JPH07100963B2 - Concrete reinforcing member - Google Patents
Concrete reinforcing memberInfo
- Publication number
- JPH07100963B2 JPH07100963B2 JP60295751A JP29575185A JPH07100963B2 JP H07100963 B2 JPH07100963 B2 JP H07100963B2 JP 60295751 A JP60295751 A JP 60295751A JP 29575185 A JP29575185 A JP 29575185A JP H07100963 B2 JPH07100963 B2 JP H07100963B2
- Authority
- JP
- Japan
- Prior art keywords
- fiber
- reinforcing member
- concrete
- reinforcing
- fibers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Reinforcement Elements For Buildings (AREA)
- Laminated Bodies (AREA)
Description
【発明の詳細な説明】 「産業上の利用分野」 本発明は、各種コンクリート構造物に埋設される補強用
鉄筋や金網などの代わりに用いられて好適なコンクリー
ト補強部材に関するものである。TECHNICAL FIELD The present invention relates to a concrete reinforcing member suitable for use in place of reinforcing steel bars, wire nets, and the like embedded in various concrete structures.
「従来の技術」 各種コンクリート構造物の中でも、例えば建屋の壁部や
床版などには、それらの主体を形成するコンクリートの
中に、格子状に組まれた鉄筋や溶接金網などのコンクリ
ート補強部材が埋設されている。“Conventional technology” Among various concrete structures, for example, in the walls and floor slabs of buildings, concrete reinforcing members such as reinforcing bars and welded wire mesh assembled in a grid form in the concrete forming the main body of them. Is buried.
「発明が解決しようとする問題点」 ところで、このような鉄筋や金網などの補強部材は、そ
の材料費が比較的安価で適度の強度を備えていることな
どから、従来から極めて多くのコンクリート構造物に適
用されていたが、近年における建築技術や土木技術の進
歩に伴い、補強部材自体についても次のような点におい
て解決すべき問題点があった。[Problems to be Solved by the Invention] By the way, such reinforcing members such as reinforcing bars and wire nets have a relatively low material cost, and have appropriate strength. Although it was applied to objects, with the progress of construction technology and civil engineering technology in recent years, there have been problems to be solved for the reinforcing member itself in the following points.
建屋の壁部や床版部のようにコンクリートの比較的薄
い部分に埋設される鉄筋は、一般に第7図に示す如く格
子状に組まれるが、その場合、縦筋Aと横筋Bが交差す
る形態で重ねられていわゆる段違いとなるため、該鉄筋
格子の埋設状態においては縦筋と横筋部分とでコンクリ
ートの被り厚さに違いができること。Reinforcing bars embedded in a relatively thin portion of concrete such as a building wall or floor slab are generally assembled in a grid pattern as shown in FIG. 7, in which case the vertical bars A and the horizontal bars B intersect. Since they are overlapped in a form and have a so-called step difference, the covering thickness of concrete can be different between the vertical reinforcing bars and the horizontal reinforcing bars when the reinforcing bar lattice is embedded.
鉄筋自体が相当の重量を持っているため、現場での施
工性や運搬性が悪く、したがって大規模なユニット化を
図るには極めて困難であること。Since the rebar itself has a considerable weight, the workability and transportability on site are poor, and it is extremely difficult to make a large-scale unit.
現場において、鉄筋どうしの結束作業や溶接作業に極
めて手間がかかり、その分、工期が長期化してしまうこ
と。In the field, it takes a lot of time to bind and weld the reinforcing bars, and the construction period becomes longer accordingly.
コンクリートとの付着性を増大させるためには、例え
ば異形鉄筋などのように製造時において鉄筋自体の表面
にわざわざ粗面加工を施さなければならないこと。In order to increase the adhesion to concrete, the surface of the reinforcing bar itself must be purposely roughened during manufacturing, such as deformed reinforcing bar.
鉄筋組作業のほとんどが現場作業となり、また鉄筋の
径が大きくなると曲げ加工なども困難となるので、鉄筋
組精度の向上を図りにくいこと。Most of the rebar assembly work is done on site, and bending work becomes difficult when the diameter of the rebar becomes large, so it is difficult to improve the rebar assembly accuracy.
鉄筋及び溶接金網のいずれも鉄を素材としているため
保管時の防錆対策が必要な他、コンクリート内でも腐食
してコンクリートの剥離現象が発生しやすくなること。Since both the rebar and the welded wire net are made of iron, it is necessary to take rust preventive measures during storage, and it is easy for corrosion to occur in the concrete, causing the phenomenon of concrete peeling.
