JP4666840B2 - Method for manufacturing concrete reinforcing member - Google Patents

Method for manufacturing concrete reinforcing member Download PDF

Info

Publication number
JP4666840B2
JP4666840B2 JP2001248670A JP2001248670A JP4666840B2 JP 4666840 B2 JP4666840 B2 JP 4666840B2 JP 2001248670 A JP2001248670 A JP 2001248670A JP 2001248670 A JP2001248670 A JP 2001248670A JP 4666840 B2 JP4666840 B2 JP 4666840B2
Authority
JP
Japan
Prior art keywords
laminate
unit
fiber bundle
reinforcing member
concrete reinforcing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001248670A
Other languages
Japanese (ja)
Other versions
JP2003056120A (en
Inventor
耕四郎 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Matex Co Ltd
Original Assignee
AGC Matex Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AGC Matex Co Ltd filed Critical AGC Matex Co Ltd
Priority to JP2001248670A priority Critical patent/JP4666840B2/en
Priority to KR1020020048794A priority patent/KR100849876B1/en
Priority to TW091118711A priority patent/TW542867B/en
Priority to CN02142024A priority patent/CN1406727A/en
Publication of JP2003056120A publication Critical patent/JP2003056120A/en
Application granted granted Critical
Publication of JP4666840B2 publication Critical patent/JP4666840B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0004Cutting, tearing or severing, e.g. bursting; Cutter details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Moulding By Coating Moulds (AREA)
  • Laminated Bodies (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Reinforcement Elements For Buildings (AREA)
  • Working Measures On Existing Buildindgs (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、コンクリート構造となる部分に埋設される補強部材の製造方法およびこれにより製造される成形物に関する。
【0002】
【従来の技術】
コンクリート構造となる部分に埋設する補強部材として、特開昭62−153449号公報に記載されているように、並列に配置した複数本の繊維を樹脂材料で結束させて繊維束とし、これを互いに交差させて格子状にし、格子の交差部で一方向に延在する繊維束が他方向に延在する繊維束に3層以上に積層する断面構造を有するコンクリート補強部材が使用されている。図1にコンクリート補強部材の斜視図を示す。図に示すように補強部材は、繊維束が交差して格子形状をなしている。図2に補強部材の交差部分の断面図を示す。図に示すように、複数本の繊維2を樹脂材料4で結束させた繊維束2a、2bが交互に積層した構造をなしている。
このようなコンクリート補強部材は、従来、フィラメントワインディング成形により繊維束を互いに交差させて格子形状にすることにより積層体とし、交差部分を加圧しながら加熱し、または交差部分を加圧した後に加熱することにより1つの型から一度に1つの成形品を得ていた。この手順によれば、補強部材に要求される性能を十分確保し、かつ所望の寸法および形状の成形品を得ることができるが、型数の制約などから生産性が低く、製造コストが高くつくという問題があった。
【0003】
【発明が解決しようとする課題】
上記問題を解決するため、本発明は、生産性が改善されたコンクリート補強部材の製造方法を提供することを課題とする。
【0004】
【課題を解決するための手段】
本発明は上記課題を解決するため、並列配置した複数本の繊維を樹脂材料で結束して繊維束とし、一方向に延在する繊維束と他方向に延在する繊維束とを交差させることにより格子形状を形成し、これを繰り返すことにより、一方向に延在する繊維束と他方向に延在する繊維束とが格子形状の交差部分で積層した断面構造を有する単位積層体を形成し、形成した単位積層体上にセパレータを載置し、セパレータ上でさらに第2の単位積層体を形成し、これを繰り返すことにより、セパレータをはさんだ多段の積層体を形成し、多段の積層体を加圧することにより、一方向の繊維束と他方向の繊維束とを格子形状の交差部分で圧着させることを特徴とするコンクリート補強部材の製造方法を提供する。
本発明のコンクリート補強部材の製造方法において、好ましくは、多段の積層体を交差する繊維束平面に直角な方向から加圧することにより繊維束を圧着させる。
本発明のコンクリート補強部材の製造方法において、好ましくは、単位積層体の厚さを規定するために積層体の格子中にスペーサを設置する。
本発明のコンクリート補強部材の製造方法において、好ましくは、単位積層体の寸法を規定するために積層体の周縁部にガイドプレートを設置する。
本発明はまた、本発明の方法により成形される多段の積層体を提供する。
本発明はまた、本発明の多段の積層体の交差する繊維束平面の四方の端部を切断し、複数の単位積層体に分離して単位積層体を得るコンクリート補強部材の製造方法を提供する。
【0005】
【発明の実施の形態】
以下に、本発明を詳細に説明する。
本発明のコンクリート補強部材の製造方法は、単位積層体をセパレータを介して複数積層した多段の積層体を形成することを特徴とする。
<単位積層体の製造>
単位積層体の製造方法としては、以下の方法が例示できるが、これに限定されず、他のいかなる方法により単位積層体を製造してもよい。
本発明のコンクリート補強部材の製造方法では、繊維束を交差させて格子形状にし、互いに交差する繊維束を積層させるのにフィラメントワインディング成形を用いる。具体的な方法については、図3に示す装置を用いて説明する。図3の装置は、定盤10、定盤10上の周囲に設けられたガイド枠11、定盤10の外面に並べて設けられ、補強部材の横成分と縦成分にそれぞれ対応するピン12とを有する。並列配置した複数の連続繊維に樹脂材料を含浸させて繊維束としたものを、対応するピン12にいわゆる一筆書きの要領で縦方向及び横方向に順次引っ掛けてゆき、繊維束を互いに交差させて格子形状にして、縦方向の繊維束と横方向の繊維束とを例えば3層以上積層させる。図4は、図2の繊維束2a、2bの交差部分の部分拡大図である。図4に示すように、図2の繊維側2a、2bの交差部分においては、複数の繊維2を樹脂材料4で結束させた繊維束2a、2bが互いに交差して積層している。
【0006】
<多段積層体の製造>
本発明では、上記のようにして得られた単位積層体上にセパレータを載置し、セパレータ上で上記と同様の手順を行い、さらに第2の単位積層体を形成する。そして、この手順を繰り返すことにより、単位積層体がセパレータをはさんで積み重ねられた多段の積層体を得る。図5は、本発明の方法により得られた多段の積層体の側部断面図である。なお、理解を容易にするため、図面に対して横方向に延在する繊維束は示していない。この点については、以下に示す図6および図7も同様である。図より、単位積層体(繊維束)50が、セパレータ51をはさんで多段に積み重ねられているのが確認できる。52は、後述するスペーサであり、54は繊維束を引っ掛けるピンである。
【0007】
本発明の方法では、このようにして複数の単位積層体をセパレータをはさんで積み重ねた後、加圧することにより、単位積層体を構成している繊維束の交差部分を圧着させる。これにより、単位積層体の厚さがそろえられる。
なお、加圧時または加圧後に、樹脂材料の熱硬化若しくは光硬化を行う。
【0008】
セパレータは、多段の積層体の成形時には、繊維束の交差部分を充分に圧着しつつも、単位積層体間の繊維束が圧着されるのを防ぎ、多段の積層体を成形した後には、積層体を容易に分離させることができるものであればいずれであってもよく、例えば、ポリエチレンテレフタレート(PET)を含むポリエステルフィルム、セロハン等の離型フィルムであってもよく、ポリテトラフルオロエチレン等のフッ素樹脂製のシートのような離型用途で使用されるシート材であってもよく、また、ステアリン酸系、シリコーン系、ワックス系、ポリビニルアルコール(PVA)系等の離型剤を塗布した金属板、樹脂フィルムであってもよい。
また、エンボス加工を施したセパレータを使用すれば、積層体の表面に凹凸を付与することができ、コンクリートに対する付着性が向上する。
【0009】
