EP0384922B1 - Cryopump operating with a two-stage refrigerator - Google Patents

Cryopump operating with a two-stage refrigerator Download PDF

Info

Publication number
EP0384922B1
EP0384922B1 EP89103453A EP89103453A EP0384922B1 EP 0384922 B1 EP0384922 B1 EP 0384922B1 EP 89103453 A EP89103453 A EP 89103453A EP 89103453 A EP89103453 A EP 89103453A EP 0384922 B1 EP0384922 B1 EP 0384922B1
Authority
EP
European Patent Office
Prior art keywords
plates
baffle
stage
pump
cryopump according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89103453A
Other languages
German (de)
French (fr)
Other versions
EP0384922A1 (en
Inventor
Ulrich Dr. Häfner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Balzers und Leybold Deutschland Holding AG
Original Assignee
Leybold AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leybold AG filed Critical Leybold AG
Priority to AT89103453T priority Critical patent/ATE91531T1/en
Priority to DE8989103453T priority patent/DE58904918D1/en
Priority to EP89103453A priority patent/EP0384922B1/en
Priority to JP2042734A priority patent/JP2731276B2/en
Priority to US07/485,639 priority patent/US5000007A/en
Publication of EP0384922A1 publication Critical patent/EP0384922A1/en
Application granted granted Critical
Publication of EP0384922B1 publication Critical patent/EP0384922B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/06Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for evacuating by thermal means
    • F04B37/08Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for evacuating by thermal means by condensing or freezing, e.g. cryogenic pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S417/00Pumps
    • Y10S417/901Cryogenic pumps

Definitions

  • the invention relates to a cryopump operated with a two-stage refrigerator, the first (warmer) stage carrying pump surfaces, which are designed as a pot-shaped shield and a baffle comprising parallel strips arranged in the region of the pot opening, and the second (colder) one within the Pot-shaped shield arranged stage carries pump surfaces, which comprise several, partially covered with adsorption material, joined to a cuboid basic shape, the long sides of the cuboid being arranged parallel to the longitudinal axes of the strips of the baffle.
  • Cryopumps operated with a two-stage refrigerator are becoming increasingly popular as they have a comparably high pumping speed.
  • the pumping surfaces of the first stage the temperature of which is kept at approx. 80 K, are used for the condensation of water vapor and gases with similar boiling temperatures.
  • the baffle also has the task of protecting the pumping surfaces of the second stage against direct radiation.
  • gases boiling at lower temperatures e.g. B. argon, and particularly light gases such as hydrogen and helium. Hydrogen and helium can only be retained by adsorption on activated carbon or similar adsorption materials.
  • the pumping surfaces of the second stage of a cryopump are therefore designed in such a way that the gases passing through the baffle initially only "see” those surfaces that are condensed by argon and the like Serve gases.
  • the areas covered with adsorption material are shielded from them and can only be reached indirectly. This makes it possible to filter out the condensable gases before reaching the areas covered with adsorption material, in order not to unnecessarily load the adsorption material with condensable gases.
  • the light and therefore easily movable gases reach the adsorption areas and accumulate there.
  • the pump surfaces of the second stage of a cryopump operated with a two-stage refrigerator can be divided into two groups.
  • the pump surfaces consist of disk-shaped, circular or conical sheets and have an overall rotationally symmetrical structure (see European patent applications 128 323, 134 942 and 185 702 as well as German patent applications 28 21 276, 29 12 856 and 30 38 415). These solutions require a baffle that is also rotationally symmetrical.
  • the pump surfaces of the second group consist of several, essentially flat sheet metal sections which are joined to form a cuboid structure (European patent application 196 281, German patent application 26 20 880). Pump surface configurations of this type use baffle that consist of several metal strips arranged parallel to each other.
  • the pumping surfaces of the first group have the fundamental disadvantage compared to the pumping surfaces of the second group that their manufacture and assembly are more complex, in particular with regard to equipping various pump sizes with such pumping surfaces, because of their rotationally symmetrical structure.
  • the present invention relates to a cryopump of the second group, that is to say a cryopump with pumping surfaces carried by the second stage, which have a substantially cuboid structure.
  • Pumps of this type are often used in systems in which sputter processes are carried out.
  • Large amounts of condensable gases (especially argon) and adsorbable gases (especially hydrogen) are produced in sputtering processes.
  • the pumping speed for these gases depends - apart from the conductivity of the inlet baffle - above all on the surface that is offered to the respective gas inside the pump as the "inlet surface”.
  • this "entry surface” is the outer surface of the pump surface configuration.
  • For hydrogen, this "entry surface” is given by the gaps and openings which the outer surface of the pumping surface configuration has and through which the hydrogen can penetrate into the shielded areas with activated carbon coating.
  • the two "entrance surfaces” therefore compete with each other to a certain extent: If one enlarges the area intended for the addition of argon, that is to say the outer surface, then such an enlargement with a reduction in the "entrance area” for light gases, i.e. with a reduction in the pumping speed for light gases.
  • This also applies the other way round, ie one enlarges the areas through which the light gas to the areas covered with adsorbent material can reach, then this is necessarily associated with a reduction in the outer surface, that is, with a reduction in the pumping speed for condensable gases.
  • the present invention has for its object to provide a cryopump of the type mentioned, in which the pumping surfaces of the second stage have both an improved pumping speed for condensable gases and an improved pumping speed for light gases.
  • the pump surfaces of the second stage should meet the requirements that they are simple and therefore inexpensive to manufacture and assemble even for different pump types.
  • the number and size of the folds determine the pumping speed for condensable gases, while the gaps that exist due to the spacing of the sheets, which are not only in the area of the end faces of the rectangular basic shape, but also in the area of the side surfaces, determine the pumping speed for determine light gases.
  • the pumping speed for hydrogen is therefore substantially greater in the case of a rectangular pump surface according to the invention than in the case of a corresponding pump surface according to the prior art.
  • this improvement in the H 2 pumping speed is not necessarily associated with a reduction in the pumping speed for condensable gases.
  • the cryopump 1 shown in FIG. 1 with the housing 2 comprises the only partially illustrated two-stage refrigerator 3, the cooling stages of which are designated 4 (first, warmer stage) and 5 (second, colder stage).
  • the cup-shaped pump surface 6 is fastened in a heat-conducting manner so that it, together with the baffle 7 carried by the pot 6, encloses the interior 8 of the pump.
  • the pumping surfaces 9 which are connected to the second cooling stage 5 of the refrigerator 3 with good thermal conductivity and have an essentially cuboid structure.
  • the housing 2 of the cryopump 1 is equipped with a flange 11 which forms the inlet opening 12 of the cryopump 1 and with which the cryopump 1 does not adhere to one shown recipients, preferably with the interposition of a valve, is connected.
  • the higher-boiling gases accumulate on the baffle 7 and on the cup-shaped pump surface 6. Gases with lower boiling points, preferably argon, and light gases, preferably hydrogen, enter the interior 8 through the baffle 7.
  • the pump surface 9 has the task of accumulating these gases.
  • the pumping surface 9 according to FIG. 1 consists of a total of 9 sheets, of which the lower 8 sheets are designated 13 and the upper sheet 14. All of the sheets 13 and 14 are fastened to a central support 15, which in turn is connected to the colder stage 5 of the refrigerator 3 with good thermal conductivity. All sheets 13 and 14 are provided with bevels 18 which extend away from the baffle 7.
  • the carrier 15 has essentially the shape of a U, the legs of which extend parallel to the second stage 5 of the refrigerator 3. In the area of the connection of the U-legs, the carrier 15 is fastened to the step 5 with good thermal conductivity.
  • the pump surfaces 9 of the second refrigerator stage 5 have the task of depositing argon (as an example for condensable gases with a relatively low boiling temperature) by condensation and preferably hydrogen by adsorption.
  • argon as an example for condensable gases with a relatively low boiling temperature
  • the outer surfaces of the essentially cuboid pump surface structure that is to say the surface of the sheet 14 facing the baffle and the surfaces of the folds 18 facing the baffle 7, are intended to serve for the condensation of argon and therefore have the surface structure suitable for this.
  • the size of the sum of these areas determines the argon pumping speed.
  • the shielded surfaces of the sheets 13 and 14, that is to say preferably the sheet metal sections extending parallel to the plane of the baffle 7, are intended to hold light gases by adsorption.
  • adsorbent material 19 for. B. activated carbon.
  • the size of the total with activated carbon 19 occupied space depends on the desired hydrogen pumping capacity. If this is to be very large, the surfaces of the bevels 18 facing away from the baffle 7 can also be coated with activated carbon 19, as is shown in the example of the lower plate 13.
  • FIG. 1 also shows that the baffle 7 has angular baffles 21 directly above the pump surface 9 and simple baffles 23 in the outer region.
  • This combination of a Louver Baffles with a Chevron Baffle has the advantage of a further improvement in the pumping speed compared to the previously known Baffle solutions (only Louver Baffle with complete coverage of the central area).
  • only Louver Baffle with complete coverage of the central area only Louver Baffle with complete coverage of the central area.
  • FIG. 2 shows a single sheet 13 and shows the manner of its attachment to the central support 15.
  • Each sheet 13 is equipped with a central opening 23.
  • tabs 24 extending perpendicular to the plane of the sheet 13 are provided, by means of which the sheets 13 are fastened to the central support 15.
  • the central opening 23 is omitted only in the uppermost plate 14 of the pump surface 9, which lies directly on the connecting part of the U-shaped carrier 15 and is fastened together with this to the step 5.
  • the tabs 24 and the bevels 18 extend in the opposite direction. This arrangement has the advantage that the sheets 13 can be attached to the carrier 15 in a simple manner. The assembly takes place from bottom to top, so that the tabs 24 and the connecting screws are each freely accessible.
  • the sheets 13 are simple and inexpensive to produce.
  • the bevel 18 forms an angle ⁇ of approximately 45 ° with the plane of the sheet 13. This angle can be varied. By selecting different angles ⁇ , the hydrogen pumping speed can be influenced. If larger pumps are to be equipped with a pump surface 9 of the type described, then it is often sufficient to choose only a longer length L. It is not necessary to change the tool if it is long enough. If a larger width is also desired, then a tool which can be easily modified in this respect can be used, as will be described below with reference to FIG. 5.
  • argon pumping speed is particularly large compared to the hydrogen pumping speed, there is the possibility of providing a further bend 25 (only indicated by dashed lines), which follows the bend 18 and is essentially perpendicular downwards with respect to the plane of the central portion of the sheet 13 extends.
  • FIG. 3 shows a pump surface 9 according to the invention with a total of 11 sheets 13, 14, which have a relatively small distance from each other.
  • Such an arrangement with a very dense composition of the individual sheets is favorable for use in cryopumps for sputtering processes in which a high hydrogen suction capacity and a high hydrogen capacity are desired.
  • the distance between the individual sheets is chosen to be larger.
  • two bevels 18 and 25 are provided.
  • Such a spread-apart composition makes sense where dense stacking is not possible for reasons of weight saving, that is to say with relatively large cold surfaces for particularly large cryopump types.
  • FIG. 5 shows a tool for producing sheets 13, 14 for pump surfaces 9 according to the invention.
  • the printing tool 27 comprises an upper and a lower part 28, 29. Its shape and length L are chosen so that it is used for the production of the cold surfaces Cryopumps of the type according to the invention with different sizes and / or properties is suitable.
  • the length L corresponds to the maximum desired length. Its shape is chosen so that both a single edge and a double edge can be carried out, so that different tools are not required for these variations. If the width B is also to be variable, then the tool 27 must be able to be modified in this regard. It is preferably divisible with respect to its longitudinal axis, so that intermediate elements 30 can be used. Completely new tools, such as would be required in the case of a rotationally symmetrical construction of the cold surfaces, are not required for the pump surface designed according to the invention.