「問題点を解決するための手段」 そこで、本発明では、コンクリート構造となる部分に埋
設される補強部材の構成として、引き揃えられた複数本
の繊維が並列配置されてなる偏平な繊維群同志が互いに
交差して格子状をなし、それら繊維群の各繊維同志およ
び繊維群同志は樹脂材料にて結束されており、かつ、前
記繊維群の交差部は、一方向に延在する繊維束を構成す
る繊維群と他方向に延在する繊維束を構成する繊維群と
が各繊維群を層として交互に三層以上に交差して積層さ
れた断面形状であることを特徴とする。[Means for Solving the Problems] Therefore, in the present invention, as a configuration of the reinforcing member embedded in the portion that becomes the concrete structure, a flat fiber group composed of a plurality of aligned fibers arranged in parallel is provided. Are crossed with each other to form a lattice shape, the fibers of each fiber group and the fibers of each fiber group are bound by a resin material, and the intersection of the fiber groups has a fiber bundle extending in one direction. It is characterized in that the constituting fiber group and the fiber group constituting the fiber bundle extending in the other direction have a cross-sectional shape in which three or more layers are alternately laminated with each fiber group as a layer.
「作用」 上記構成の補強部材は、繊維と樹脂材料からなるため、
極めて軽量となる一方、予め一体化物として造ることが
できるので、現場での施工性や運搬性さらには大規模な
ユニット化を図るうえで大きく貢献する。また、引き揃
えられた繊維が交差する形態となっていてこれらが樹脂
材料にて固められた構造であるから、格子の縦成分と横
成分とが段差のない形状となり、この結果、コンクリー
トの被り厚さを均一にし得るので比較的厚さの薄い壁部
や床版などの補強部材として好適なものとなる。さら
に、繊維は樹脂で被覆された構造となるので、主たる強
度部材である繊維は耐腐食性に富み、構造材料としても
極めて有利に作用する。"Operation" Since the reinforcing member having the above configuration is made of fiber and resin material,
While being extremely lightweight, it can be made as an integrated product in advance, which greatly contributes to workability and transportability on site, and also to large-scale unitization. In addition, since the aligned fibers are in the form of intersecting and they are solidified with a resin material, the vertical component and the horizontal component of the lattice have a stepless shape, and as a result, the concrete cover Since the thickness can be made uniform, it is suitable as a reinforcing member such as a relatively thin wall portion or floor slab. Further, since the fiber has a structure coated with a resin, the fiber, which is the main strength member, has a high corrosion resistance and acts extremely advantageously as a structural material.
「実施例」 以下、本発明の実施例を添付の第1図〜第6図を参照し
て説明する。[Embodiment] An embodiment of the present invention will be described below with reference to the accompanying FIGS. 1 to 6.
第1図ないし第3図は、本発明を、例えば建屋の壁部や
床版部分などを構成するコンクリート内に埋設されて好
適な格子状の補強部材に適用した例を示すものである。
これらの図において、全体として符号1で示されるこの
補強部材は、引き揃えられた複数本の繊維2(第2図参
照)よりなる繊維束3が互いに交差して格子状をなし、
それら繊維束3の各繊維2が樹脂材料4により結束され
て構成されている。また、前記繊維束3どうしの交差部
5は、第3図に示す如く、一方向に延在する繊維群2a
と、これに直交する他方向に延在する繊維群2bとが三層
以上(図示例では16層)に積層された断面形状とされて
いる。そして、この補強部材1は全体として段差のない
いわゆる同一厚さの矩形格子状に形成されている。この
補強部材1の表面は、後述の積極的手段等により粗面に
形成される場合もある。1 to 3 show an example in which the present invention is applied to a suitable grid-like reinforcing member that is embedded in concrete that constitutes, for example, a wall portion or floor slab portion of a building.
In these figures, the reinforcing member, which is generally designated by reference numeral 1, has a lattice structure in which fiber bundles 3 composed of a plurality of aligned fibers 2 (see FIG. 2) intersect each other,
Each of the fibers 2 of the fiber bundle 3 is bundled with a resin material 4 and configured. Further, as shown in FIG. 3, the intersecting portion 5 of the fiber bundles 3 has a fiber group 2a extending in one direction.
And a fiber group 2b extending in the other direction orthogonal to this are laminated in three or more layers (16 layers in the illustrated example) to form a cross-sectional shape. The reinforcing member 1 is formed in the shape of a so-called rectangular lattice having the same thickness without any steps. The surface of the reinforcing member 1 may be formed into a rough surface by a positive means described later.
補強部材1の主体をなす繊維2としては、軽量でしかも
高い強度を備えるガラス繊維やカーボン繊維などが好適
であるが、必要ならばその他の繊維、例えば合成樹脂繊
維、セラミック繊維、金属繊維などを用いてもよい。ま
たこれらの繊維を適当に組み合わせて用いてもよい。As the fiber 2 which is the main component of the reinforcing member 1, glass fiber or carbon fiber which is lightweight and has high strength is suitable, but if necessary, other fiber such as synthetic resin fiber, ceramic fiber, metal fiber or the like may be used. You may use. Also, these fibers may be used in an appropriate combination.
