EP0387254A1 - Systeme de detection des rates d'allumage d'un moteur et systeme d'echappement de moteur - Google Patents

Systeme de detection des rates d'allumage d'un moteur et systeme d'echappement de moteur

Info

Publication number
EP0387254A1
EP0387254A1 EP19880907670 EP88907670A EP0387254A1 EP 0387254 A1 EP0387254 A1 EP 0387254A1 EP 19880907670 EP19880907670 EP 19880907670 EP 88907670 A EP88907670 A EP 88907670A EP 0387254 A1 EP0387254 A1 EP 0387254A1
Authority
EP
European Patent Office
Prior art keywords
lambda
cylinder
engine
misfire
output voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP19880907670
Other languages
German (de)
English (en)
Inventor
Hans Heim
Hans Klein
Manfred Homeyer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0387254A1 publication Critical patent/EP0387254A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/1441Plural sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1473Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method
    • F02D41/1474Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method by detecting the commutation time of the sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1015Engines misfires
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio

Definitions

  • the present invention relates to a method of detecting misfire in a multi-cylinder internal
  • Fig. 1 is a diagrammatic representation of a four stroke internal combustion engine whose exhaust system contains a catalyser, fitted with lambda sensors in accordance with one embodiment of the invention
  • Fig. 2 is a graph showing the output voltages of the lambda sensors
  • Fig. 3 is a schematic circuit diagram of an electronic fuel injection system operable with lambda control in accordance with another embodiment of the invention.
  • Fig. 4 is a series of graphs relating to the embodiment of Fig. 3;
  • Fig. 5 is a logic diagram relating to one mode of operation of the embodiment of Fig. 3;
  • Fig. 6 is a series of graphs relating to the mode of operation of Fig. 5;
  • Fig. 7 is a logic diagram relating to an
  • Fig. 8 is a graph showing the use of window discriminators.
  • Fig. 9 is a diagram explaining the expected gas travel time.
  • a four-stroke petrol engine 10 for a vehicle has an exhaust system 12 containing at least one silencer 14 and an exhaust gas catalyser 16.
  • the catalyser 16 is so disposed in the exhaust system that it runs at about 550°C, this being the optimum temperature for catalysing the reduction of nitrogen oxide and the simultaneous oxidation of carbon monoxide and hydrocarbons, using up any
  • lambda sensors 18 and 20 are fitted in the exhaust system 12 upstream and downstream of the catalyser 16.
  • the lambda sensors comprise a solid electrolyte and, as is well known, they deliver an output voltage which is dependant upon the residual oxygen content of the exhaust gases.
  • the sensor voltages are shown very diagrammatically in Fig. 2.
  • the output voltage u 1 of the upstream sensor 18 fluctuates slightly in
  • the voltage u 2 of the downstream sensor 20 is substantially constant. Assuming the fuel/air mixture fed to the engine is in stoichiometric relationship or slightly lean, the average of the slightly rippling voltage u 1 is about the same as the voltage u 2 .
  • the fuel and oxygen are combusted in th e c a tal ys e r 16 s o th a t th e ou tpu t voltage u 2 of the downstream sensor 20 does not fall and it may even rise slightly.
  • the outputs of the sensors are connected to a comparator 22 which delivers an output signal S when the voltage u 2 -u 1 exceeds a predetermined value ⁇ u.
  • a smoothing circuit 24 can be arranged between the sensor 18 and the
  • the alarm signal s can be used to trigger an audible and/or visible alarm or to stop or restrict the fuel supply to the engine. If the misfiring cylinder can be identified, in the case of an internal combustion engine with petrol injection, the fuel supply to the faulty cylinder can be cut off by holding the respective inj e ction v alve clo sed .
  • One way o f dete ctin g the faulty cylinder is to provide, instead of a single upstream sensor 18, several separate sensors in
  • Fig. 3 shows an electronic fuel injection system for a four-stroke, four cylinder internal combustion engine having electronically controlled fuel injection and ignition systems.
  • the four injection valves 26,28,30,32 (shown diagrammatically) are opened and closed in timed
  • the injection valves 26-32 are individual to the
  • 34 also controls the four spark plugs 38, 40, 42 and 44 (shown diagrammatically) via an ignition coil and distributor 46.
  • the computer 34 controls the injection valves
  • the operating parameters include a reference pulse BM 1 inlet pressure p (vacuum), load L (pedal position), engine speed n, the air number ⁇ , as
  • the reference pulses BM are obtained in timed relation to rotation of the crankshaft and are for synchronisation purposes.
  • the engine operates witn lambda control and the lambda sensor (like the sensor 18 of Fig. 1) is arranged upstream of a catalyser in the exhaust gas system of the engine.
  • Lambda is arranged upstream of a catalyser in the exhaust gas system of the engine.
  • control is control in accordance with the composition of the exhaust gases, and in particular, upon the oxygen content of the exhaust gases, whereby the
  • fuel/air ratio is that which provides for optimum combustion, i.e., close to stoichiometric and
  • Fig. 4 shows at A the output of the lambda
  • the air number ⁇ fluctuates between two extremes in accordance with on-off control by the servo loop forming part of the electronic control.
  • a high air number ⁇ >1 denotes a lean mixture whereby the fuel injection system operates to increase the injected fuel quantity until the air number ⁇ 1 whereupon the injected fuel quantity is decreased.
  • Each on-off fluctuation lasts for several, e.g., six, revolutions of the crankshaft.
  • the output voltage u ⁇ of the lambda sensor is fed to a window discriminator to ascertain whether the voltage u ⁇ both rises above an upper threshold u max and falls below a lower threshold w min within 720° of crankshaft rotation. If it does, a pulse is sent to a misfire counter, whose count is shown at curve D in Fig. 4. When the counter has counted, say eight misfires an alarm signal s is
  • the window discriminator extends over 180° crankshaft angle, once for each cylinder, the cylinders being identified by the ignition trigger pulses and it is checked whether the sensor u ⁇ voltage first falls below the upper threshold u max and then below the lower
  • a counting pulse is delivered to a respective counter and when the counter is counted out, a fault signal s is delivered to indicate an alarm and to which
  • the fault signal s can be used in this case to inhibit the fuel injection signal to the respective injection valve by interrupting the corresponding output from the computer 34 of the
  • a storage time counter is also used, as shown in Fig. 5. For each cylinder, it is checked whether within the respective window of 180° crankshaft angle u ⁇ ⁇ u max and u ⁇ ⁇ u min .
  • a stepping pulse is applied to the fault counter. If it does not, a stepping pulse is applied to the storage time counter. Once the fault counter is counted out, the alarm signal s is delivered.
  • both counters are re-set. In other words if fewer than the number of misfires needed to count out the fault counter take place within the count-out period of the storage time counter, no fault is indicated.
  • the total count of each of the two counters can be adjusted to suit the operating conditions of the engine.
  • an empirically determined characteristic can be stored in the
  • Curve A is the output voltage u ⁇ of the lambda sensor. It can be seen that the output is not as regular as
  • Fig. 4(A) would suggest but the overall pattern of Fig. 4(A) is perceptible in Fig. 6(A).
  • Curve B in Fig. 6 represents synchronising pulses obtained from the ignition system.
  • a misfire signal is applied to a fault counter as described above. Also, as described above, the fault counter can be re-set in the absence of any further misfire signals within a predetermined,
  • Fig. 8 shows how the uncombusted exhaust gases from a misfiring cylinder can be identified by the lambda sensor. For a four cylinder, four stroke engine, the working cycle of 720° crankshaft angle is divided into four windows of 180° each. The window in which the falling flank of the sensor voltage u ⁇ crosses the upper and lower threshold corresponds to the
  • Fig. 9 shows the gas travel time measured from the TDC of the misfiring cylinder. It is typically 560° crankshaft angle but does vary according to engine operating parameters. Thus, the signals identifying the cylinders must be delayed by this gas travel time before correlating them with the misfire signal obtained from the lambda probe.
  • the expected gas travel time can be derived from an empirically determined characteristic field which is stored in the computer and which gives the expected gas travel time in dependence on engine operating characteristics, such as engine speed n and/or engine load L.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

Les ratés d'allumage sont détectés dans un moteur à combustion interne par contrôle de la tension (ulambda) d'un détecteur lambda disposé dans le système d'échappement en amont d'un catalyseur. Cette tension est soit comparée avec la tension d'un autre détecteur lambda en aval du catalyseur soit traitée, dans le cas d'une commande lambda pour permettre la détection de creux dans la tension (ulambda) du détecteur. La relation de phase entre les fluctuations de la tension du détecteur et le réglage du moteur identifient le moment où les gaz d'échappement provenant d'un cylindre présentant des ratés d'allumage atteignent le détecteur lambda. La durée prévue de parcours des gaz en relation avec TDC étant connue, le cylindre ayant des ratés d'allumage est identifié et l'injection de carburant dans le cylindre ayant des ratés d'allumage peut être arrêtée, ce qui permet d'empêcher le mélange air/carburant non brûlé d'atteindre le catalyseur où il viendrait brûler et surchaufferait le catalyseur.
EP19880907670 1988-09-10 1988-09-10 Systeme de detection des rates d'allumage d'un moteur et systeme d'echappement de moteur Withdrawn EP0387254A1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP1988/000824 WO1990002874A1 (fr) 1988-09-10 1988-09-10 Systeme de detection des rates d'allumage d'un moteur et systeme d'echappement de moteur

Publications (1)

Publication Number Publication Date
EP0387254A1 true EP0387254A1 (fr) 1990-09-19

Family

ID=8165323

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19880907670 Withdrawn EP0387254A1 (fr) 1988-09-10 1988-09-10 Systeme de detection des rates d'allumage d'un moteur et systeme d'echappement de moteur

Country Status (4)

Country Link
EP (1) EP0387254A1 (fr)
JP (1) JP2885813B2 (fr)
KR (1) KR900702200A (fr)
WO (1) WO1990002874A1 (fr)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2905820B2 (ja) * 1990-09-29 1999-06-14 スズキ株式会社 内燃機関の失火検出装置
DE4035957A1 (de) * 1990-11-09 1992-05-14 Bosch Gmbh Robert Verfahren zur funktionsueberwachung von brennkraftmaschinen
JP2753412B2 (ja) * 1992-02-04 1998-05-20 三菱電機株式会社 内燃機関失火判定装置
GB2342447A (en) * 1998-10-03 2000-04-12 Ford Motor Co Verifying engine cycle of an injection IC engine
DE10111586A1 (de) 2001-03-10 2002-09-12 Volkswagen Ag Verfahren zum Betrieb von Brennkraftmaschinen
DE10212428B4 (de) * 2002-03-21 2004-05-13 Robert Bosch Gmbh Verfahren zum Schutz einer Brennkraftmaschine
JP2005147140A (ja) 2003-11-14 2005-06-09 Robert Bosch Gmbh 内燃機関のミスファイアの検知方法及び運転装置
DE102004036039A1 (de) 2003-11-14 2005-06-09 Robert Bosch Gmbh Verfahren zum Erkennen von Verbrennungsaussetzern einer Brennkraftmaschine und Vorrichtung zur Durchführung des Verfahrens
DE102004004291B3 (de) 2004-01-28 2005-01-27 Siemens Ag Verfahren zum Anpassen des Erfassens eines Messsignals einer Abgassonde
DE102005012942B4 (de) 2005-03-21 2018-12-13 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
JP5471035B2 (ja) 2009-05-26 2014-04-16 ソニー株式会社 表示装置、表示装置の製造方法、および電子機器
GB2512102B (en) * 2013-03-20 2016-03-30 Perkins Engines Co Ltd Method and apparatus for identifying unstable combustion in an internal combustion engine
DE102013012568A1 (de) * 2013-07-29 2015-01-29 Man Diesel & Turbo Se Verfahren zum Betreiben einer Brennkraftmaschine
DE102013014674A1 (de) * 2013-09-04 2015-03-05 Man Diesel & Turbo Se Verfahren zum Betreiben einer Brennkraftmaschine
US9890726B2 (en) 2014-08-19 2018-02-13 Denso Corporation Individual cylinder air-fuel ratio control device of internal combustion engine
JP6915553B2 (ja) 2018-01-18 2021-08-04 トヨタ自動車株式会社 内燃機関の失火検出装置
DE102019201669B4 (de) * 2019-02-08 2020-11-12 Vitesco Technologies GmbH Verfahren und Vorrichtung zum Erkennen und Unterscheiden einer Ursache von mindestens einem Verbrennungsaussetzer einer Brennkraftmaschine
CN112392616B (zh) * 2020-11-18 2022-09-23 潍柴动力股份有限公司 控制方法、装置以及动力系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2444334A1 (de) * 1974-09-17 1976-03-25 Bosch Gmbh Robert Verfahren und einrichtung zur ueberwachung der aktivitaet von katalytischen reaktoren
US4030349A (en) 1976-08-16 1977-06-21 Beckman Instruments, Inc. Engine analysis apparatus
JPS57122144A (en) * 1981-01-20 1982-07-29 Nissan Motor Co Ltd Air fuel ratio feedback control unit
JPH061236B2 (ja) * 1984-10-30 1994-01-05 マツダ株式会社 エンジンの失火検出装置
JPH0674766B2 (ja) * 1985-11-04 1994-09-21 日本電装株式会社 電子式エンジン制御システムの異常検出装置
JPH0689707B2 (ja) * 1986-03-29 1994-11-09 三菱自動車工業株式会社 多気筒エンジンにおける特定気筒の失火判別方法
DE3614535A1 (de) * 1986-04-29 1987-11-05 Comuna Metall Vorrichtungs U M Abgasgereinigte brennkraftmaschine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9002874A1 *