Abstract

The invention relates to a cryopump operating with a two-stage refrigerator (3), in which a plurality of rectangular plates (13, 14), which are arranged at a spacing parallel to one another and form the pumping surfaces (9) of the second stage (5); the plates (13, 14) extend essentially parallel to the plane of the baffle (7) and in the region of their longer sides have bent portions (18, 25) which extend away from the baffle (7); the shielded surfaces of the plates (13, 14), which extend parallel to the plane of the baffle (7), are coated at least partially with adsorption material (19); at least the surfaces of the bent portions (18, 25) that face the baffle (7) are constructed as condensation surfaces. <IMAGE>

Description

Die Erfindung bezieht sich auf eine mit einem zweistufigen Refrigerator betriebene Kryopumpe, deren erste (wärmere) Stufe Pumpflächen trägt, die als topfförmige Abschirmung und als im Bereich der Topföffnung angeordnetes, parallele Streifen umfassendes Baffle ausgebildet sind, und deren zweite (kältere), innerhalb der topfförmigen Abschirmung angeordnete Stufe Pumpflächen trägt, die mehrere, teilweise mit Adsorptionsmaterial belegte, zu einer quaderförmigen Grundform zusammengefügte Bleche umfassen, wobei die Längsseiten des Quaders parallel zu den Längsachsen der Streifen des Baffles angeordnet sind.The invention relates to a cryopump operated with a two-stage refrigerator, the first (warmer) stage carrying pump surfaces, which are designed as a pot-shaped shield and a baffle comprising parallel strips arranged in the region of the pot opening, and the second (colder) one within the Pot-shaped shield arranged stage carries pump surfaces, which comprise several, partially covered with adsorption material, joined to a cuboid basic shape, the long sides of the cuboid being arranged parallel to the longitudinal axes of the strips of the baffle.

Mit einem zweistufigen Refrigerator betriebene Kryopumpen setzen sich mehr und mehr durch, da sie ein vergleichbar hohes Saugvermögen haben. Die Pumpflächen der ersten Stufe, deren Temperatur auf ca. 80 K gehalten wird, dienen der Kondensation von Wasserdampf und Gasen mit ähnlichen Siedetemperaturen. Das Baffle hat gleichzeitig die Aufgabe, die Pumpflächen der zweiten Stufe vor unmittelbarer Bestrahlung zu schützen. An den Pumpflächen der zweiten Stufe, deren Temperatur ca. 20 K beträgt, sollen sich bei niedrigeren Temperaturen siedende Gase, z. B. Argon, und besonders leichte Gase, wie Wasserstoff und Helium, anlagern. Wasserstoff und Helium lassen sich nur durch Adsorption an Aktivkohle oder ähnlichen Adsorptionsmaterialien festhalten. Die Pumpflächen der zweiten Stufe einer Kryopumpe sind deshalb derart gestaltet, daß die durch das Baffle gelangenden Gase zunächst nur solche Flächen "sehen", die der Kondensation von Argon und ähnlichen Gasen dienen. Die mit Adsorptionsmaterial belegten Flächen liegen demgegenüber abgeschirmt und sind nur mittelbar erreichbar. Dadurch ist es möglich, die kondensierbaren Gase vor dem Erreichen der mit Adsorptionsmaterial belegten Flächen auszufiltern, um das Adsorptionsmaterial nicht unnötig mit kondensierbaren Gasen zu belasten. Die leichten und damit auch leicht beweglichen Gase erreichen die Adsorptionsflächen und lagern sich dort an.Cryopumps operated with a two-stage refrigerator are becoming increasingly popular as they have a comparably high pumping speed. The pumping surfaces of the first stage, the temperature of which is kept at approx. 80 K, are used for the condensation of water vapor and gases with similar boiling temperatures. The baffle also has the task of protecting the pumping surfaces of the second stage against direct radiation. At the pumping surfaces of the second stage, the temperature of which is approximately 20 K, gases boiling at lower temperatures, e.g. B. argon, and particularly light gases such as hydrogen and helium. Hydrogen and helium can only be retained by adsorption on activated carbon or similar adsorption materials. The pumping surfaces of the second stage of a cryopump are therefore designed in such a way that the gases passing through the baffle initially only "see" those surfaces that are condensed by argon and the like Serve gases. The areas covered with adsorption material are shielded from them and can only be reached indirectly. This makes it possible to filter out the condensable gases before reaching the areas covered with adsorption material, in order not to unnecessarily load the adsorption material with condensable gases. The light and therefore easily movable gases reach the adsorption areas and accumulate there.

Zur Gestaltung der Pumpflächen der zweiten Stufe einer mit einem zweistufigen Refrigerator betriebenen Kryopumpe sind bereits viele Vorschläge gemacht worden. Die bekannten Konfigurationen lassen sich in zwei Gruppen aufteilen. Bei der einen Gruppe bestehen die Pumpflächen aus scheibenförmig, kreisringförmig oder konisch gestalteten Blechen und weisen insgesamt einen rotationssymmetrischen Aufbau auf (vgl. die europäischen Patentanmeldungen 128 323, 134 942 und 185 702 sowie die deutschen Patentanmeldungen 28 21 276, 29 12 856 und 30 38 415). Diese Lösungen erfordern ein Baffle, das ebenfalls rotationssymmetrisch aufgebaut ist.Many suggestions have already been made for the design of the pump surfaces of the second stage of a cryopump operated with a two-stage refrigerator. The known configurations can be divided into two groups. In one group, the pump surfaces consist of disk-shaped, circular or conical sheets and have an overall rotationally symmetrical structure (see European patent applications 128 323, 134 942 and 185 702 as well as German patent applications 28 21 276, 29 12 856 and 30 38 415). These solutions require a baffle that is also rotationally symmetrical.

Die Pumpflächen der zweiten Gruppe bestehen aus mehreren, im wesentlichen ebenen Blechabschnitten, die zu einer quaderförmigen Struktur zusammengefügt sind (europäische Patentanmeldung 196 281, deutsche Patentanmeldung 26 20 880). Bei Pumpflächenkonfigurationen dieser Art werden Baffle verwendet, die aus mehreren, parallel zueinander angeordneten Metallstreifen bestehen.The pump surfaces of the second group consist of several, essentially flat sheet metal sections which are joined to form a cuboid structure (European patent application 196 281, German patent application 26 20 880). Pump surface configurations of this type use baffle that consist of several metal strips arranged parallel to each other.

Die Pumpflächen der ersten Gruppe haben gegenüber den Pumpflächen der zweiten Gruppe den grundsätzlichen Nachteil, daß ihre Herstellung und Montage insbesondere im Hinblick auf die Ausrüstung verschiedener Pumpengrößen mit derartigen Pumpflächen aufwendiger sind, und zwar aufgrund ihres rotationssymmetrischen Aufbaus.The pumping surfaces of the first group have the fundamental disadvantage compared to the pumping surfaces of the second group that their manufacture and assembly are more complex, in particular with regard to equipping various pump sizes with such pumping surfaces, because of their rotationally symmetrical structure.

Die vorliegende Erfindung bezieht sich auf eine Kryopumpe der zweiten Gruppe, also auf eine Kryopumpe mit von der zweiten Stufe getragenen Pumpflächen, die eine im wesentlichen quaderförmige Struktur haben. Pumpen dieser Art werden häufig bei Anlagen eingesetzt, in denen Sputterprozesse ausgeführt werden. Bei Sputterprozessen fallen große Mengen kondensierbarer Gase (insbesondere Argon) und adsorbierbarer Gase (insbesondere Wasserstoff) an. Das Saugvermögen für diese Gase ist - außer vom Leitwert des Eintrittsbaffles - vor allem von derjenigen Fläche abhängig, die dem jeweiligen Gas im Inneren der Pumpe als "Eintrittsfläche" angeboten wird. Für Argon ist diese "Eintrittsfläche" die äußere Oberfläche der Pumpflächenkonfiguration. Für Wasserstoff ist diese "Eintrittsfläche" durch die Spalte und Öffnungen gegeben, die die Außenfläche der Pumpflächenkonfiguration aufweist und durch die der Wasserstoff in die abgeschirmten Bereiche mit Aktivkohlebelegung vordringen kann.The present invention relates to a cryopump of the second group, that is to say a cryopump with pumping surfaces carried by the second stage, which have a substantially cuboid structure. Pumps of this type are often used in systems in which sputter processes are carried out. Large amounts of condensable gases (especially argon) and adsorbable gases (especially hydrogen) are produced in sputtering processes. The pumping speed for these gases depends - apart from the conductivity of the inlet baffle - above all on the surface that is offered to the respective gas inside the pump as the "inlet surface". For argon, this "entry surface" is the outer surface of the pump surface configuration. For hydrogen, this "entry surface" is given by the gaps and openings which the outer surface of the pumping surface configuration has and through which the hydrogen can penetrate into the shielded areas with activated carbon coating.