また、前記繊維束3の各繊維2を結束する樹脂材料4と
しては、繊維2に対する接着性が良くかつそれ自体も充
分な強度を持つ例えばビニルエステル樹脂などが好適で
あるが、使用する繊維2の種類に対応させて他の樹脂材
料を用いても良い。他の樹脂材料については、不飽和ポ
リエステル樹脂、エポキシ樹脂、フェノール樹脂などを
挙げることができる。The resin material 4 for binding the fibers 2 of the fiber bundle 3 is preferably a vinyl ester resin or the like, which has good adhesiveness to the fibers 2 and itself has sufficient strength. Other resin materials may be used depending on the type. Examples of other resin materials include unsaturated polyester resins, epoxy resins, and phenol resins.
前記繊維2と樹脂材料4の割合については、繊維2の種
類や強度、さらにはこの補強部材1の使用形態などを考
慮して適宜に決定されるが、例えば繊維2がガラス繊
維、樹脂材料4がビニルエステル樹脂の場合、繊維2が
体積比で30〜70%程度となるように、また、繊維2が例
えばピッチ系カーボン繊維の場合、20〜60%程度となる
ように考慮するのが望ましい。繊維2の割合が上記以下
であると、この補強部材1の強度が著しく低下し、一
方、繊維2の割合を高くすれば、それだけ高強度の補強
部材が得られるが、あまりに高い割合にすると、カーボ
ン繊維のように比較的高価なものでは経済性の面から好
ましくない。The ratio of the fiber 2 to the resin material 4 is appropriately determined in consideration of the type and strength of the fiber 2, and the usage pattern of the reinforcing member 1. For example, the fiber 2 is a glass fiber, the resin material 4 Is a vinyl ester resin, it is desirable that the volume ratio of the fiber 2 is about 30 to 70%, and if the fiber 2 is, for example, pitch-based carbon fiber, it is about 20 to 60%. . When the ratio of the fibers 2 is the above or less, the strength of the reinforcing member 1 is remarkably reduced. On the other hand, when the ratio of the fibers 2 is increased, a reinforcing member having a higher strength can be obtained, but when the ratio is too high, Carbon fibers, which are relatively expensive, are not preferable in terms of economy.
なお、実験結果によれば、ビニルエステル樹脂に対する
ガラス繊維(繊維径23μm)が体積比で38%となった繊
維束3の引っ張り強度は46.4Kg/mmであり、交差部5に
ついては20Kg/mmであった。また、カーボン繊維(繊維
径8μm)が体積比で20%の場合については、繊維束3
の引っ張り強度は20.4Kg/mmであり、交差部5について
は11Kg/mmであった。In addition, according to the experimental results, the tensile strength of the fiber bundle 3 in which the glass fiber (fiber diameter 23 μm) to the vinyl ester resin is 38% in volume ratio is 46.4 Kg / mm, and the crossing portion 5 is 20 Kg / mm. Met. If the volume ratio of carbon fibers (fiber diameter 8 μm) is 20%, the fiber bundle 3
Had a tensile strength of 20.4 Kg / mm, and the intersection part 5 had a tensile strength of 11 Kg / mm.
このような構成の補強部材1は、例えば第4図に示す装
置を用いて製造することができる。同図において、10は
定盤、11は定盤10上の周囲に設けられたガイド枠、12は
定盤外面に並べて設けられ、補強部材1の横成分と縦成
分にそれぞれ対応するピンである。The reinforcing member 1 having such a structure can be manufactured using, for example, the apparatus shown in FIG. In the figure, 10 is a surface plate, 11 is a guide frame provided on the periphery of the surface plate 10, and 12 is a pin provided on the outer surface of the surface plate side by side and corresponding to the horizontal component and the vertical component of the reinforcing member 1, respectively. .
製法については、樹脂を含浸した連続繊維を、対応する
ピン12にいわゆる一筆書きの要領で縦方向及び横方向に
順次引っ掛けてゆき、交差部では必ず繊維群が交互に三
層以上重なるようにする。第5図は交差部の積層方法の
一例を示したもので、平面的に並ぶ4本の繊維群2aまた
は2bを一層として、図中矢印付きの番号順に通過させて
積層する。従って、実施例による補強部材1の場合、交
差部5は16層(64本)となっているので、〜の工程
を4回繰り返して行うことになる。この際、連続繊維に
は直線性を保つのに十分な張力を与えておく必要があ
る。この連続繊維の供給は、もちろん手作業によっても
可能であるが、通過順序を予め設定したプログラムに基
づいて作動する機械的手段により自動的に実行させる方
法が採られる。Regarding the manufacturing method, continuous fibers impregnated with resin are hooked on the corresponding pins 12 in the vertical and horizontal directions in a so-called one-stroke manner in order to ensure that the fiber groups alternately overlap at least three layers. . FIG. 5 shows an example of a method of laminating the intersecting portions. Four fiber groups 2a or 2b arranged in a plane are laminated as one layer by passing them in the order of the numbers with arrows in the figure. Therefore, in the case of the reinforcing member 1 according to the example, since the intersecting portion 5 has 16 layers (64), the steps from to are repeated four times. At this time, it is necessary to give sufficient tension to the continuous fiber so as to maintain the linearity. This continuous fiber can be supplied by hand, of course, but a method of automatically executing it by mechanical means that operates according to a preset program for the passage order is adopted.