本発明の方法では、単位積層体を所望の厚さに成形するために必要に応じて所望の高さのスペーサを予め格子中に配置してもよい。図5において、スペーサ52を繊維束50の間、すなわち格子中に置くことにより単位成形体の高さが所望の高さに保持することができる。図中51はセパレータである。なお、全ての格子中にスペーサを置くことは必ずしも必要ではなく、必要に応じた数のスペーサを加圧時に格子にかかる圧力が一定になるように置けばよい。
スペーサの高さは、成形するコンクリート補強部材の厚さに応じて適宜選択すればよい。また、単位積層体ごとに異なる高さのスペーサを使用してもよく、これにより異なる厚さの単位積層体を同時に得ることができる。
さらに、スペーサと共に、以下で説明するガイドプレートを用いてもよい。
【0010】
上記のように、所望の厚さのコンクリート補強部材を得る上でスペーサの使用が好ましいのであるが、厚さの薄い、例えば、仕上げ単位積層体の格子形状の厚さが1mm〜3mm程度の単位積層体を成形する場合、構造上スペーサを使用することが困難な場合がある。このような場合、ガイドプレートを用いるのが好ましい。図6に積層体の厚さが薄くスペーサを使用しない場合の多段の積層体を側部断面図を示す。図中60は繊維束であり、61はセパレータフィルムである。ガイドプレート63は、ピン62の内側、格子形状をした積層体の周縁部に設置される。図示していないが、ガイドプレート63は図面に対して垂直方向の周縁部にも設置されている。
ガイドプレート63は、ピン62に向かう繊維束が通過するための穴または溝が設けられた板状体であり、加圧時に単位積層体の寸法および形状を保持する。ガイドプレート63は、加圧時に繊維束が圧着するのを防ぐため、セパレートフィルムで覆われているか、若しくは離型剤が塗布されている。ガイドプレート63は、図5に示すようなスペーサを使用する場合においても、使用することが好ましい。ガイドプレート63の高さおよび設置位置は、単位積層体の大きさと多段の積層体の高さに応じて適宜選択する。
但し、本発明はこれらに限定されず、スペーサやガイドプレートを使用せずに実施してもよい。
【0011】
多段の積層体を加圧する方法は、単位積層体の繊維束の交差部分を均一に加圧することができればいずれであってもよいが、好ましくは、交差する繊維束を含む平面に直角な方向から加圧する。加圧する手段としては、例えば、図7に示すように、金属塊、または砂や金属粒が入った袋等の複数のおもり73を繊維束の交差部分への荷重が均一になるように、多段の積層体70の上部に載せたのであってよい。71はピンであり、72はガイドプレートである。図面に対して縦方向の繊維束およびセパレータは理解を容易にするため示していない。または、積層体の長手方向全体に渡って、または積層体の上面全体を覆う棒状または板状のおもりを多段の積層体の上部に乗せて加圧してもよい。また、図8に示すように、多段の積層体80をボックスフレーム82内で形成させ、ねじ83によりフレームから反力を取り、ターンバックル方式で加圧してもよい。補強部材の断面形状にもよるが、このような方法により、格子形状の平面面積当たり100〜200kg/m2 の荷重を付加することで繊維束の交差部分を充分圧着させることができる。図中81はピンである。
【0012】
図3の装置で繊維束を積層させた場合、格子形状の外側で、ピン12に連結する繊維束の部分は、加圧して樹脂材料を硬化した後に切断して多段の積層体を定盤10から取り外すので、格子形状からはみ出してラップとして存在し、製品時に切り落とされて材料の無駄を生じる。ピン12を可動式にして、格子中から引き抜けるようにしておけば、多段の積層体を定盤からそのまま取り外すことができ、セパレータを取り除くことで積層体を分離して複数の単位積層体を得ることができる。このため、ラップが生じず全て格子形状となり、材料の歩留まりが向上する。
【0013】
本発明の多段の積層体は、単位積層体がセパレータをはさんで複数積み重なった多段の積層体であり、上記可動式のピンを用いた方法で、多段の積層体を定盤から取り出すことによって得られる。
多段の積層体は、単位積層体を構成する繊維束がガイドプレート中に設けられた穴を通過しているためにガイドプレートに固定されていることにより、定盤から取り外した場合でも、各単位積層体が分離せず、多段の状態を維持している。このため、多段の状態のまま持ち運ぶことが可能であり、使用時には格子形状の四方の端部を切り離すことにより、すなわち、交差する繊維束の四方の端部を切断することにより複数の単位積層体に分離することができる。
【0014】
単位積層体を構成する繊維束の交差は、直交に限定されず、バイアスであってもよい。この場合、格子の全体の形状は方形に限らず、菱形等であってもよい。また、個々の単位積層体の形状は平面に限定されず、トンネルの壁面のような曲面形状であってもよい。このような曲面形状の積層体は、平面状の定盤に代えて曲面状の定盤および曲面状の加圧おもり等を用いて成形することができる。
本発明において、単位積層体の段数は特に限定されず、積層体に対する需要、製造に使用するガイドプレートの高さに応じて適宜選択すればよい。
【0015】
本発明において、繊維束をなす繊維は繊維強化複合材料に使用するものであればいずれであってもよく、主にガラス繊維、炭素繊維が挙げられるが、他の繊維、例えば、金属繊維、アルミナ繊維、炭化ケイ素繊維、窒化ケイ素のようなセラミック繊維、アラミド繊維、ポリエチレン繊維、ポリアリレート繊維のような合成樹脂繊維等を使用してもよい。
本発明において、繊維を含浸させる樹脂材料は、繊維強化プラスチックの製造に使用されるものであればいずれであってもよく、例えば、ビニルエステル樹脂、不飽和ポリエステル樹脂、エポキシ樹脂、フェノール樹脂等の熱硬化性樹脂を好適に使用することができる。
【0016】
【実施例】
以下、実施例により本発明の方法をさらに説明する。
図3の装置を用いて、図5に示すセパレータフィルム(ポリエチレンテレフタレートフィルム)とスペーサ(高さ4mm)を使用する態様で、炭素繊維(径8μm)、ビニルエステル樹脂を用いて鉄筋D6に相当するカーボンタイプのコンクリート補強部材CR6(平面格子状、厚さ×幅4×4.4mm、格子間隔50mm)を5段含んだ多段の積層体を成形し、図7に示すように、積層体の上部に積層体の投影面積1m2 当たり100kgのおもりを積層体に対する荷重が均等になるように乗せて加圧し、その状態で硬化炉に入れ、60℃で2時間保持してビニルエステル樹脂を硬化させた。その結果、単位積層体の交差部分が充分に圧着され、硬化していることが確認された。また、コンクリート補強部材に関する強度等の性能を満足しつつ、従来の1つの型で一度に1つの成形体を製造する方法に比べて、必要とされる図3に示すような装置の数が従来の約1/4〜1/5となり、かつコンクリート補強部材の単位時間当たりの生産量は3〜4倍となった。
【0017】
【発明の効果】
本発明の方法によれば、コンクリート補強部材を複数同時に製造することができ、コンクリート補強部材の生産性が向上する。また、本発明の方法によれば、一度の生産工程で寸法等が異なるコンクリート補強部材を同時に製造することができる。
本発明の多段の積層体は、複数の単位積層体を含んだ多段の構成のまま持ち運ぶことができる。使用時には交差する繊維束平面の四方の端部を切断することにより、複数の単位積層体に分離し、単位積層体を得ることができる。このようにして得られた単位積層体は、鉄道の通信ケーブルのトラフ、床材、水封式トンネル、地下トンネルのシールドマシーン用の縦抗等、建設、土木用途のコンクリート資材の補強部材として好適に使用することができる。
【図面の簡単な説明】
【図1】 コンクリート補強部材の斜視図である。
【図2】 コンクリート補強剤の交差部分の部分断面図である。
【図3】 フィラメントワインディング成形に使用する装置の上面図である。
【図4】 図2の2a、2b部分の部分断面図である。
【図5】 本発明により得られた多段の積層体の側部断面図である。
【図6】 厚さが薄いためスペーサを使用しない場合の、多段の積層体の側部断面図である。
【図7】 交差部分の加圧に複数のおもりを用いる加圧方法を示した多段の積層体の側部断面図である。
【図8】 交差部分の加圧にターンバックル方式を用いた多段の積層体の側部断面図である。
【符号の説明】
2:繊維
2a,2b:繊維束
4:樹脂材料
10:定盤
11:ガイド枠
12:ピン
50,60:繊維束
51,61:セパレータフィルム
52:スペーサ
54,62:ピン
63:ガイドプレート
70,80:積層体
71,81:ピン
72:ガイドプレート
73:おもり
82:フレーム
83:ねじ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a reinforcing member embedded in a portion that becomes a concrete structure and a molded product manufactured thereby.
[0002]
[Prior art]
As a reinforcing member embedded in a portion that becomes a concrete structure, as described in JP-A-62-153449, a plurality of fibers arranged in parallel are bundled with a resin material to form a fiber bundle, and these are bundled together. A concrete reinforcing member having a cross-sectional structure in which three or more layers are laminated on a fiber bundle extending in one direction at a crossing portion of the lattice so that the fiber bundle extending in one direction is crossed into a lattice shape is used. FIG. 1 shows a perspective view of a concrete reinforcing member. As shown in the figure, the reinforcing member has a lattice shape in which the fiber bundles intersect. FIG. 2 shows a cross-sectional view of the intersecting portion of the reinforcing member. As shown in the figure, the fiber bundles 2a and 2b obtained by binding a plurality of fibers 2 with a resin material 4 are alternately stacked.