Bei den aus den erwähnten Schriften vorbekannten Konstruktionen von Pumpflächen der zweiten Gruppe sind sich längs erstreckende Seitenbleche vorgesehen, deren Außenflächen der Anlagerung kondensierbarer Gase dienen. Das Saugvermögen der Pumpe für Argon ist deshalb von der Größe dieser Außenflächen abhängig. Die leichten Gase können im wesentlichen nur von unten oder durch die Stirnseiten der Pumpflächenkonfigurationen zu den mit Adsorptionsmaterial belegten Flächen gelangen. Das Saugvermögen für Wasserstoff ist deshalb von der Größe dieser "Eintrittsflächen" abhängig.In the constructions of pump surfaces of the second group known from the aforementioned documents, longitudinally extending side plates are provided, the outer surfaces of which serve for the accumulation of condensable gases. The pumping speed of the pump for argon therefore depends on the size of these outer surfaces. The light gases can essentially only reach the surfaces covered with adsorbent material from below or through the end faces of the pump surface configurations. The pumping speed for hydrogen is therefore dependent on the size of these "entry areas".

Bei den vorbekannten Lösungen von Pumpflächen mit im wesentlichen quaderförmiger Struktur stehen deshalb die beiden "Eintrittsflächen" in gewisser Konkurrenz zueinander: Vergrößert man die für die Anlagerung von Argon bestimmte Fläche, also die Außenfläche, dann ist eine solche Vergrößerung mit einer Reduzierung der "Eintrittsfläche" für leichte Gase, also mit einer Reduzierung des Saugvermögens für leichte Gase, verbunden. Dieses gilt auch umgekehrt, d. h. vergrößert man die Flächen, durch die das leichte Gas zu den mit Adsorptionsmaterial belegten Flächen gelangen kann, dann ist das notwendigerweise mit einer Verkleinerung der äußeren Fläche verbunden, also mit einer Reduzierung des Saugvermögens für kondensierbare Gase.In the previously known solutions of pumping surfaces with a substantially cuboid structure, the two "entrance surfaces" therefore compete with each other to a certain extent: If one enlarges the area intended for the addition of argon, that is to say the outer surface, then such an enlargement with a reduction in the "entrance area" for light gases, i.e. with a reduction in the pumping speed for light gases. This also applies the other way round, ie one enlarges the areas through which the light gas to the areas covered with adsorbent material can reach, then this is necessarily associated with a reduction in the outer surface, that is, with a reduction in the pumping speed for condensable gases.

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, eine Kryopumpe der eingangs genannten Art zu schaffen, bei der die Pumpflächen der zweiten Stufe sowohl ein verbessertes Saugvermögen für kondensierbare Gase als auch ein verbessertes Saugvermögen für leichte Gase hat. Außerdem sollen die Pumpflächen der zweiten Stufe die Forderungen erfüllen, daß sie selbst für unterschiedliche Pumpentypen einfach und deshalb kostengünstig herstellbar und montierbar sind.The present invention has for its object to provide a cryopump of the type mentioned, in which the pumping surfaces of the second stage have both an improved pumping speed for condensable gases and an improved pumping speed for light gases. In addition, the pump surfaces of the second stage should meet the requirements that they are simple and therefore inexpensive to manufacture and assemble even for different pump types.

Erfindungsgemäß wird diese Aufgabe durch die Merkmale des Anspruch 1.According to the invention, this object is achieved by the features of claim 1.

Bei einer Pumpflächenkonfiguration dieser Art bestimmen Anzahl und Größe der Abkantungen das Saugvermögen für kondensierbare Gase, während die infolge der Abstände der Bleche vorhandenen Spalte, die nicht nur im Bereich der Stirnseiten der quaderförmigen Grundform, sondern auch im Bereich der Seitenflächen vorhanden sind, das Saugvermögen für leichte Gase bestimmen. Das Saugvermögen für Wasserstoff ist also bei einer quaderförmigen Pumpfläche nach der Erfindung wesentlich größer als bei einer entsprechenden Pumpfläche nach dem Stand der Technik. Infolge der erfindungsgemäßen Gestaltung der Pumpflächen ist diese H₂-Saugvermögensverbesserung nicht zwingend mit einer Reduzierung des Saugvermögens für kondensierbare Gase verbunden. Ist die Breite der Abkantungen so gewählt, daß sie dem Abstand der Bleche entspricht, dann ist die Summe der Oberflächen der Abkantungen gleich der Seitenfläche der quaderförmigen Pumpfläche. In diesem speziellen Fall kann deshalb im Vergleich zu den quaderförmigen Pumpflächen nach dem Stand der Technik eine wesentliche Vergrößerung des Wasserstoff-Saugvermögens bei gleichbleibendem Saugvermögen für kondensierbare Gase erreicht werden. Darüber hinaus besteht die Möglichkeit, die Breite der Abkantungen größer als den Blech-Abstand zu wählen. Neben einer Verbesserung des Wasserstoff-Saugvermögens wird dadurch noch eine Verbesserung des Saugvermögens für kondensierbare Gase erreicht.In a pump surface configuration of this type, the number and size of the folds determine the pumping speed for condensable gases, while the gaps that exist due to the spacing of the sheets, which are not only in the area of the end faces of the rectangular basic shape, but also in the area of the side surfaces, determine the pumping speed for determine light gases. The pumping speed for hydrogen is therefore substantially greater in the case of a rectangular pump surface according to the invention than in the case of a corresponding pump surface according to the prior art. As a result of the design of the pump surfaces according to the invention, this improvement in the H 2 pumping speed is not necessarily associated with a reduction in the pumping speed for condensable gases. Is the width of the bevels chosen so that it corresponds to the distance between the sheets corresponds, then the sum of the surfaces of the folds is equal to the side surface of the cuboid pump surface. In this special case, therefore, compared to the rectangular pump surfaces according to the prior art, a substantial increase in the hydrogen suction capacity can be achieved with a constant suction capacity for condensable gases. There is also the option of choosing a width greater than the distance between the sheets. In addition to an improvement in the hydrogen suction capacity, this also improves the suction capacity for condensable gases.