このようにして連続繊維の供給工程を終えたら、最後に
押さえ板13を用いて第6図に示す如く上面側から全体的
に加圧して厚さを揃えれば、第1図に示すような矩形格
子状の補強部材1が得られる。ここで、押さえ板13及び
定盤10の表面に予め凹凸を設けておけば、補強部材1の
表面を凹凸による粗面に形成することができる。このよ
うにすると、補強部材1のコンクリートに対する付着性
の向上を容易に図ることができる。After the continuous fiber feeding process is completed in this way, finally, the pressing plate 13 is used to press the entire surface from the upper surface side to make the thickness uniform, as shown in FIG. A grid-shaped reinforcing member 1 is obtained. Here, if unevenness is provided in advance on the surfaces of the pressing plate 13 and the surface plate 10, the surface of the reinforcing member 1 can be formed into a rough surface due to unevenness. By doing so, the adhesion of the reinforcing member 1 to concrete can be easily improved.
なお、実施例においては、平面的な格子状の補強部材に
ついて述べたが、本発明では何等これに限定されること
はなく、必要とする補強部材の配設態様に応じて、例え
ば格子の一部のます目が大きいもの、縦成分及び横成分
の他に斜め成分を有するもの、あるいはこれらの一部が
コ字状に没する形態となった三次元的なものなど、形状
については任意であることは言うまでもない。なお、繊
維2は、ここでは撚紐や組紐なども含まれる。In addition, although the planar grid-like reinforcing member is described in the embodiments, the present invention is not limited to this, and may be, for example, one of the grids depending on the required arrangement of the reinforcing member. The shape is arbitrary, such as those with large squares, those with a diagonal component in addition to the vertical and horizontal components, or the three-dimensional one in which some of these are submerged in a U-shape. Needless to say. Here, the fiber 2 also includes a twisted cord, a braid, and the like.
実験例1 1対の補強部材(以下ガラス繊維メッシュという)110
と110を内部に水平に配置した200mm×100mm×1000mmの
コンクリートパネルを第8図と第9図に図示したように
用意した。(これらの図面では一方のガラス繊維メッシ
ュ110を図示の都合で実線で示してある。)各ガラス繊
維メッシュ110のピッチは100mmで、長さと幅はそれぞれ
600mmと200mmであった。ガラス繊維メッシュ110の幅方
向部材112と長手方向部材114の突出部116の長さは50mm
であった。長手方向部材114と114の外側端118、118は連
結部材120でつながっているが、実験結果には実質的な
影響はない。これら2枚のガラス繊維メッシュ110、110
は内側端部を150mm重ね合わせた。下側のガラス繊維メ
ッシュ110の下側面からコンクリートパネルの底面まで
の距離は20mmであった。Experimental Example 1 A pair of reinforcing members (hereinafter referred to as glass fiber mesh) 110
A concrete panel of 200 mm × 100 mm × 1000 mm in which 110 and 110 were horizontally arranged was prepared as shown in FIGS. 8 and 9. (In these drawings, one glass fiber mesh 110 is shown by a solid line for convenience of illustration.) The pitch of each glass fiber mesh 110 is 100 mm, and the length and width are respectively
It was 600mm and 200mm. The width direction member 112 of the glass fiber mesh 110 and the protrusion 116 of the length direction member 114 have a length of 50 mm.
Met. The outer ends 118, 118 of the longitudinal members 114 and 114 are connected by a connecting member 120, but this has no substantial effect on the experimental results. These two glass fiber mesh 110, 110
The inner edges were overlapped by 150 mm. The distance from the lower surface of the lower glass fiber mesh 110 to the bottom surface of the concrete panel was 20 mm.