Conventionally, such a concrete reinforcing member is made into a laminate by crossing fiber bundles into a lattice shape by filament winding molding, and heating while pressing the intersecting portion, or heating after pressing the intersecting portion. Thus, one molded product was obtained from one mold at a time. According to this procedure, the performance required for the reinforcing member can be sufficiently ensured and a molded product having a desired size and shape can be obtained. However, the productivity is low and the manufacturing cost is high due to restrictions on the number of molds. There was a problem.
[0003]
[Problems to be solved by the invention]
In order to solve the above problems, an object of the present invention is to provide a method for producing a concrete reinforcing member with improved productivity.
[0004]
[Means for Solving the Problems]
In order to solve the above problems, the present invention binds a plurality of fibers arranged in parallel with a resin material to form a fiber bundle, and intersects a fiber bundle extending in one direction with a fiber bundle extending in the other direction. By forming this lattice shape and repeating this, a unit laminate body having a cross-sectional structure in which fiber bundles extending in one direction and fiber bundles extending in the other direction are laminated at the intersection of the lattice shape is formed. The separator is placed on the formed unit laminate, the second unit laminate is further formed on the separator, and this process is repeated to form a multi-stage laminate sandwiching the separators. A method for manufacturing a concrete reinforcing member is provided, in which a fiber bundle in one direction and a fiber bundle in another direction are pressed at an intersecting portion of a lattice shape by pressurizing.
In the method for producing a concrete reinforcing member of the present invention, the fiber bundle is preferably pressure-bonded by pressurizing the multi-stage laminate from a direction perpendicular to the intersecting fiber bundle plane.
In the method for producing a concrete reinforcing member of the present invention, preferably, a spacer is installed in the lattice of the laminate in order to define the thickness of the unit laminate.
In the method for producing a concrete reinforcing member of the present invention, preferably, a guide plate is installed on the peripheral edge of the laminated body in order to define the dimensions of the unit laminated body.
The present invention also provides a multi-stage laminate formed by the method of the present invention.
The present invention also provides a method for producing a concrete reinforcing member that cuts four ends of intersecting fiber bundle planes of the multi-stage laminate of the present invention and separates it into a plurality of unit laminates to obtain a unit laminate. .
[0005]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described in detail below.
The method for producing a concrete reinforcing member of the present invention is characterized in that a multi-stage laminate is formed by laminating a plurality of unit laminates via a separator.
<Manufacture of unit laminate>
Although the following method can be illustrated as a manufacturing method of a unit laminated body, it is not limited to this, You may manufacture a unit laminated body by what kind of other method.
In the method for producing a concrete reinforcing member of the present invention, filament winding is used to cross the fiber bundles into a lattice shape and to stack the fiber bundles crossing each other. A specific method will be described using the apparatus shown in FIG. The apparatus of FIG. 3 includes a surface plate 10, a guide frame 11 provided around the surface plate 10, and a pin 12 corresponding to the horizontal component and the vertical component of the reinforcing member, arranged side by side on the outer surface of the surface plate 10. Have. A fiber bundle obtained by impregnating a plurality of continuous fibers arranged in parallel with a resin material is hooked sequentially in the vertical and horizontal directions on the corresponding pins 12 in the manner of one-stroke writing, and the fiber bundles are crossed with each other. For example, three or more layers of a longitudinal fiber bundle and a transverse fiber bundle are laminated in a lattice shape. FIG. 4 is a partially enlarged view of the intersecting portion of the fiber bundles 2a and 2b in FIG. As shown in FIG. 4, fiber bundles 2 a and 2 b obtained by binding a plurality of fibers 2 with a resin material 4 are stacked so as to cross each other at the intersection of the fiber sides 2 a and 2 b in FIG. 2.
[0006]
<Manufacture of multi-layer laminate>
In the present invention, a separator is placed on the unit laminate obtained as described above, and the same procedure as described above is performed on the separator to further form a second unit laminate. Then, by repeating this procedure, a multi-layered laminate in which unit laminates are stacked with separators interposed therebetween is obtained. FIG. 5 is a cross-sectional side view of a multi-stage laminate obtained by the method of the present invention. For easy understanding, the fiber bundle extending in the lateral direction with respect to the drawing is not shown. This also applies to FIGS. 6 and 7 shown below. From the figure, it can be confirmed that the unit laminate bodies (fiber bundles) 50 are stacked in multiple stages with the separator 51 interposed therebetween. 52 is a spacer to be described later, and 54 is a pin for hooking the fiber bundle.
[0007]
In the method of the present invention, the plurality of unit laminates are stacked with the separators interposed therebetween, and then pressed to press the intersecting portions of the fiber bundles constituting the unit laminate. Thereby, the thickness of the unit laminate body is made uniform.
Note that the resin material is thermally cured or photocured during or after the pressurization.
[0008]
The separator prevents the fiber bundles between the unit laminates from being crimped while sufficiently crimping the intersections of the fiber bundles when forming a multi-stage laminate, and after forming the multi-stage laminate, Any material can be used as long as it can easily separate the body, for example, a polyester film containing polyethylene terephthalate (PET), a release film such as cellophane, and a polytetrafluoroethylene or the like. It may be a sheet material used for mold release such as a fluororesin sheet, and a metal coated with a mold release agent such as stearic acid type, silicone type, wax type, polyvinyl alcohol (PVA) type, etc. A plate or a resin film may be used.
Moreover, if the separator which gave embossing is used, an unevenness | corrugation can be provided to the surface of a laminated body and the adhesiveness with respect to concrete will improve.
[0009]
In the method of the present invention, a spacer having a desired height may be arranged in advance in the lattice as necessary in order to form the unit laminate body to a desired thickness. In FIG. 5, by placing the spacer 52 between the fiber bundles 50, that is, in the lattice, the height of the unit molded body can be maintained at a desired height. In the figure, 51 is a separator. It should be noted that it is not always necessary to place spacers in all the grids, and it is only necessary to place as many spacers as necessary so that the pressure applied to the grids during pressurization is constant.
What is necessary is just to select the height of a spacer suitably according to the thickness of the concrete reinforcement member to shape | mold. Moreover, you may use the spacer of different height for every unit laminated body, and, thereby, the unit laminated body of different thickness can be obtained simultaneously.
Furthermore, you may use the guide plate demonstrated below with a spacer.
[0010]
As described above, it is preferable to use a spacer for obtaining a concrete reinforcing member having a desired thickness. However, a thin unit, for example, a unit in which the thickness of the lattice shape of the finished unit laminate is about 1 mm to 3 mm is used. When forming a laminated body, it may be difficult to use a spacer structurally. In such a case, it is preferable to use a guide plate. FIG. 6 is a side cross-sectional view of a multi-stage laminate in which the laminate is thin and no spacer is used. In the figure, 60 is a fiber bundle, and 61 is a separator film. The guide plate 63 is installed on the inner side of the pin 62, on the peripheral edge of the lattice-shaped laminate. Although not shown, the guide plate 63 is also installed at the peripheral edge in the direction perpendicular to the drawing.
The guide plate 63 is a plate-like body provided with holes or grooves through which the fiber bundles toward the pins 62 pass, and retains the size and shape of the unit laminate body when pressed. The guide plate 63 is covered with a separate film or coated with a release agent in order to prevent the fiber bundle from being crimped during pressurization. The guide plate 63 is preferably used even when a spacer as shown in FIG. 5 is used. The height and installation position of the guide plate 63 are appropriately selected according to the size of the unit laminated body and the height of the multistage laminated body.
However, this invention is not limited to these, You may implement without using a spacer and a guide plate.
[0011]
The method of pressurizing the multi-layered laminate may be any as long as it can pressurize the intersecting portions of the fiber bundles of the unit laminate, but preferably from a direction perpendicular to the plane including the intersecting fiber bundles. Pressurize. As a means for pressurizing, for example, as shown in FIG. 7, a plurality of weights 73 such as a metal lump or a bag containing sand or metal particles are multi-staged so that the load on the intersection of the fiber bundles becomes uniform. It may be placed on the upper part of the laminate 70. 71 is a pin and 72 is a guide plate. Fiber bundles and separators in the longitudinal direction relative to the drawing are not shown for ease of understanding. Alternatively, a rod-like or plate-like weight covering the entire longitudinal direction of the laminated body or covering the entire upper surface of the laminated body may be put on the upper part of the multi-stage laminated body and pressed. Further, as shown in FIG. 8, a multi-stage laminate 80 may be formed in a box frame 82, a reaction force is taken from the frame with screws 83, and pressurization may be performed using a turnbuckle method. Although depending on the cross-sectional shape of the reinforcing member, the crossing portion of the fiber bundle can be sufficiently crimped by applying a load of 100 to 200 kg / m 2 per plane area of the lattice shape by such a method. In the figure, reference numeral 81 denotes a pin.
[0012]
When the fiber bundles are laminated by the apparatus of FIG. 3, the portion of the fiber bundles connected to the pins 12 outside the lattice shape is pressurized and cured after the resin material is cured to cut the multi-stage laminate 10 Since it is removed from the grid, it protrudes from the lattice shape and exists as a wrap, and is cut off at the time of product, resulting in waste of material. If the pins 12 are movable and can be pulled out of the lattice, the multi-stage laminate can be removed from the surface plate as it is, and the separator is separated by removing the separator to obtain a plurality of unit laminates. be able to. For this reason, wrapping does not occur, and all of the lattice shape is obtained, and the yield of the material is improved.
[0013]
The multistage laminate of the present invention is a multistage laminate in which a plurality of unit laminates are stacked with separators interposed therebetween, and the multistage laminate is removed from the surface plate by the method using the movable pin. can get.
The multi-stage laminate is fixed to the guide plate because the fiber bundles constituting the unit laminate pass through the holes provided in the guide plate. The laminated body is not separated and maintains a multistage state. For this reason, it is possible to carry in a multi-stage state, and in use, a plurality of unit laminates can be obtained by separating the four ends of the lattice shape, that is, by cutting the four ends of the intersecting fiber bundle Can be separated.
[0014]
The intersection of the fiber bundles constituting the unit laminate is not limited to orthogonal, and may be a bias. In this case, the overall shape of the lattice is not limited to a square, and may be a rhombus or the like. Moreover, the shape of each unit laminated body is not limited to a flat surface, and may be a curved surface shape such as a wall surface of a tunnel. Such a curved laminate can be formed using a curved surface plate and a curved pressure weight in place of the flat surface plate.
In the present invention, the number of steps of the unit laminate body is not particularly limited, and may be appropriately selected according to the demand for the laminate body and the height of the guide plate used for production.
[0015]
In the present invention, the fiber forming the fiber bundle may be any fiber as long as it is used for the fiber-reinforced composite material, and mainly includes glass fiber and carbon fiber, but other fibers such as metal fiber and alumina are used. Fibers, silicon carbide fibers, ceramic fibers such as silicon nitride, synthetic resin fibers such as aramid fibers, polyethylene fibers, and polyarylate fibers may be used.
In the present invention, the resin material impregnated with fibers may be any material as long as it is used for the production of fiber-reinforced plastics, such as vinyl ester resins, unsaturated polyester resins, epoxy resins, phenol resins, etc. A thermosetting resin can be suitably used.
[0016]
【Example】
Hereinafter, the method of the present invention will be further described by way of examples.
Using the apparatus shown in FIG. 3, the separator film (polyethylene terephthalate film) and spacer (height 4 mm) shown in FIG. 5 are used, and the carbon fiber (diameter 8 μm) and vinyl ester resin are used and correspond to the reinforcing bar D6. A multi-stage laminate including 5 stages of carbon-type concrete reinforcing member CR6 (planar lattice shape, thickness × width 4 × 4.4 mm, lattice spacing 50 mm) is formed, and as shown in FIG. A 100 kg weight per 1 m 2 of the laminate is placed on the laminate to pressurize it so that the load on the laminate is uniform, put in a curing furnace in that state, and kept at 60 ° C. for 2 hours to cure the vinyl ester resin. It was. As a result, it was confirmed that the intersecting portion of the unit laminate was sufficiently pressed and cured. In addition, the number of devices shown in FIG. 3 required in the prior art is higher than that in the conventional method of manufacturing one molded body at a time with one mold while satisfying the performance of the concrete reinforcing member such as strength. The production amount of the concrete reinforcing member per unit time was 3 to 4 times.
[0017]
【The invention's effect】
According to the method of the present invention, a plurality of concrete reinforcing members can be manufactured simultaneously, and the productivity of the concrete reinforcing members is improved. Moreover, according to the method of the present invention, concrete reinforcing members having different dimensions and the like can be simultaneously manufactured in a single production process.
The multistage laminate of the present invention can be carried in a multistage configuration including a plurality of unit laminates. At the time of use, by cutting off the four ends of the intersecting fiber bundle planes, it can be separated into a plurality of unit laminates to obtain a unit laminate. The unit laminate obtained in this way is suitable as a reinforcement member for concrete materials for construction and civil engineering, such as troughs for railway communication cables, flooring materials, water seal tunnels, longitudinal resistance for shield machines in underground tunnels, etc. Can be used for
[Brief description of the drawings]
FIG. 1 is a perspective view of a concrete reinforcing member.
FIG. 2 is a partial cross-sectional view of a crossing portion of a concrete reinforcing agent.
FIG. 3 is a top view of an apparatus used for filament winding molding.
4 is a partial cross-sectional view taken along 2a and 2b in FIG. 2;
FIG. 5 is a side sectional view of a multi-stage laminate obtained by the present invention.
FIG. 6 is a side cross-sectional view of a multi-stage laminate when a spacer is not used because the thickness is small.
FIG. 7 is a side cross-sectional view of a multi-stage laminate showing a pressurizing method using a plurality of weights for pressurizing an intersecting portion.
FIG. 8 is a side cross-sectional view of a multistage laminate using a turnbuckle method for pressurizing an intersecting portion.
[Explanation of symbols]
2: fiber 2a, 2b: fiber bundle 4: resin material 10: surface plate 11: guide frame 12: pin 50, 60: fiber bundle 51, 61: separator film 52: spacer 54, 62: pin 63: guide plate 70, 80: Laminate 71, 81: Pin 72: Guide plate 73: Weight 82: Frame 83: Screw

Claims (6)

並列配置した複数本の繊維を樹脂材料で結束して繊維束とし、一方向に延在する繊維束と他方向に延在する繊維束とを交差させることにより格子形状を形成し、これを繰り返すことにより、該一方向に延在する繊維束と該他方向に延在する繊維束とが該格子形状の交差部分で積層した断面構造を有する単位積層体を形成し、
形成した単位積層体上にセパレータを載置し、該セパレータ上でさらに第2の単位積層体を形成し、これを繰り返すことにより、セパレータをはさんだ多段の積層体を形成し、
該多段の積層体を加圧することにより、該一方向の繊維束と該他方向の繊維束とを該格子形状の交差部分で圧着させることを特徴とするコンクリート補強部材の製造方法。
A plurality of fibers arranged in parallel are bundled with a resin material to form a fiber bundle, and a lattice shape is formed by intersecting a fiber bundle extending in one direction and a fiber bundle extending in the other direction, and this is repeated. By forming a unit laminate body having a cross-sectional structure in which the fiber bundle extending in the one direction and the fiber bundle extending in the other direction are laminated at the intersection of the lattice shape,
A separator is placed on the formed unit laminate, and a second unit laminate is further formed on the separator. By repeating this, a multi-stage laminate sandwiched between the separators is formed,
A method for producing a concrete reinforcing member, characterized in that the multi-layered laminate is pressed so that the fiber bundles in one direction and the fiber bundles in the other direction are pressure-bonded at intersections of the lattice shape.
前記多段の積層体を、交差する繊維束平面に直角な方向から加圧することを特徴とする請求項1に記載のコンクリート補強部材の製造方法。2. The method for producing a concrete reinforcing member according to claim 1, wherein the multi-stage laminate is pressurized from a direction perpendicular to the intersecting fiber bundle plane. 前記積層体の格子中に、単位積層体の厚さを規定するスペーサを設置することを特徴とする請求項1または2に記載のコンクリート補強部材の製造方法。The method for producing a concrete reinforcing member according to claim 1, wherein a spacer that defines a thickness of the unit laminate body is installed in a lattice of the laminate body. 前記積層体の周縁部に、単位積層体の寸法を規定するガイドプレートを設置することを特徴とする請求項1ないし3のいずれかに記載のコンクリート補強部材の製造方法。The method for manufacturing a concrete reinforcing member according to any one of claims 1 to 3, wherein a guide plate that defines a dimension of the unit laminated body is installed on a peripheral portion of the laminated body. 請求項1ないし4のいずれかの方法により製造される多段の積層体。A multi-stage laminate produced by the method according to claim 1. 請求項4の多段の積層体の交差する繊維束平面の四方の端部を切断し、複数の単位積層体に分離して単位積層体を得るコンクリート補強部材の製造方法。The manufacturing method of the concrete reinforcement member which cut | disconnects the four edge parts of the fiber bundle plane which the multistage laminated body of Claim 4 cross | intersects, isolate | separates into a several unit laminated body, and obtains a unit laminated body.
JP2001248670A 2001-08-20 2001-08-20 Method for manufacturing concrete reinforcing member Expired - Lifetime JP4666840B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2001248670A JP4666840B2 (en) 2001-08-20 2001-08-20 Method for manufacturing concrete reinforcing member
KR1020020048794A KR100849876B1 (en) 2001-08-20 2002-08-19 Process for producing a concrete reinforcing component
TW091118711A TW542867B (en) 2001-08-20 2002-08-19 Process for producing a concrete reinforcing component
CN02142024A CN1406727A (en) 2001-08-20 2002-08-20 Concrete stiffening piece manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001248670A JP4666840B2 (en) 2001-08-20 2001-08-20 Method for manufacturing concrete reinforcing member

Publications (2)

Publication Number Publication Date
JP2003056120A JP2003056120A (en) 2003-02-26
JP4666840B2 true JP4666840B2 (en) 2011-04-06

Family

ID=19077795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001248670A Expired - Lifetime JP4666840B2 (en) 2001-08-20 2001-08-20 Method for manufacturing concrete reinforcing member

Country Status (4)

Country Link
JP (1) JP4666840B2 (en)
KR (1) KR100849876B1 (en)
CN (1) CN1406727A (en)
TW (1) TW542867B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100410452C (en) * 2006-06-23 2008-08-13 天津市永定河管理处 Hydrotechnics gate made from concrete of fibre tendon, and preparation method
KR101540243B1 (en) * 2015-01-15 2015-07-30 주식회사 디앤시스 Hybrid fiber composite sheet for concrete structure and strengthening method of concrete structure using the same thing
CN105780738A (en) * 2016-05-13 2016-07-20 天津江河弘元环境技术研究有限公司 Fiber reinforced concrete hydraulic gate and manufacturing method thereof
KR102482491B1 (en) * 2021-03-30 2022-12-29 홍미경 Reinforcing material manufacturing device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62153449A (en) * 1985-12-26 1987-07-08 清水建設株式会社 Concrete reinforcing member

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01178649A (en) * 1988-01-06 1989-07-14 Shimizu Corp Concrete reinforcing member
JPH01203551A (en) * 1988-02-08 1989-08-16 Shimizu Corp Concrete reinforcing member
JP3019004B2 (en) * 1996-10-03 2000-03-13 東レ株式会社 Carbon fiber woven and concrete structures
KR19980051334A (en) * 1996-12-23 1998-09-15 김준웅 Partially toughened reinforced fiber sheet

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62153449A (en) * 1985-12-26 1987-07-08 清水建設株式会社 Concrete reinforcing member

Also Published As

Publication number Publication date
CN1406727A (en) 2003-04-02
JP2003056120A (en) 2003-02-26
TW542867B (en) 2003-07-21
KR20030016177A (en) 2003-02-26
KR100849876B1 (en) 2008-08-01

Similar Documents

Publication Publication Date Title
CN106414066B (en) Enhance composite construction
US8034268B2 (en) Method for manufacturing lightweight composite fairing bar
US5639535A (en) Composite interleaving for composite interfaces
EP1995046B1 (en) Method of fabricating fiber reinforced composite structure having stepped surface and structure obtained thereby
EP2495095B1 (en) Tensioning device for composite structures
US20110042865A1 (en) Device and method for the production of cellular materials
CN102112296A (en) Method of manufacturing a composite element
JP2008521657A (en) Inhomogeneous density composite structures and related methods
JPS6364304B2 (en)
WO2019244994A1 (en) Prepreg sheet and manufacturing method therefor, fiber-reinforced composite material molded article and manufacturing method therefor, and method for manufacturing preform
EP0369395A2 (en) Fiber reinforced resin sheets
US7208223B2 (en) Composite sheet material
US20160076179A1 (en) Honeycomb structure made of a non-woven made of recycled carbon fibers
CA2938645C (en) Composite material structure
CN110901104B (en) Preform shaping method and composite material shaping method
JP4666840B2 (en) Method for manufacturing concrete reinforcing member
US20140120317A1 (en) Composite load-bearing structure and method of manufacturing
JP2011502833A (en) Manufacturing method of fiber cell structure
RU2507352C1 (en) Panel of middle layer and method of its production
CN111300598A (en) Method for improving interlayer bonding force of fiber-reinforced building board
CN116176002A (en) Rapid preparation method for enhancing strength among fibers of unidirectional carbon fiber composite material
RU2623781C2 (en) Manufacturing method of celled honeycomb filler from composite materials
CN113263754A (en) Method for manufacturing a central caisson made of composite Material for an aircraft wing
KR20010033424A (en) Adiabatic Mold Having Composite Structure
JPH0661853B2 (en) Method for manufacturing fiber-reinforced composite material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4666840

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term