Weitere Vorteile und Einzelheiten der Erfindung sollen anhand von in den Figuren 1 bis 5 dargestellten Ausführungsbeispielen erläutert werden. Es zeigen

  • Figur 1 eine Kryopumpe nach der Erfindung,
  • Figur 2 eines der Bleche, die die Pumpflächen der zweiten Stufe der Kryopumpe nach Anspruch 1 bilden,
  • Figur 3 die erfindungsgemäße Pumpflächenkonfiguration in perspektivischer Darstellung,
  • Figur 4 eine weitere Variante einer Pumpflächenkonfiguration nach der Erfindung und
  • Figur 5 ein Werkzeug zur Herstellung der Einzelbleche.
Further advantages and details of the invention will be explained on the basis of the exemplary embodiments illustrated in FIGS. 1 to 5. Show it
  • FIG. 1 shows a cryopump according to the invention,
  • FIG. 2 one of the sheets that form the pumping surfaces of the second stage of the cryopump according to claim 1,
  • FIG. 3 shows the pump surface configuration according to the invention in a perspective view,
  • Figure 4 shows a further variant of a pump surface configuration according to the invention and
  • Figure 5 shows a tool for producing the individual sheets.

Die in Figur 1 dargestellte Kryopumpe 1 mit dem Gehäuse 2 umfaßt den nur teilweise dargestellten, zweistufigen Refrigerator 3, dessen Kältestufen mit 4 (erste, wärmere Stufe) und 5 (zweite, kältere Stufe) bezeichnet sind. An der ersten Stufe 4 ist die topfförmige Pumpfläche 6 gut wärmeleitend befestigt, so daß diese gemeinsam mit dem vom Topf 6 getragenen Baffle 7 den Innenraum 8 der Pumpe umschließt. Im Innenraum 8 befinden sich die Pumpflächen 9, die mit der zweiten Kältestufe 5 des Refrigerators 3 gut wärmeleitend verbunden sind und eine im wesentlichen quaderförmige Struktur haben. Das Gehäuse 2 der Kryopumpe 1 ist mit einem Flansch 11 ausgerüstet, der die Eintrittsöffnung 12 der Kryopumpe 1 bildet und mit dem die Kryopumpe 1 an einen nicht dargestellten Rezipienten, vorzugsweise unter Zwischenschaltung eines Ventils, angeschlossen wird.The cryopump 1 shown in FIG. 1 with the housing 2 comprises the only partially illustrated two-stage refrigerator 3, the cooling stages of which are designated 4 (first, warmer stage) and 5 (second, colder stage). At the first stage 4, the cup-shaped pump surface 6 is fastened in a heat-conducting manner so that it, together with the baffle 7 carried by the pot 6, encloses the interior 8 of the pump. In the interior 8 there are the pumping surfaces 9, which are connected to the second cooling stage 5 of the refrigerator 3 with good thermal conductivity and have an essentially cuboid structure. The housing 2 of the cryopump 1 is equipped with a flange 11 which forms the inlet opening 12 of the cryopump 1 and with which the cryopump 1 does not adhere to one shown recipients, preferably with the interposition of a valve, is connected.

Während des Pumpprozesses lagern sich die höher siedenden Gase am Baffle 7 und an der topfförmigen Pumpfläche 6 an. Gase mit niedrigeren Siedepunkten, vorzugsweise Argon, und leichte Gase, vorzugsweise Wasserstoff, gelangen durch das Baffle 7 in den Innenraum 8. Die Pumpfläche 9 hat die Aufgabe, diese Gase anzulagern.During the pumping process, the higher-boiling gases accumulate on the baffle 7 and on the cup-shaped pump surface 6. Gases with lower boiling points, preferably argon, and light gases, preferably hydrogen, enter the interior 8 through the baffle 7. The pump surface 9 has the task of accumulating these gases.

Die Pumpfläche 9 nach Figur 1 besteht aus insgesamt 9 Blechen, von denen die unteren 8 Bleche mit 13 und das obere Blech mit 14 bezeichnet sind. Sämtliche Bleche 13 und 14 sind an einem zentralen Träger 15 befestigt, der seinerseits gut wärmeleitend mit der kälteren Stufe 5 des Refrigerators 3 verbunden ist. Sämtliche Bleche 13 und 14 sind mit Abkantungen 18 versehen, die sich vom Baffle 7 weg erstrecken. Der Träger 15 hat im wesentlichen die Form eines U, dessen Schenkel sich parallel zur zweiten Stufe 5 des Refrigerators 3 erstrecken. Im Bereich der Verbindung der U-Schenkel ist der Träger 15 an der Stufe 5 gut wärmeleitend befestigt.The pumping surface 9 according to FIG. 1 consists of a total of 9 sheets, of which the lower 8 sheets are designated 13 and the upper sheet 14. All of the sheets 13 and 14 are fastened to a central support 15, which in turn is connected to the colder stage 5 of the refrigerator 3 with good thermal conductivity. All sheets 13 and 14 are provided with bevels 18 which extend away from the baffle 7. The carrier 15 has essentially the shape of a U, the legs of which extend parallel to the second stage 5 of the refrigerator 3. In the area of the connection of the U-legs, the carrier 15 is fastened to the step 5 with good thermal conductivity.

Die Pumpflächen 9 der zweiten Refrigeratorstufe 5 haben die Aufgabe, vorzugsweise Argon (als Beispiel für kondensierbare Gase mit relativ niedriger Siedetemperatur) durch Kondensation und vorzugsweise Wasserstoff durch Adsorption anzulagern. Die Außenflächen der im wesentlichen quaderförmigen Pumpflächenstruktur, also die dem Baffle zugewandte Oberfläche des Bleches 14 und die dem Baffle 7 zugewandten Flächen der Abkantungen 18 sollen der Kondensation von Argon dienen und haben deshalb die dafür geeignete Oberflächenstruktur. Die Größe der Summe dieser Flächen bestimmt das Argon-Saugvermögen. Die demgegenüber abgeschirmt angeordneten Flächen der Bleche 13 und 14, also vorzugsweise die sich parallel zur Ebene des Baffles 7 erstreckenden Blechabschnitte, sollen leichte Gase durch Adsorption festhalten. Sie sind deshalb, zumindest teilweise, mit Adsorptionsmaterial 19, z. B. Aktivkohle, belegt. Die Größe der insgesamt mit Aktivkohle 19 belegten Flächen hängt von der gewünschten Wasserstoff-Pumpkapazität ab. Soll diese sehr groß sein, dann können auch die dem Baffle 7 abgewandten Oberflächen der Abkantungen 18 mit Aktivkohle 19 belegt sein, wie das am Beispiel des unteren Bleches 13 dargestellt ist.The pump surfaces 9 of the second refrigerator stage 5 have the task of depositing argon (as an example for condensable gases with a relatively low boiling temperature) by condensation and preferably hydrogen by adsorption. The outer surfaces of the essentially cuboid pump surface structure, that is to say the surface of the sheet 14 facing the baffle and the surfaces of the folds 18 facing the baffle 7, are intended to serve for the condensation of argon and therefore have the surface structure suitable for this. The size of the sum of these areas determines the argon pumping speed. The shielded surfaces of the sheets 13 and 14, that is to say preferably the sheet metal sections extending parallel to the plane of the baffle 7, are intended to hold light gases by adsorption. They are therefore, at least partially, with adsorbent material 19, for. B. activated carbon. The size of the total with activated carbon 19 occupied space depends on the desired hydrogen pumping capacity. If this is to be very large, the surfaces of the bevels 18 facing away from the baffle 7 can also be coated with activated carbon 19, as is shown in the example of the lower plate 13.

Figur 1 zeigt noch, daß das Baffle 7 unmittelbar oberhalb der Pumpfläche 9 winkelförmige Bafflestreifen 21 und im äußeren Bereich einfache Bafflestreifen 23 aufweist. Diese Kombination eines Louver-Baffles mit einem Chevron-Baffle hat gegenüber den vorbekannten Baffle-Lösungen (nur Louver-Baffle mit vollständiger Abdeckung des Mittelbereiches) den Vorteil einer weiteren Saugvermögensverbesserung. Infolge des Vorhandenseins des Chevron-Baffles im Mittelbereich besteht dort ein wenn auch gegenüber der übrigen Streifenanordnung verringertes Saugvermögen für Argon und Wasserstoff.FIG. 1 also shows that the baffle 7 has angular baffles 21 directly above the pump surface 9 and simple baffles 23 in the outer region. This combination of a Louver Baffles with a Chevron Baffle has the advantage of a further improvement in the pumping speed compared to the previously known Baffle solutions (only Louver Baffle with complete coverage of the central area). As a result of the presence of the chevron baffle in the central region, there is a suction capacity for argon and hydrogen, albeit reduced compared to the rest of the strip arrangement.

Figur 2 zeigt ein Einzelblech 13 und läßt die Art und Weise seiner Befestigung am zentralen Träger 15 erkennen. Jedes Blech 13 ist mit einer zentralen Öffnung 23 ausgerüstet. An zwei einander gegenüberliegenden Seiten der Öffnung 23 sind senkrecht sich zur Ebene des Bleches 13 erstreckende Laschen 24 vorgesehen, mit deren Hilfe die Bleche 13 am zentralen Träger 15 befestigt werden. Die zentrale Öffnung 23 entfällt lediglich beim obersten Blech 14 der Pumpfläche 9, welches unmittelbar dem Verbindungsteil des U-förmigen Trägers 15 aufliegt und gemeinsam mit diesem an der Stufe 5 befestigt ist. In Bezug auf den zentralen Bereich der Bleche 13 erstrecken sich die Laschen 24 und die Abkantungen 18 in entgegengesetzter Richtung. Diese Anordnung hat den Vorteil, daß die Bleche 13 in einfacher Weise am Träger 15 befestigt werden können. Die Montage erfolgt von unten nach oben, so daß die Laschen 24 und die Verbindungsschrauben jeweils frei zugänglich sind.Figure 2 shows a single sheet 13 and shows the manner of its attachment to the central support 15. Each sheet 13 is equipped with a central opening 23. On two opposite sides of the opening 23, tabs 24 extending perpendicular to the plane of the sheet 13 are provided, by means of which the sheets 13 are fastened to the central support 15. The central opening 23 is omitted only in the uppermost plate 14 of the pump surface 9, which lies directly on the connecting part of the U-shaped carrier 15 and is fastened together with this to the step 5. With regard to the central region of the sheets 13, the tabs 24 and the bevels 18 extend in the opposite direction. This arrangement has the advantage that the sheets 13 can be attached to the carrier 15 in a simple manner. The assembly takes place from bottom to top, so that the tabs 24 and the connecting screws are each freely accessible.

Anhand der Figur 2 ist bereits erkennbar, daß die Bleche 13 einfach und preiswert herzustellen sind. Die Abkantung 18 bildet mit der Ebene des Blechs 13 einen Winkel α von etwa 45°. Dieser Winkel ist variierbar. Durch Wahl unterschiedlicher Winkel α läßt sich Einfluß auf das Wasserstoff-Saugvermögen nehmen. Sollen größere Pumpen mit einer Pumpfläche 9 der beschriebenen Art ausgerüstet werden, dann reicht es häufig aus, lediglich eine größere Länge L zu wählen. Eine Änderung des Werkzeuges ist, sofern es lang genug ist, nicht erforderlich. Ist auch eine größere Breite erwünscht, dann kann ein in dieser Hinsicht leicht modifizierbares Werkzeug verwendet werden, wie es weiter unten anhand von Figur 5 noch beschrieben wird.It can already be seen from FIG. 2 that the sheets 13 are simple and inexpensive to produce. The bevel 18 forms an angle α of approximately 45 ° with the plane of the sheet 13. This angle can be varied. By selecting different angles α, the hydrogen pumping speed can be influenced. If larger pumps are to be equipped with a pump surface 9 of the type described, then it is often sufficient to choose only a longer length L. It is not necessary to change the tool if it is long enough. If a larger width is also desired, then a tool which can be easily modified in this respect can be used, as will be described below with reference to FIG. 5.

Soll das Argon-Saugvermögen gegenüber dem Wasserstoff-Saugvermögen besonders groß sein, dann besteht die Möglichkeit, eine weitere Abkantung 25 (lediglich gestrichelt angedeutet) vorzusehen, die sich an die Abkantung 18 anschließt und sich im wesentlichen senkrecht nach unten in Bezug auf die Ebene des zentralen Abschnittes des Bleches 13 erstreckt.If the argon pumping speed is particularly large compared to the hydrogen pumping speed, there is the possibility of providing a further bend 25 (only indicated by dashed lines), which follows the bend 18 and is essentially perpendicular downwards with respect to the plane of the central portion of the sheet 13 extends.

Figur 3 zeigt eine Pumpfläche 9 nach der Erfindung mit insgesamt 11 Blechen 13, 14, welche einen relativ kleinen Abstand zueinander haben. Eine derartige Anordnung mit einer sehr dichten Zusammensetzung der Einzelbleche ist günstig für den Einsatz in Kryopumpen für Sputterprozesse, bei denen ein hohes Wasserstoffsaugvermögen und eine hohe Wasserstoff-Kapazität erwünscht ist. Beim Ausführungsbeispiel nach Figur 4 ist der Abstand der einzelnen Bleche voneinander größer gewählt. Zusätzlich sind zwei Abkantungen 18 und 25 vorgesehen. Eine derartige aufgespreizte Zusammensetzung ist dort sinnvoll, wo aus Gründen der Gewichtseinsparung keine dichte Stapelung möglich ist, also bei relativ großen Kaltflächen für besonders große Kryopumpentypen.Figure 3 shows a pump surface 9 according to the invention with a total of 11 sheets 13, 14, which have a relatively small distance from each other. Such an arrangement with a very dense composition of the individual sheets is favorable for use in cryopumps for sputtering processes in which a high hydrogen suction capacity and a high hydrogen capacity are desired. In the exemplary embodiment according to FIG. 4, the distance between the individual sheets is chosen to be larger. In addition, two bevels 18 and 25 are provided. Such a spread-apart composition makes sense where dense stacking is not possible for reasons of weight saving, that is to say with relatively large cold surfaces for particularly large cryopump types.