ガラス繊維メッシュ110、110の横断面構造は第1−3図
の補強部材1とほぼ同じであった。すなわち、幅方向部
材も長手方向部材も垂直に重ねた8列のガラス繊維ロー
ビングをビニルエステル樹脂で接着したもので各列は4
本のロービングからできていた。このビニルエステル樹
脂はニッポンユピカから商品番号「8250」で販売されて
いた。長手方向部材、幅方向部材とも約10mm×10mmのほ
ぼ同じ横断面を有していた。各ロービングは約2,100本
のガラス繊維フィラメントからなり、その繊維の直径は
23ミクロン、密度は2.55g/cm3、19,980デニールであっ
た。長手方向部材、幅方向部材の物性は第1表に示して
ある。両端部を長さ50mmだけガラス繊維ロービング布を
介してチャックでクランプした長さ200mmの試験片を引
っ張ってこれら部材の平均引張強度を測定した。ガラス
繊維メッシュの交差部の平均強度はこれから切り取っ
た、第11図に示したような、幅80mm長さ90mmの十字状試
験片129を使って測定した。この試験片の長さ30mmの一
方の長手方向脚を、試験機のベース132の穴に入れてか
ら、長さ50mmの他の長手方向脚の上端に静荷重を加え
た。この交差部の強度は、幅方向脚の剪断破壊荷重/そ
の有効横断面積と定義する。この測定結果も第1表に示
してある。使用したコンクリートの物性は第2表に与え
てある。The cross-sectional structure of the glass fiber mesh 110, 110 was almost the same as that of the reinforcing member 1 shown in FIGS. That is, 8 rows of glass fiber rovings in which both the width direction member and the longitudinal direction member are vertically stacked are adhered with a vinyl ester resin, and each row is 4
It was made of roving books. This vinyl ester resin was sold by Nippon Yupika under the product number "8250". Both the longitudinal member and the width member had substantially the same cross section of about 10 mm × 10 mm. Each roving consists of about 2,100 glass fiber filaments, the diameter of which is
The particle size was 23 microns, the density was 2.55 g / cm 3 , and the density was 19,980 denier. The physical properties of the longitudinal member and the width member are shown in Table 1. The average tensile strength of these members was measured by pulling a test piece having a length of 200 mm whose both ends were clamped by a chuck with a length of 50 mm through a glass fiber roving cloth. The average strength at the intersection of the glass fiber mesh was measured by using a cross-shaped test piece 129 having a width of 80 mm and a length of 90 mm as shown in FIG. One 30 mm long longitudinal leg of this test piece was placed in a hole in the base 132 of the tester and then a static load was applied to the upper ends of the other 50 mm long longitudinal legs. The strength of this intersection is defined as the shear fracture load of the lateral legs / its effective cross-sectional area. The results of this measurement are also shown in Table 1. The physical properties of the concrete used are given in Table 2.
このようにして準備したコンクリートパネルを養生して
から、コンクリートパネルの中心から280mm離れるよう
に配置した1対の支持ロッド136、136の上に置いて荷重
−歪挙動を調べた。その後、平行な押し下げロッド14
0、140を280mm離して底面に熔接した押し下げ板138をコ
ンクリートパネルの上面に置いて押し下げロッド140が
それぞれコンクリートパネルの中心から140mm離れるよ
うに配置した。その後、静荷重を押し下げ板138に加え
た。結果は第12図に実線で図示してある。長手方向部材
114が点P1で破断した。After curing the concrete panel thus prepared, it was placed on a pair of support rods 136, 136 arranged at a distance of 280 mm from the center of the concrete panel to examine the load-strain behavior. Then parallel push-down rod 14
A push-down plate 138 welded to the bottom of the concrete panel was placed 280 mm apart from each other, and the push-down rods 140 were arranged so as to be 140 mm apart from the center of the concrete panel. Then, a static load was applied to the push-down plate 138. The results are shown in solid line in FIG. Longitudinal member
114 broke at point P1.
実験例2 内部に1対の補強部材(以下炭素繊維メッシュという)
を入れた別のコンクリートパネルを用意して養生した。
コンクリートパネルと炭素繊維メッシュは、実験例1の
ものと形状寸法がほぼ同じであり、炭素繊維メッシュは
第8図、9図と同じ仕方でコンクリートパネル内に配置
した。Experimental Example 2 A pair of reinforcing members inside (hereinafter referred to as carbon fiber mesh)
Another concrete panel containing was prepared and cured.
The concrete panel and the carbon fiber mesh had substantially the same shape and dimensions as those of Experimental Example 1, and the carbon fiber mesh was arranged in the concrete panel in the same manner as in FIGS. 8 and 9.
この炭素繊維メッシュの長手方向部材と幅方向部材の横
断面構造は、各炭素繊維ロービング列が5本のロービン
グから構成した以外は、実験例1の長手方向部材と幅方
向部材とほぼ同じであった。各ロービングは直径8ミク
ロンの炭素繊維を、10,000本含んでいた。長手方向部材
と幅方向部材は第1実験例と同じビニルエステル樹脂で
接着した。これら長手方向部材と幅方向部材の物性は実
験例1と同じ方法で測定した。結果は第1表に示してあ
る。この炭素繊維メッシュ補強コンクリートパネルにつ
いて実験例1と同じ荷重−歪試験行った。この結果は破
線で第12図に図示してある。長手方向部材は点P2で破断
した。The cross-sectional structure of the longitudinal member and the width member of this carbon fiber mesh is almost the same as that of Experimental Example 1 except that each carbon fiber roving row is composed of five rovings. It was Each roving contained 10,000 carbon fibers 8 microns in diameter. The longitudinal member and the width member were bonded with the same vinyl ester resin as in the first experimental example. The physical properties of these longitudinal members and width members were measured by the same method as in Experimental Example 1. The results are shown in Table 1. This carbon fiber mesh reinforced concrete panel was subjected to the same load-strain test as in Experimental Example 1. The results are shown in Figure 12 in dashed lines. The longitudinal member broke at point P2.
