) Einrichtung und Verfahren zum Kühlen und Vorwärmen
DE2139504C3 (de) Heizgerät für mobile Einheiten
EP0305854A2 (de) Vorrichtung zum Erwärmen von Diesel- oder Heizöl für einen Motor oder Brenner
DE3390405T1 (de) Vorrichtung zur Verbesserung des Anlassens eines Motors
DE19620441A1 (de) Motor-Aufwärmvorrichtung für ein Fahrzeug und Wärmeisoliereinrichtung
DE819334C (de) Vorrichtung zur Waermespeicherung fuer Kraftfahrzeuge unter Verwendung der Abgase des Antriebsmotors
DE19823254C5 (de) Brennkraftmaschine
DE2811144A1 (de) Fahrzeug-brennkraftmaschine
DE102013009451A1 (de) Elektrische Kühlmittelpumpe
DE3910241C1 (de)
DE4123866C2 (de) Dieselvorwärmer für Motoren, insbesondere Fahrzeugmotoren
DE3509349C2 (de)
DE3622631C2 (de) Abgaswärmetauscher
EP1515010B1 (de) Elektrische Heizvorrichtung für eine Blowbyeinleitung, eine Fluidleitung und ein Verfahren zu deren Einbau
DE4033796A1 (de) Einkreiskuehlsystem fuer brennkraftmaschinen
DE3741281A1 (de) Dieselheizer
EP0427746B1 (de) Kombiniertes vorwärm- und filtergerät, insbesondere für einen kraftfahrzeugmotor
DE3709444C2 (de)
DE2832571A1 (de) Durch eine brennkraftmaschine antreibbares kraftfahrzeug

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE ES FR GB IT SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE ES FR GB IT SE

17P Request for examination filed

Effective date: 19910920

17Q First examination report despatched

Effective date: 19920124

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT SE

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

REF Corresponds to:

Ref document number: 59000741

Country of ref document: DE

Date of ref document: 19930225

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930201

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2038013

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 90107176.1

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19960124

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19960125

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19960409

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19960410

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19970414

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19970415

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970415

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19970414

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971231

EUG Se: european patent has lapsed

Ref document number: 90107176.1

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19990503

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030430

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050414