Figur 5 zeigt ein Werkzeug zur Herstellung von Blechen 13, 14 für Pumpflächen 9 nach der Erfindung. Das Druckwerkzeug 27 umfaßt ein Ober- und ein Unterteil 28, 29 auf. Seine Form und seine Länge L sind so gewählt, daß es für die Herstellung der Kaltflächen von Kryopumpen des erfindungsgemäßen Typs mit unterschiedlichen Größen und/oder Eigenschaften geeignet ist. Die Länge L entspricht der maximal gewünschten Länge. Seine Form ist so gewählt, daß sowohl eine Einfachkantung als auch eine Doppelkantung ausführbar sind, so daß auch für diese Variationen unterschiedliche Werkzeuge nicht erforderlich sind. Soll auch die Breite B variierbar sein, dann muß das Werkzeug 27 in dieser Hinsicht modifizierbar sein. Vorzugsweise ist es in Bezug auf seine Längsachse teilbar, so daß Zwischenelemente 30 einsetzbar sind. Vollständig neue Werkzeuge, wie sie bei rotationssymmetrischem Aufbau der Kaltflächen erforderlich sein würden, sind bei der erfindungsgemäß gestalteten Pumpfläche nicht erforderlich.FIG. 5 shows a tool for producing sheets 13, 14 for pump surfaces 9 according to the invention. The printing tool 27 comprises an upper and a lower part 28, 29. Its shape and length L are chosen so that it is used for the production of the cold surfaces Cryopumps of the type according to the invention with different sizes and / or properties is suitable. The length L corresponds to the maximum desired length. Its shape is chosen so that both a single edge and a double edge can be carried out, so that different tools are not required for these variations. If the width B is also to be variable, then the tool 27 must be able to be modified in this regard. It is preferably divisible with respect to its longitudinal axis, so that intermediate elements 30 can be used. Completely new tools, such as would be required in the case of a rotationally symmetrical construction of the cold surfaces, are not required for the pump surface designed according to the invention.

Claims (10)

  1. Cryopump (1) operated by a two-stage refrigerator (3), the first (warmer) stage (4) of which pump bears pump faces which are formed as a pot-shaped shield (6) and as a baffle (7), which is arranged in the area of the pot opening and comprises parallel strips (22), and the second (colder) stage (5) of which pump, being arranged inside the pot-shaped shield (6), bears pump faces (9) comprising a plurality of plates which are partly coated with adsorption material (19) and are assembled to form a basic cuboidal shape, the longitudinal sides of the cuboid being arranged parallel to the longitudinal axes of the strips (22) of the baffle (7), characterised in that a plurality of rectangular plates (13, 14), which are arranged parallel to one another at a spacing, form the pump faces (9) of the second stage (5), the plates (13, 14) being arranged and shaped as follows:
    - They extend essentially parallel to the plane of the baffle (7);
    - They comprise bent portions (18, 25), which are of the same shape and size and extend away from the baffle (7), in the area of their longer sides;
    - The frontal unbent areas of the plates (13, 14) which are assembled to form a basic cuboidal shape are open;
    - The shielded surfaces of the plates (13, 14) are coated at least partly with adsorption material;
    - The surfaces of the bent portions (18, 25) facing the baffle (7) are formed as condensation faces.
  2. Cryopump according to claim 1, characterised in that a central support (15) is provided which is secured to the colder stage (5) of the refrigerator (3) and to which the faces (13, 14) are secured.
  3. Cryopump according to claim 2, characterised in that the support (16) is essentially U-shaped, that its side pieces extend parallel to the stage (5) of the refrigerator (2), and that the section connecting the side pieces of the U is secured to the stage (5) in an effective beat-conducting manner.
  4. Cryopump according to claim 2 or 3, characterised in that the plates (13) comprise a central opening (23), and that straps (24) are associated with the opening (23), by means of which straps the plates (13) are secured to the central support (15) in an effective heat-conducting manner.
  5. Cryopump according to one of the preceding claims, characterised in that it is provided with a bent portion (18), the width of which is greater than the spacing of the plates (13, 14).
  6. Cryopump according to one of the preceding claims, characterised in that the plates (13, 14) are provided with a double bend (18, 25).
  7. Cryopump according to claim 6, characterised in that the bent portions (18) form an angle of approximately 45° with the plane of the central area of the plates (13) and the bent portions (25) form an angle of approximately 90° with this plane.
  8. Cryopump according to one of claims 1 to 7, characterised in that the surfaces of the bent portions (18 or 25) which are distant from the baffle (7) are coated with activated charcoal or another adsorption material.
  9. Cryopump according to claim 4 and one of the other claims, characterised in that the bent portions (18 or 25) and the straps (24) extend in the direction opposite to the plane of the central area of the plates (13).
  10. Cryopump according to one of the preceding claims, characterised in that a combined chevron-louvre baffle (7) is provided.
EP89103453A 1989-02-28 1989-02-28 Cryopump operating with a two-stage refrigerator Expired - Lifetime EP0384922B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AT89103453T ATE91531T1 (en) 1989-02-28 1989-02-28 CRYOPUMP POWERED BY A TWO-STAGE REFRIGERATOR.
DE8989103453T DE58904918D1 (en) 1989-02-28 1989-02-28 A CRYOPUMPUM OPERATED WITH A TWO-STAGE REFRIGERATOR.
EP89103453A EP0384922B1 (en) 1989-02-28 1989-02-28 Cryopump operating with a two-stage refrigerator
JP2042734A JP2731276B2 (en) 1989-02-28 1990-02-26 Cryopump operated by a two-stage refrigerator
US07/485,639 US5000007A (en) 1989-02-28 1990-02-27 Cryogenic pump operated with a two-stage refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP89103453A EP0384922B1 (en) 1989-02-28 1989-02-28 Cryopump operating with a two-stage refrigerator

Publications (2)

Publication Number Publication Date
EP0384922A1 EP0384922A1 (en) 1990-09-05
EP0384922B1 true EP0384922B1 (en) 1993-07-14

Family

ID=8201020

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89103453A Expired - Lifetime EP0384922B1 (en) 1989-02-28 1989-02-28 Cryopump operating with a two-stage refrigerator

Country Status (5)