比較試験 第10図に示したような鉄鋼メッシュ補強コンクリートパ
ネルを準備した。このコンクリートパネルは、各メッシ
ュの長手方向部材の長手方向外端部を連結せず、かつ長
手方向部材と幅方向部材の直径が9,53mmであることを除
いては、実験例1のコンクリートパネルと寸法と構造が
同じであった。Comparative test A steel mesh reinforced concrete panel as shown in Fig. 10 was prepared. This concrete panel is the concrete panel of Experimental Example 1 except that the longitudinal outer ends of the longitudinal members of each mesh are not connected and the diameters of the longitudinal members and the widthwise members are 9,53 mm. And the dimensions and structure were the same.
この鉄鋼メッシュ補強コンクリートパネルについて実験
例1と同じ荷重−歪試験を行った。結果を第12図に1点
鎖線で示した。鉄鋼メッシュの長手方向部材と幅方向部
材の交差部の溶接箇所は点P3において破断した。This steel mesh reinforced concrete panel was subjected to the same load-strain test as in Experimental Example 1. The results are shown in FIG. 12 by a chain line. The welded portion at the intersection of the longitudinal member and the width member of the steel mesh was broken at point P3.
「発明の効果」 以上説明したように、本発明にあっては、コンクリート
構造となる部分に埋設される補強部材の構成として、引
き揃えられた複数本の繊維が並列配置されてなる偏平な
繊維群同志が互いに交差して格子状をなし、それら繊維
群の各繊維同志および繊維群同志は樹脂材料にて結束さ
れており、かつ、前記繊維群の交差部は、一方向に延在
する繊維束を構成する繊維群と他方向に延在する繊維束
を構成する繊維群とが各繊維群を層として交互に三層以
上に交差して積層された断面形状であるものとしたか
ら、以下のような従来にない優れた効果を奏する。即
ち、補強部材全体が繊維と樹脂材料からなるため、極め
て軽量であり、かつ予め一体化物として造ることができ
るので、現場での施工性や運搬性さらには大規模なユニ
ット化を容易に図ることができる。また、引き揃えられ
た繊維が交差する形態となっていてこれらが樹脂材料に
て固められた構造であるから、格子の縦成分と横成分と
が段差のない形状となり、この結果、コンクリートの被
り厚さを均一にし得るので比較的厚さの薄い壁部や床版
などの補強部材として有利に使用することができる。さ
らに、繊維は樹脂で被覆された構造となるので、主たる
強度部材である繊維は耐腐食性に富み、構造材料として
も極めて有利なものとなる。さらに、このように表面は
樹脂材料で形成されているので、コンクリートとの付着
性向上を図るための粗面加工も容易に実施することがで
きる。加えて、交差部において各偏平な繊維群が交互に
各繊維が局部的に折曲させられることがなく直線状態を
保って三層以上に積層されているので、交差部の断面に
おいて三層以上の繊維群同志が互いに一体化されて交差
部において引っ張り強度および圧縮強度をともに確実に
期待することができ、各繊維同志の十分な信頼性を有す
る一体化構造を確保することができるという効果を奏す
る。 "Effects of the Invention" As described above, in the present invention, a flat fiber formed by arranging a plurality of aligned fibers in parallel is provided as the structure of the reinforcing member embedded in the portion to be the concrete structure. The group members cross each other to form a lattice shape, the respective fiber groups of the fiber group and the fiber group members are bound by a resin material, and the intersection of the fiber groups is a fiber extending in one direction. Since the fiber group constituting the bundle and the fiber group constituting the fiber bundle extending in the other direction have a cross-sectional shape in which three or more layers are alternately laminated with each fiber group as a layer, the following: It has an excellent effect not seen in the past. In other words, since the entire reinforcing member is made of fiber and resin material, it is extremely lightweight and can be made as an integrated product in advance, so that it is easy to construct it on site and to transport it, and also to make it a large-scale unit. You can In addition, since the aligned fibers are in the form of intersecting and they are solidified with a resin material, the vertical component and the horizontal component of the lattice have a stepless shape, and as a result, the concrete cover Since the thickness can be made uniform, it can be advantageously used as a reinforcing member such as a relatively thin wall portion or floor slab. Furthermore, since the fiber has a structure coated with a resin, the fiber, which is the main strength member, has excellent corrosion resistance, and is extremely advantageous as a structural material. Further, since the surface is formed of the resin material in this way, it is possible to easily carry out rough surface processing for improving the adhesion to concrete. In addition, since each flat fiber group is not alternately bent at the intersection and each fiber is laminated in three or more layers in a straight line without being locally bent, three or more layers are formed in the cross section of the intersection. The effect of being able to reliably expect both tensile strength and compressive strength at the intersection by integrating the fiber groups of each other with each other and ensuring an integrated structure with sufficient reliability of each fiber Play.