Also Published As

Publication number Publication date
WO1990002874A1 (fr) 1990-03-22
KR900702200A (ko) 1990-12-06
JP2885813B2 (ja) 1999-04-26
JPH03501148A (ja) 1991-03-14

Similar Documents

Publication Publication Date Title
US6763707B2 (en) Failure determination system and method for internal combustion engine and engine control unit
EP0387254A1 (fr) Systeme de detection des rates d'allumage d'un moteur et systeme d'echappement de moteur
US5119783A (en) Control apparatus for an internal combustion engine
US4971010A (en) Method and apparatus for misfiring detection and control in an internal combustion engine
US6243641B1 (en) System and method for detecting engine cylinder misfire
US5044195A (en) Misfire detection in an internal combustion engine
US5983714A (en) System for detecting failure of fuel pressure sensor
US20070012086A1 (en) Air-fuel ratio sensor monitor, air-fuel ratio detector, and air-fuel ratio control
US6092368A (en) Function diagnostic system for an exhaust gas purifying apparatus in an internal combustion engine
USRE38051E1 (en) Catalytic converter decontamination method
US6520159B2 (en) Engine converter misfire protection method and apparatus
JP2877406B2 (ja) 失火を識別する方法及び装置
US5819530A (en) Internal combustion engine controller with exhaust gas purification catalyst and its deterioration monitoring system
JPH06137181A (ja) 多気筒2ストロークエンジンの燃料噴射装置
US5129228A (en) Electronic engine control system
US6098013A (en) System and method for monitoring exhaust gas hydrocarbon content in internal combustion engines
US4696277A (en) Engine alarm system
US4967727A (en) Fuel controller for an internal combustion engine
JP4827022B2 (ja) 内燃機関の失火検出装置
US8037672B2 (en) Method and apparatus for detecting a non-operational status of a catalyst in an engine exhaust conduit
WO1990002871A1 (fr) Systeme de detection des rates d'allumage d'un moteur et systeme d'echappement de moteur
JPH09151723A (ja) ガスエンジンの運転制御方法及び装置
JPH0518311A (ja) 異常検出装置
JPH07139416A (ja) 内燃機関の失火検出装置
JP3769820B2 (ja) エンジンの失火診断装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19900329

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 19910131

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROBERT BOSCH GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19920519