Country Link
US (1) US5000007A (en)
EP (1) EP0384922B1 (en)
JP (1) JP2731276B2 (en)
AT (1) ATE91531T1 (en)
DE (1) DE58904918D1 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5301511A (en) * 1992-06-12 1994-04-12 Helix Technology Corporation Cryopump and cryopanel having frost concentrating device
WO1994000212A1 (en) * 1992-06-24 1994-01-06 Extek Cryogenics Inc. Cryopump
CA2367818C (en) * 2001-01-18 2010-05-11 Electric Power Research Institute, Inc. Method and apparatus for renewable mercury sorption
CA2381610C (en) * 2001-04-16 2010-07-06 Electric Power Research Institute, Inc. Method and apparatus for removing vapor phase contaminants from a flue gas stream
US6905534B2 (en) * 2001-04-16 2005-06-14 Electric Power Research Institute, Inc. Method and apparatus for removing vapor phase contaminants from a flue gas stream
US20050274128A1 (en) * 2004-06-10 2005-12-15 Genesis Cryopump with enhanced hydrogen pumping
US7313922B2 (en) * 2004-09-24 2008-01-01 Brooks Automation, Inc. High conductance cryopump for type III gas pumping
WO2007073849A2 (en) * 2005-12-19 2007-07-05 Behr Gmbh & Co. Kg Sorber heat exchanger wall and sorber heat exchanger
JP2010196632A (en) * 2009-02-26 2010-09-09 Sumitomo Heavy Ind Ltd Cryopump
CH703216A1 (en) * 2010-05-27 2011-11-30 Hsr Ag A device for preventing the memory effect upon cryopumps.
US20130008189A1 (en) * 2011-05-12 2013-01-10 Sumitomo Heavy Industries, Ltd. Cryopump and Method of Manufacturing the Same
JP5398780B2 (en) * 2011-05-12 2014-01-29 住友重機械工業株式会社 Cryopump
CN103742389B (en) * 2013-10-18 2015-12-23 石狮市台瑞精密机械有限公司 Combination cold plate in a kind of vacuum low-temperature pump
US10145371B2 (en) 2013-10-22 2018-12-04 Taiwan Semiconductor Manufacturing Co., Ltd. Ultra high vacuum cryogenic pumping apparatus with nanostructure material
SG11201707065PA (en) * 2015-05-15 2017-11-29 Exxonmobil Upstream Res Co Apparatus and system for swing adsorption processes related thereto
JP6871751B2 (en) * 2017-02-07 2021-05-12 住友重機械工業株式会社 Cryopump
JP2018127943A (en) * 2017-02-08 2018-08-16 住友重機械工業株式会社 Cryopump
CN207111346U (en) * 2017-07-03 2018-03-16 京东方科技集团股份有限公司 Cryogenic pump

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH628959A5 (en) * 1978-04-18 1982-03-31 Balzers Hochvakuum Cryopump with a fitted refrigerating machine
US4212170A (en) * 1979-04-16 1980-07-15 Oerlikon Buhrle USA Incorporated Cryopump
US4295338A (en) * 1979-10-18 1981-10-20 Varian Associates, Inc. Cryogenic pumping apparatus with replaceable pumping surface elements
US4546613A (en) * 1983-04-04 1985-10-15 Helix Technology Corporation Cryopump with rapid cooldown and increased pressure
US4530213A (en) * 1983-06-28 1985-07-23 Air Products And Chemicals, Inc. Economical and thermally efficient cryopump panel and panel array
US4555907A (en) * 1984-05-18 1985-12-03 Helix Technology Corporation Cryopump with improved second stage array
IT1201263B (en) * 1985-03-26 1989-01-27 Galileo Spa Off CRYOGENIC REFRIGERATOR PUMP WITH SCREEN GEOMETRY SUITABLE TO REACH HIGH EFFICIENCY AND LONG LIFE
US4718241A (en) * 1985-10-31 1988-01-12 Helix Technology Corporation Cryopump with quicker adsorption
JPH07100963B2 (en) * 1985-12-26 1995-11-01 清水建設株式会社 Concrete reinforcing member
JPS6430745A (en) * 1987-07-10 1989-02-01 Iton Ag Multiplayer board consisting of aerated concrete and manufacture thereof
JPH01150532A (en) * 1987-12-08 1989-06-13 Kenji Tsunoda Workpiece with multiaxially reinforced reinforcing interliner
JPH01229852A (en) * 1988-03-02 1989-09-13 Toray Ind Inc Reinforcing base for composite material
US4873833A (en) * 1988-11-23 1989-10-17 American Telephone Telegraph Company, At&T Bell Laboratories Apparatus comprising a high-vacuum chamber

Also Published As

Publication number Publication date
JPH03981A (en) 1991-01-07
DE58904918D1 (en) 1993-08-19
ATE91531T1 (en) 1993-07-15
US5000007A (en) 1991-03-19
EP0384922A1 (en) 1990-09-05
JP2731276B2 (en) 1998-03-25

Similar Documents

Publication Publication Date Title
EP0384922B1 (en) Cryopump operating with a two-stage refrigerator
DE60011616T2 (en) HEAT EXCHANGER WITH MULTICHANNEL TUBES
DE2620880C2 (en) Cryopump
DE1967052A1 (en) HEAT EXCHANGER LIKE A TUBE COOLER
EP0374896A2 (en) Flat tube condenser, manufacturing method and uses
CH650560A5 (en) CRYOGENIC PUMP DEVICE.
DE19641636A1 (en) Double curved heat exchanger coil
DE69915448T2 (en) TEMPERATURE CONTROLLED LINE VALVE BETWEEN A GETTER PUMP AND A TURBOMOLECULAR PUMP
DE3232324C2 (en) Refrigerator-operated cryopump
DE4392772B4 (en) Cryopump and cryopanel, which has a maturing-concentrating facility
EP1200742A1 (en) Stator ring for a turbomolecular vacuum pump
DE60100862T3 (en) END CHAMBER FOR A BRAZED HEAT EXCHANGER
EP1335787A1 (en) Device for filtering air
DE4226171A1 (en) Exhaust manifold
WO2005005832A1 (en) Cryopump
EP1492991B1 (en) Soldered heat exchanger
EP2167895A1 (en) Heat exchanger
EP1310760B1 (en) Cooling medium condensor
EP0918199B1 (en) Refrigerator
EP0708907B1 (en) Heat store, especially latent heat store
EP0698771A1 (en) Freezer
DE2627960C2 (en) Heat exchanger for a dustproof and watertight cabinet that is sealed off from the environment
EP2762787A2 (en) Air conditioning element for a heating and cooling ceiling
WO2009000669A1 (en) Refrigeration device
DE2633271A1 (en) Spiral heat exchanger in plastic - made from plastic sheets with spacer between coiled round core

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI NL

17P Request for examination filed

Effective date: 19901227

17Q First examination report despatched

Effective date: 19920512

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI NL

REF Corresponds to:

Ref document number: 91531

Country of ref document: AT

Date of ref document: 19930715

Kind code of ref document: T

REF Corresponds to:

Ref document number: 58904918

Country of ref document: DE

Date of ref document: 19930819

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930723

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19940228

Ref country code: CH

Effective date: 19940228

Ref country code: BE

Effective date: 19940228

Ref country code: AT

Effective date: 19940228

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
BERE Be: lapsed

Owner name: LEYBOLD A.G.

Effective date: 19940228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19940901

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19960201

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19971030

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19980121

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19980126

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990228

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19990228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050228