なお、本発明ではコンクリート用の補強部材として説明
したが、この補強部材は、各種構造部材などとして用い
る強化プラスチック部材、例えばFRPの心材(ファイバ
ー)などの代わりに、あるいは心材と併用する形態で用
いることも可能である。Although the present invention has been described as a reinforcing member for concrete, this reinforcing member is used instead of or in combination with a reinforced plastic member used as various structural members, such as FRP core material (fiber). It is also possible.
第1図ないし第6図は本発明の一実施例を示すもので、
第1図は補強部材の斜視図、第2図は繊維束の直線部の
断面図、第3図は繊維束どうしの交差部の断面図、第4
図は製造装置の概略平面図、第5図は交差部の積層方法
を示す説明図、第6図は加圧工程を示す説明図、第7図
は従来の鉄筋格子を示す平面図、第8図〜第12図は本発
明の実験例を説明するために示したもので、第8図は平
面図、第9図は側面図、第10図は平面図、第11図は正面
図、第12図は静荷重試験のグラフを示す図である。 1……補強部材、2……繊維、2a,2b……繊維群、3…
…繊維束、4……樹脂材料、5……交差部。1 to 6 show an embodiment of the present invention,
1 is a perspective view of a reinforcing member, FIG. 2 is a cross-sectional view of a straight portion of a fiber bundle, FIG. 3 is a cross-sectional view of an intersecting portion of fiber bundles, and FIG.
FIG. 7 is a schematic plan view of a manufacturing apparatus, FIG. 5 is an explanatory view showing a stacking method of intersections, FIG. 6 is an explanatory view showing a pressing step, FIG. 7 is a plan view showing a conventional reinforcing bar lattice, and FIG. FIG. 12 to FIG. 12 are shown for explaining an experimental example of the present invention. FIG. 8 is a plan view, FIG. 9 is a side view, FIG. 10 is a plan view, FIG. 11 is a front view, FIG. 12 is a diagram showing a graph of a static load test. 1 ... Reinforcing member, 2 ... Fiber, 2a, 2b ... Fiber group, 3 ...
… Fiber bundle, 4 …… resin material, 5 …… intersection.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤崎 忠志 東京都中央区京橋2丁目16番1号 清水建 設株式会社内 (72)発明者 平賀 寿雄 神奈川県横浜市戸塚区戸塚町2342―25 (72)発明者 西本 敬 神奈川県相模原市並木3−3―15 (72)発明者 二川 稔 神奈川県相模原市橋本2−24―7 (56)参考文献 特公 昭53−47608(JP,B2) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tadashi Fujisaki 2-16-1, Kyobashi, Chuo-ku, Tokyo Shimizu Construction Co., Ltd. (72) Toshio Hiraga 2342-25 Totsuka-cho, Totsuka-ku, Yokohama 72) Inventor Takashi Nishimoto 3-3-15 Namiki, Sagamihara City, Kanagawa Prefecture (72) Minoru Futagawa 2-24-7 Hashimoto, Sagamihara City, Kanagawa Prefecture (56) References Japanese Patent Publication No. 53-47608 (JP, B2)
Claims (1)
補強部材であって、引き揃えられた複数本の繊維が並列
配置されてなる偏平な繊維群同志が互いに交差して格子
状をなし、それら繊維群の各繊維同志および繊維群同志
は樹脂材料にて結束されており、かつ、前記繊維群の交
差部は、一方向に延在する繊維束を構成する繊維群と他
方向に延在する繊維束を構成する繊維群とが各繊維群を
層として交互に三層以上に交差して積層された断面形状
であることを特徴とするコンクリート補強部材。1. A reinforcing member embedded in a portion of a concrete structure, wherein flat fiber groups composed of a plurality of aligned fibers arranged in parallel are crossed with each other to form a lattice pattern. The respective fibers of the fiber group and the fiber groups are bound by a resin material, and the intersections of the fiber groups extend in one direction and the fiber groups constituting the fiber bundle extending in one direction. A concrete reinforcing member having a cross-sectional shape in which a fiber group constituting a fiber bundle and layers of each fiber group are alternately crossed and laminated in three or more layers.
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60295751A JPH07100963B2 (en) | 1985-12-26 | 1985-12-26 | Concrete reinforcing member |
EP19860306037 EP0227207B1 (en) | 1985-12-26 | 1986-08-05 | Concrete reinforcing unit |
DE8686306037T DE3687345T2 (en) | 1985-12-26 | 1986-08-05 | CONCRETE REINFORCEMENT UNIT. |
US06/894,832 US4706430A (en) | 1985-12-26 | 1986-08-08 | Concrete reinforcing unit |
CA 515590 CA1278699C (en) | 1985-12-26 | 1986-08-08 | Concrete reinforcing unit |
AU61049/86A AU586378B2 (en) | 1985-12-26 | 1986-08-11 | Concrete reinforcing unit |
KR1019860006838A KR910008088B1 (en) | 1985-12-26 | 1986-08-19 | Concrete reinforced unit |
CN86105936A CN1010110B (en) | 1985-12-26 | 1986-09-06 | Concrete reinforcing unit |
US07/069,483 US4819395A (en) | 1985-12-26 | 1987-07-02 | Textile reinforced structural components |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60295751A JPH07100963B2 (en) | 1985-12-26 | 1985-12-26 | Concrete reinforcing member |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62153449A JPS62153449A (en) | 1987-07-08 |
JPH07100963B2 true JPH07100963B2 (en) | 1995-11-01 |
Family
ID=17824692
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60295751A Expired - Lifetime JPH07100963B2 (en) | 1985-12-26 | 1985-12-26 | Concrete reinforcing member |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07100963B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003105876A (en) * | 2001-09-28 | 2003-04-09 | Shimizu Corp | Structural body of waterproof concrete |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01178649A (en) * | 1988-01-06 | 1989-07-14 | Shimizu Corp | Concrete reinforcing member |
JPH0296006A (en) * | 1988-09-30 | 1990-04-06 | Nippon Samikon Kk | Prefabricated pc shelter |
JPH0250411U (en) * | 1988-09-30 | 1990-04-09 | ||
JP2804994B2 (en) * | 1989-07-21 | 1998-09-30 | 清水建設株式会社 | Lattice ground reinforcement |
DE58904918D1 (en) * | 1989-02-28 | 1993-08-19 | Leybold Ag | A CRYOPUMPUM OPERATED WITH A TWO-STAGE REFRIGERATOR. |
JPH0355318A (en) * | 1989-07-21 | 1991-03-11 | Shimizu Corp | Composite reinforcing part for ground |
JPH0372113A (en) * | 1989-08-10 | 1991-03-27 | Shimizu Corp | Reinforcing fill |
JPH044088U (en) * | 1990-04-21 | 1992-01-14 | ||
JP4666840B2 (en) * | 2001-08-20 | 2011-04-06 | Agcマテックス株式会社 | Method for manufacturing concrete reinforcing member |
US20120148806A1 (en) * | 2010-12-10 | 2012-06-14 | United States Gypsum Company | Fiberglass mesh scrim reinforced cementitious board system |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5347608A (en) * | 1976-10-14 | 1978-04-28 | Ono Ietatsu | Railroad rail and method of laying it |
JPS58140353A (en) * | 1982-02-09 | 1983-08-20 | 株式会社ライム | Formation of reinforced concrete board or the like |
JPS60119848A (en) * | 1983-11-30 | 1985-06-27 | 三井建設株式会社 | Fiber reinforced concrete and its constructin |
-
1985
- 1985-12-26 JP JP60295751A patent/JPH07100963B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003105876A (en) * | 2001-09-28 | 2003-04-09 | Shimizu Corp | Structural body of waterproof concrete |
Also Published As
Publication number | Publication date |
---|---|
JPS62153449A (en) | 1987-07-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR910008088B1 (en) | Concrete reinforced unit | |
EP0297006B1 (en) | Meshwork reinforced and pre-stressed concrete member, method and apparatus for making same | |
US6207256B1 (en) | Space truss composite panel | |
JP6167110B2 (en) | Structural member and method for manufacturing structural member | |
JPH07100963B2 (en) | Concrete reinforcing member | |
FI2912239T3 (en) | Reinforcing element for producing prestressed concrete components, concrete component and production methods | |
JP2007502231A (en) | 3D fiber element with high moment of inertia in multilayer sandwich laminates | |
JPH01317152A (en) | Prestressed concrete member, production thereof and unit therefor | |
EP0854248B1 (en) | Prefabricated structural panel for constructing civil or industrial use buildings | |
JP3094851B2 (en) | Civil and architectural reinforcement | |
JPH076254B2 (en) | Concrete reinforcing member | |
JPH03118289A (en) | Fiber reinforced plastic grid | |
JP2691236B2 (en) | Concrete reinforcement | |
JP2688606B2 (en) | Three-dimensional structure with reinforced mesh tubular body | |
JPH0272905A (en) | Manufacture of prestressed concrete member and latticelike reinforcing rod for prestressed concrete member | |
JP2617116B2 (en) | Fiber reinforced resin stone basket | |
JPH01203551A (en) | Concrete reinforcing member | |
CN219342892U (en) | Reinforcing structure for continuous beam bridge | |
JP2639502B2 (en) | Matrix reinforcement structure consisting of reticulated tubular body | |
JP2711289B2 (en) | Composite reinforcement for ground reinforcement | |
JPH0387444A (en) | Reinforcement member for curtain wall and curtain wall using such reinforcement member | |
JPH01178649A (en) | Concrete reinforcing member | |
JPH05148931A (en) | Floor plate | |
JPH0726343Y2 (en) | Carbon fiber reinforced inorganic board | |
JP2804994B2 (en) | Lattice ground reinforcement |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |