EP0376823A1 - Process and device for the flow rate control of liquid CO2, and their use in a cooling tunnel - Google Patents

Process and device for the flow rate control of liquid CO2, and their use in a cooling tunnel Download PDF

Info

Publication number
EP0376823A1
EP0376823A1 EP89403619A EP89403619A EP0376823A1 EP 0376823 A1 EP0376823 A1 EP 0376823A1 EP 89403619 A EP89403619 A EP 89403619A EP 89403619 A EP89403619 A EP 89403619A EP 0376823 A1 EP0376823 A1 EP 0376823A1
Authority
EP
European Patent Office
Prior art keywords
valve
liquid
pressure
pipe
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP89403619A
Other languages
German (de)
French (fr)
Other versions
EP0376823B2 (en
EP0376823B1 (en
Inventor
Patrick Micheau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carboxyque Francaise SA
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Carboxyque Francaise SA
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=9373521&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0376823(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Carboxyque Francaise SA, Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Carboxyque Francaise SA
Priority to AT89403619T priority Critical patent/ATE100921T1/en
Publication of EP0376823A1 publication Critical patent/EP0376823A1/en
Application granted granted Critical
Publication of EP0376823B1 publication Critical patent/EP0376823B1/en
Publication of EP0376823B2 publication Critical patent/EP0376823B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/312Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/237Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media
    • B01F23/2376Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media characterised by the gas being introduced
    • B01F23/23762Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/45Mixing liquids with liquids; Emulsifying using flow mixing
    • B01F23/451Mixing liquids with liquids; Emulsifying using flow mixing by injecting one liquid into another
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/48Mixing liquids with liquids; Emulsifying characterised by the nature of the liquids
    • B01F23/481Mixing liquids with liquids; Emulsifying characterised by the nature of the liquids using liquefied or cryogenic gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/49Mixing systems, i.e. flow charts or diagrams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/10Arrangements for preventing freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C7/00Methods or apparatus for discharging liquefied, solidified, or compressed gases from pressure vessels, not covered by another subclass
    • F17C7/02Discharging liquefied gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • F25D29/001Arrangement or mounting of control or safety devices for cryogenic fluid systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0323Valves
    • F17C2205/0335Check-valves or non-return valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0338Pressure regulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/013Carbone dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/035High pressure (>10 bar)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0107Single phase
    • F17C2225/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/03Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the pressure level
    • F17C2225/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0114Propulsion of the fluid with vacuum injectors, e.g. venturi
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/06Controlling or regulating of parameters as output values
    • F17C2250/0605Parameters
    • F17C2250/0636Flow or movement of content
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/02Improving properties related to fluid or fluid transfer
    • F17C2260/024Improving metering

Definitions

  • the present invention relates to a method and a device for regulating a flow of liquid CO2 in a thermally insulated pipe fitted with a continuously piloted valve.
  • CO2 carbon dioxide
  • CO2 carbon dioxide
  • the industrial field on the one hand for example: carbonation in chemistry, neutralization of basic agents and pH regulation in water treatment
  • in the field agro-food on the other hand for example: rapid cooling and freezing, temperature control
  • CO2 is most often delivered in liquefied form and stored in this form in a tank.
  • the characteristics of the processes require the ability to adapt the CO2 flow rate to the load to be treated; it is therefore necessary to regulate the flow of CO2 as a function of the characteristic parameters of the process: measurement of the pH in water treatments, measurement of temperature in cryogenic treatments.
  • the regulating method which is theoretically the most precise and the most economical with regard to the consumption of CO consistant is that of continuously regulating the flow of liquid CO Ă  using a controlled valve with variable opening, controlled by a proportional, derivative and integral regulator.
  • the principle of such a valve is to present a restriction on the flow of the fluid.
  • the section of this restriction is adjusted by means of a shutter element, moving continuously between two extreme positions under the effect of electrical or pneumatic energy.
  • the CO2 is present upstream of this valve at a pressure close to that of the reservoir, that is to say 11 to 60 bars.
  • the section restriction causes, according to the laws of the flow of fluids, a loss of pressure all the more important as the section of passage to the shutter is low.
  • the valve assumes a position close to its total closure.
  • the cross-sectional restriction is then maximum, and the pressure drop at the passage of the shutter is large enough for the pressure of the CO2 downstream of the valve to take values less than 5.2 bar.
  • This value of 5.2 bar corresponds to the pressure of the triple point of CO2, a value below which the liquid CO2 is transformed instantly into a mixture of gaseous CO2 and solid CO2 (dry ice).
  • control valves which can be used for these processes are such that the small diameter and the tortuous shape of the pipes immediately downstream of the shutter lead to immediate blockage as soon as carbon dioxide snow appears.
  • the invention aims to allow in all cases the use of a continuously piloted valve.
  • the method according to the invention is characterized in that an intermediate pressure greater than the pressure of the triple point is maintained in the pipe, downstream of the valve, near the CO2 injection point. CO2.
  • gas is injected into this pipe, upstream and downstream of the valve, at a pressure between said pressure of the triple point and said intermediate pressure.
  • the invention also relates to a device intended for the implementation of such a method.
  • This device is characterized in that the pipe comprises, downstream of the valve, a section leading to a spillway.
  • the overflow valve (4) has an outlet orifice in the axis of its shutter; - A pipe having substantially the same inside diameter as the outlet outlet of the spillway extends from this opening to the CO2 injection point.
  • the invention also relates to a cooling tunnel comprising several CO points injection points and a device as defined above and in which said section comprises several branches each leading to an overflow, each overflow being arranged at one of said injection points.
  • the overflow valves can be adjusted to different opening pressures.
  • the regulating device represented in FIG. 1 is intended to supply a variable flow of CO2 at an injection point A from a storage tank 2 in which a pressure PS is maintained which is clearly higher than the pressure PT of the triple point CO2 (5.2 bars), and generally between 11 and 60 bars.
  • Point A is at a determined pressure PO, for example substantially equal to atmospheric pressure, but in any case less than PT.
  • the regulating device 1 comprises a thermally insulated liquid pipe 3 extending from the lower part of the tank 2 to a spillway 4.
  • a pilot valve 5 is interposed in this pipe and defines therein an upstream section 6, of the tank to the valve, and a downstream section 7, from the valve to the spillway.
  • This valve includes a shutter, the position of which can vary continuously between a maximum opening position and a fully closed position, under the action of a motor 8.
  • the latter is controlled by a regulator 9 which receives from a measuring instrument 10 (for example a pH meter or a thermometer) a signal representative of the pilot quantity.
  • a measuring instrument 10 for example a pH meter or a thermometer
  • the overflow valve 4 (FIG. 2) comprises a housing 11 divided into two chambers by a membrane 12.
  • a helical spring 13, the force of which is adjustable by means of a screw 14, is disposed in one of these chambers, while the other chamber (the lower chamber in FIG. 2) receives the fluid contained in the pipe section 7.
  • a shutter rod 15 is integral with the membrane and ends in a shutter 16 cooperating with a seat 17 located at the entrance outlet 18 of the overflow valve.
  • Elements 13 to 18 are all coaxial.
  • the shutter 16 lifts from its seat if and only if the pressure prevailing in the lower chamber of the overflow exceeds the pressure corresponding to the force of the spring 13. It is therefore possible to adjust the screw 14 so that this opening occurs when the pressure in the section 7 is at least equal to an intermediate pressure PI greater than the pressure PT.
  • a gaseous CO2 pipe 19 starts from the upper part of the tank 2 and comprises, from upstream to downstream, a stop valve 20 and a pressure reducer 21. The latter delivers downstream a pressure P2 greater than PT but less than PI. Downstream of the regulator 21, the pipe 19 is divided into two branches 22 and 23 ending respectively in the sections 6 and 7 respectively of the pipe 3. Each branch is equipped with a non-return valve 24 which does not allow the circulation of fluid only from regulator 21 to line 3.
  • the device In operation, the device is first conditioned to the pressure P2 by opening the valve 20. This guarantees that at no point in the device, the pressure will fall below the triple point of CO2.
  • FIG. 4 An application of the variant of FIG. 3 is illustrated diagrammatically in FIG. 4. It is the regulation, from a pH measurement, of a flow of liquid CO2 injected into a waste water pipe 26 to neutralize a basic effluent.
  • the pipe 25 opens into a venturi 27 intended to inject and disperse the carbon dioxide snow in the water flow.
  • FIG. 5 shows a variant of the device of FIG. 1 in which the pipe section 7 is divided into three branches 7A to 7C each leading to a respective overflow valve 4A to 4C. This makes it possible to supply CO2 at several injection points and, by adopting different pressure settings for each outlet, to inject CO2 flow rates that can be adjusted individually for each injection point.
  • This possibility is particularly advantageous for, for example, producing more or less cold zones in a longitudinal tunnel for freezing food products, as illustrated in FIG. 5.
  • the regulation of the valve 5 is carried out on the basis of a single temperature measurement carried out near the exit of the tunnel.
  • the CO2 is injected in parallel by the overhangs 4A to 4C in order to distribute the refrigeration supply over the length of the tunnel 28.
  • the overflow 4A located on the inlet side 29 of the products to be treated, conveyed by a conveyor belt 30, generates a CO dĂ©bit flow higher than the others due to its setting on a lower PI-A pressure.
  • this first outlet may be the only one to flow.
  • FIG. 5 makes it possible to obtain in a simple and economical manner a reliable and precise regulation of the freezing process.
  • the invention can be applied to many other processes consuming CO2. It is particularly well suited for applications requiring a significant flow of CO2 (at least 100 kg / h), delivered almost continuously and at a variable rate in a ratio of 1 to 5 approximately.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Freezing, Cooling And Drying Of Foods (AREA)
  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Accessories For Mixers (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

According to the process, there is maintained in a conduit (3), on the downstream side of a valve (5), up to the vicinity of the point A of injection of the CO2, an intermediate pressure (PI) higher than the pressure (PT) of the triple point of the CO2. Application in the treatment of waste waters or the deep freezing of food.

Description

La présente invention est relative à un procédé et à un dispositif de régulation d'un débit de CO₂ liquide dans une conduite thermiquement isolée équipée d'une vanne pilotée de façon continue.The present invention relates to a method and a device for regulating a flow of liquid CO₂ in a thermally insulated pipe fitted with a continuously piloted valve.

Le CO₂ (anhydride carbonique) est utilisé pour de nombreux procédés, dans le domaine industriel d'une part (par exemple : carbonatation en chimie, neutralisation d'agents basiques et régulation de pH dans le traitement de l'eau), dans le domaine agro-alimentaire d'autre part (par exemple : refroidissement et surgélation rapides, contrôle de température).CO₂ (carbon dioxide) is used for many processes, in the industrial field on the one hand (for example: carbonation in chemistry, neutralization of basic agents and pH regulation in water treatment), in the field agro-food on the other hand (for example: rapid cooling and freezing, temperature control).

Pour ces applications, compte tenu des besoins, le CO₂ est le plus souvent livré sous forme liquéfiée et stocké sous cette forme dans un réservoir.For these applications, taking into account the needs, CO₂ is most often delivered in liquefied form and stored in this form in a tank.

Les caractéristiques des procédés nécessitent de pouvoir adapter le débit de CO₂ à la charge à traiter; on est donc amené à réguler le débit de CO₂ en fonction des paramètres caractéristiques du procédé : mesure du pH en traitements d'eau, mesure de température en traitements cryogéniques.The characteristics of the processes require the ability to adapt the CO₂ flow rate to the load to be treated; it is therefore necessary to regulate the flow of CO₂ as a function of the characteristic parameters of the process: measurement of the pH in water treatments, measurement of temperature in cryogenic treatments.

La méthode de régulation qui est théoriquement la plus précise et la plus économique à l'égard de la consommation de CO₂ est celle consistant à réguler de façon continue le débit de CO₂ liquide à l'aide d'une vanne pilotée à ouverture variable, commandée par un régulateur à action proportionnelle, dérivée et intégrale. Le principe d'une telle vanne est de présenter une restriction à l'écoulement du fluide. La section de cette restriction est ajustée à l'aide d'un élément obturateur, se déplaçant de façon continue entre deux positions extrêmes sous l'effet d'une énergie électrique ou pneumatique.The regulating method which is theoretically the most precise and the most economical with regard to the consumption of CO consistant is that of continuously regulating the flow of liquid CO à using a controlled valve with variable opening, controlled by a proportional, derivative and integral regulator. The principle of such a valve is to present a restriction on the flow of the fluid. The section of this restriction is adjusted by means of a shutter element, moving continuously between two extreme positions under the effect of electrical or pneumatic energy.

Le CO₂ se présente en amont de cette vanne à une pression proche de celle du réservoir, soit 11 a 60 bars suivant les cas. La restriction de section provoque, selon les lois de l'écoulement des fluides, une perte de pression d'autant plus importante que la section de passage à l'obturateur est faible. Lorsque temporairement, le fonctionnement du procédé est tel que le besoin en CO₂ est minimal, la vanne prend une position proche de sa fermeture totale. La restriction de section est alors maximale, et la chute de pression au passage de l'obturateur est suffisamment importante pour que la pression du CO₂ en aval de la vanne prenne des valeurs inférieures à 5,2 bar.The CO₂ is present upstream of this valve at a pressure close to that of the reservoir, that is to say 11 to 60 bars. The section restriction causes, according to the laws of the flow of fluids, a loss of pressure all the more important as the section of passage to the shutter is low. When temporarily, the operation of the process is such that the need for CO₂ is minimal, the valve assumes a position close to its total closure. The cross-sectional restriction is then maximum, and the pressure drop at the passage of the shutter is large enough for the pressure of the CO₂ downstream of the valve to take values less than 5.2 bar.

Cette valeur de 5,2 bar correspond à la pression du point triple du CO₂, valeur en-deçà de laquelle le CO₂ liquide se transforme instantanément en un mélange de CO₂ gazeux et de CO₂ solide (neige carbonique).This value of 5.2 bar corresponds to the pressure of the triple point of CO₂, a value below which the liquid CO₂ is transformed instantly into a mixture of gaseous CO₂ and solid CO₂ (dry ice).

Or, les caractéristiques de construction des vannes de régulation utilisables pour ces procédés sont telles que le faible diamètre et la forme tortueuse des tuyauteries immédiatement en aval de l'obturateur conduisent à un bouchage immédiat dès l'apparition de neige carbonique.However, the construction characteristics of the control valves which can be used for these processes are such that the small diameter and the tortuous shape of the pipes immediately downstream of the shutter lead to immediate blockage as soon as carbon dioxide snow appears.

Il s'ensuit qu'en pratique, ces vannes de régulation ne sont que rarement utilisables pour la régulation d'un débit de CO₂ liquide, et que les solutions habituellement adoptées font appel à d'autres techniques : la régulation en tout ou rien, peu précise, ou, lorsque l'application ne nécessite pas du CO₂ liquide, l'utilisation d'un vaporiseur en amont de la vanne de régulation, ce qui constitue une technique coûteuse en investissement et en énergie.It follows that in practice, these control valves are only rarely used for regulating a flow of liquid CO₂, and that the solutions usually adopted call on other techniques: all or nothing regulation, imprecise, or, when the application does not require liquid CO₂, the use of a vaporizer upstream of the control valve, which constitutes a technique which is expensive in terms of investment and energy.

L'invention a pour but de permettre dans tous les cas l'utilisation d'une vanne pilotée de façon continue.The invention aims to allow in all cases the use of a continuously piloted valve.

A cet effet, le procédé suivant l'invention est caractérisé en ce qu'on maintient dans la conduite, en aval de la vanne, jusqu'à proximité du point d'injection du CO₂, une pression intermédiaire supérieure à la pression du point triple du CO₂.To this end, the method according to the invention is characterized in that an intermediate pressure greater than the pressure of the triple point is maintained in the pipe, downstream of the valve, near the CO₂ injection point. CO₂.

De préférence, avant de relier la conduite à un réservoir de CO₂ liquide, on injecte dans cette conduite, en amont et en aval de la vanne, du CO₂ gazeux à une pression comprise entre ladite pression du point triple et ladite pression intermédiaire.Preferably, before connecting the pipe to a liquid CO₂ reservoir, gas is injected into this pipe, upstream and downstream of the valve, at a pressure between said pressure of the triple point and said intermediate pressure.

L'invention a également pour objet un dispositif destiné à la mise en oeuvre d'un tel procédé. Ce dispositif est caractérisé en ce que la conduite comprend, en aval de la vanne, un tronçon aboutissant à un déverseur.The invention also relates to a device intended for the implementation of such a method. This device is characterized in that the pipe comprises, downstream of the valve, a section leading to a spillway.

Suivant des caractéristiques avantageuses :
- le déverseur (4) comporte un orifice de sortie dans l'axe de son obturateur;
- un tuyau ayant sensiblement le même diamètre intérieur que l'orifice de sortie du déverseur s'étend de cet orifice au point d'injection du CO₂.
According to advantageous characteristics:
- the overflow valve (4) has an outlet orifice in the axis of its shutter;
- A pipe having substantially the same inside diameter as the outlet outlet of the spillway extends from this opening to the COâ‚‚ injection point.

L'invention a encore pour objet un tunnel de refroidissement comportant plusieurs points d'injection de CO₂ et un dispositif tel que défini ci-dessus et dans lequel ledit tronçon comporte plusieurs embranchements aboutissant chacun à un déverseur, chaque déverseur étant disposé en l'un desdits points d'injection. Les déverseurs peuvent être réglés sur des pressions d'ouverture différentes.The invention also relates to a cooling tunnel comprising several CO points injection points and a device as defined above and in which said section comprises several branches each leading to an overflow, each overflow being arranged at one of said injection points. The overflow valves can be adjusted to different opening pressures.

Quelques exemples de mise en oeuvre de l'invention vont maintenant être décrits en regard des dessins annexés, sur lesquels :

  • - la figure 1 est une vue schĂ©matique d'un dispositif conforme Ă  l'invention;
  • - la figure 2 est une vue en coupe longitudinale du dĂ©verseur de ce dispositif;
  • - la figure 3 est une vue partielle en coupe longitudinale, Ă  plus grande Ă©chelle, d'une variante de ce dĂ©verseur;
  • - les figures 4 et 5 illustrent schĂ©matiquement des applications du procĂ©dĂ© suivant l'invention.
Some examples of implementation of the invention will now be described with reference to the accompanying drawings, in which:
  • - Figure 1 is a schematic view of a device according to the invention;
  • - Figure 2 is a longitudinal sectional view of the overflow of this device;
  • - Figure 3 is a partial view in longitudinal section, on a larger scale, of a variant of this overflow;
  • - Figures 4 and 5 schematically illustrate applications of the method according to the invention.

Le dispositif de régulation représenté à la figure 1 est destiné à fournir un débit variable de CO₂ en un point d'injection A à partir d'un réservoir de stockage 2 dans lequel est maintenue une pression PS nettement supérieure à la pression PT du point triple du CO₂ (5,2 bars), et généralement comprise entre 11 et 60 bars. Le point A se trouve à une pression PO déterminée, par exemple sensiblement égale à la pression atmosphérique, mais de toute façon inférieure à PT.The regulating device represented in FIG. 1 is intended to supply a variable flow of CO₂ at an injection point A from a storage tank 2 in which a pressure PS is maintained which is clearly higher than the pressure PT of the triple point CO₂ (5.2 bars), and generally between 11 and 60 bars. Point A is at a determined pressure PO, for example substantially equal to atmospheric pressure, but in any case less than PT.

Le dispositif de régulation 1 comprend une conduite de liquide 3 thermiquement isolée s'étendant de la partie inférieure du réservoir 2 à un déverseur 4. Une vanne pilotée 5 est interposée dans cette conduite et définit dans celle-ci un tronçon amont 6, du réservoir à la vanne, et un tronçon aval 7, de la vanne au déverseur. Cette vanne comporte un obturateur dont la position peut varier de façon continue entre une positon d'ouverture maximale et une position de fermeture totale, sous l'action d'un moteur 8. Ce dernier est commandé par un régulateur 9 qui reçoit d'un instrument de mesure 10 (par exemple un pH mètre ou un thermomètre) un signal représentatif de la grandeur pilote.The regulating device 1 comprises a thermally insulated liquid pipe 3 extending from the lower part of the tank 2 to a spillway 4. A pilot valve 5 is interposed in this pipe and defines therein an upstream section 6, of the tank to the valve, and a downstream section 7, from the valve to the spillway. This valve includes a shutter, the position of which can vary continuously between a maximum opening position and a fully closed position, under the action of a motor 8. The latter is controlled by a regulator 9 which receives from a measuring instrument 10 (for example a pH meter or a thermometer) a signal representative of the pilot quantity.

Le déverseur 4 (figure 2) comprend un boitier 11 divisé en deux chambres par une membrane 12. Un ressort hélicoïdal 13, dont la force est réglable au moyen d'une vis 14, est disposé dans l'une de ces chambres, tandis que l'autre chambre (la chambre inférieure sur la figure 2) reçoit le fluide contenu dans le tronçon de conduite 7. Dans cette autre chambre, une tige d'obturateur 15 est solidaire de la membrane et se termine par un obturateur 16 coopérant avec un siège 17 situé à l'entrée de l'orifice de sortie 18 du déverseur. Les éléments 13 à 18 sont tous coaxiaux.The overflow valve 4 (FIG. 2) comprises a housing 11 divided into two chambers by a membrane 12. A helical spring 13, the force of which is adjustable by means of a screw 14, is disposed in one of these chambers, while the other chamber (the lower chamber in FIG. 2) receives the fluid contained in the pipe section 7. In this other chamber, a shutter rod 15 is integral with the membrane and ends in a shutter 16 cooperating with a seat 17 located at the entrance outlet 18 of the overflow valve. Elements 13 to 18 are all coaxial.

Ainsi, l'obturateur 16 se soulève de son siège si et seulement si la pression régnant dans la chambre inférieure du déverseur dépasse la pression correspondant à la force du ressort 13. On peut donc régler la vis 14 de façon que cette ouverture se produise lorsque la pression dans le tronçon 7 est au moins égale à une pression intermédiaire PI supérieure à la pression PT.Thus, the shutter 16 lifts from its seat if and only if the pressure prevailing in the lower chamber of the overflow exceeds the pressure corresponding to the force of the spring 13. It is therefore possible to adjust the screw 14 so that this opening occurs when the pressure in the section 7 is at least equal to an intermediate pressure PI greater than the pressure PT.

Une conduite de CO₂ gazeux 19 part de la partie supérieure du réservoir 2 et comporte, d'amont en aval, une vanne d'arrêt 20 et un détendeur 21. Ce dernier délivre en aval une pression P2 supérieure à PT mais inférieure à PI. En aval du détendeur 21, la conduite 19 se divise en deux branches 22 et 23 aboutissant respectivement dans les tronçons 6 et 7 respectivement de la conduite 3. Chaque branche est équipée d'un clapet anti-retour 24 n'autorisant la circulation de fluide que du détendeur 21 vers la conduite 3.A gaseous CO₂ pipe 19 starts from the upper part of the tank 2 and comprises, from upstream to downstream, a stop valve 20 and a pressure reducer 21. The latter delivers downstream a pressure P2 greater than PT but less than PI. Downstream of the regulator 21, the pipe 19 is divided into two branches 22 and 23 ending respectively in the sections 6 and 7 respectively of the pipe 3. Each branch is equipped with a non-return valve 24 which does not allow the circulation of fluid only from regulator 21 to line 3.

En fonctionnement, on procède tout d'abord au conditionnement du dispositif à la pression P2 en ouvrant la vanne 20. On garantit ainsi qu'en aucun point du dispositif, la pression ne descendra au-dessous du point triple du CO₂.In operation, the device is first conditioned to the pressure P2 by opening the valve 20. This guarantees that at no point in the device, the pressure will fall below the triple point of CO₂.

Puis, par une commande de mise en service non représentée, on admet le CO₂ liquide dans la conduite 3. Le déverseur 4 s'ouvre lorsque la pression dans le tronçon 7 est supérieure à la valeur PI, et un jet de neige carbonique sort alors de l'orifice 18. L'évacuation de cette neige s'effectue sans entrave grâce à la disposition de l'orifice 18 dans l'axe du système membrane-obturateur.Then, by a commissioning command not shown, we admit the liquid CO dans in the line 3. The overflow valve 4 opens when the pressure in the section 7 is greater than the value PI, and a jet of dry ice then comes out of the orifice 18. The evacuation of this snow is carried out without obstacle thanks to the arrangement of the orifice 18 in the axis of the membrane-obturator system.

En variante (figure 3), dans les cas où la neige carbonique nécessite d'être véhiculée dans une courte portion du tuyauterie avant d'atteindre le point d'injection A, on relie à l'orifice 18 un tuyau 25 ne présentant ni aspérité interne ni coude prononcé. Le diamètre intérieur du tuyau 25 est sur toute sa longueur sensiblement égal à celui de l'orifice 18 et n'offre pas de restriction de section à l'écoulement du mélange gaz-solide.As a variant (FIG. 3), in the cases where the carbon dioxide snow needs to be conveyed in a short portion of the piping before reaching the injection point A, there is connected to the orifice 18 a pipe 25 having neither roughness internal or pronounced elbow. The internal diameter of the pipe 25 is over its entire length substantially equal to that of the orifice 18 and does not offer any restriction in section to the flow of the gas-solid mixture.

Une application de la variante de la figure 3 est illustrée schématiquement à la figure 4. Il s'agit de la régulation, à partir d'une mesure de pH, d'un débit de CO₂ liquide injecté dans une canalisation d'eau résiduaire 26 pour y neutraliser un effluent basique.An application of the variant of FIG. 3 is illustrated diagrammatically in FIG. 4. It is the regulation, from a pH measurement, of a flow of liquid CO₂ injected into a waste water pipe 26 to neutralize a basic effluent.

Le tuyau 25 débouche dans un venturi 27 destiné à injecter et disperser la neige carbonique dans le débit d'eau.The pipe 25 opens into a venturi 27 intended to inject and disperse the carbon dioxide snow in the water flow.

On a représenté à la figure 5 une variante du dispositif de la figure 1 dans laquelle le tronçon de conduite 7 se divise en trois branches 7A à 7C aboutissant chacune à un déverseur respectif 4A à 4C. Ceci permet de fournir du CO₂ en plusieurs points d'injection et, en adoptant des réglages de pression différents pour chaque déverseur, d'injecter des débits de CO₂ réglables individuellement pour chaque point d'injection.FIG. 5 shows a variant of the device of FIG. 1 in which the pipe section 7 is divided into three branches 7A to 7C each leading to a respective overflow valve 4A to 4C. This makes it possible to supply CO₂ at several injection points and, by adopting different pressure settings for each outlet, to inject CO₂ flow rates that can be adjusted individually for each injection point.

Cette possibilité est particulièrement intéressante pour, par exemple, réaliser des zones plus ou moins froides dans un tunnel longitudinal de surgélation de produits alimentaires, comme illustré à la figure 5.This possibility is particularly advantageous for, for example, producing more or less cold zones in a longitudinal tunnel for freezing food products, as illustrated in FIG. 5.

Dans cette application, la régulation de la vanne 5 est effectuée à partir d'une mesure de température unique effectuée près de la sortie du tunnel. Le CO₂ est injecté en parallèle par les déverseurs 4A à 4C afin de répartir l'apport frigorifique sur la longueur du tunnel 28. En régime permanent, le déverseur 4A situé du côté de l'entrée 29 des produits à traiter, véhiculés par un convoyeur à bande 30, génère un débit de CO₂ supérieur aux autres du fait de son réglage sur une pression PI-A plus faible. De même, lorsque l'installation est proche de son débit minimal (position de veille entre deux phases de traitement), ce premier déverseur pourra être le seul à débiter.In this application, the regulation of the valve 5 is carried out on the basis of a single temperature measurement carried out near the exit of the tunnel. The CO₂ is injected in parallel by the overhangs 4A to 4C in order to distribute the refrigeration supply over the length of the tunnel 28. In steady state, the overflow 4A located on the inlet side 29 of the products to be treated, conveyed by a conveyor belt 30, generates a CO débit flow higher than the others due to its setting on a lower PI-A pressure. Likewise, when the installation is close to its minimum flow rate (standby position between two treatment phases), this first outlet may be the only one to flow.

L'agencement de la figure 5 permet d'obtenir de façon simple et économique une régulation fiable et précise du processus de surgélation.The arrangement of FIG. 5 makes it possible to obtain in a simple and economical manner a reliable and precise regulation of the freezing process.

L'invention peut s'appliquer à de nombreux autres procédés consommant du CO₂. Elle est particulièrement bien adaptée pour les applications nécessitant un débit notable de CO₂ (au moins 100 kg/h), délivré de façon quasi-continue et à un taux variable dans un rapport de 1 à 5 environ.The invention can be applied to many other processes consuming CO₂. It is particularly well suited for applications requiring a significant flow of CO₂ (at least 100 kg / h), delivered almost continuously and at a variable rate in a ratio of 1 to 5 approximately.

Claims (7)

1. Procédé de régulation d'un débit de CO₂ liquide dans une conduite thermiquement isolée (3) équipée d'une vanne (5) de réglage, caractérisé en ce qu'on maintient de façon permanente pendant toute l'opération de délivrance du débit dans la conduite (3), en aval de la vanne (5), jusqu'à proximité du point (A) d'injection du CO₂, une pression intermédiaire (PI) supérieure à la pression (PT) du point triple du CO₂, via une conduite (23) à clapet anti-retour (24).1. Method for regulating a flow of liquid CO₂ in a thermally insulated pipe (3) equipped with a regulating valve (5), characterized in that it is permanently maintained throughout the flow delivery operation in the pipe (3), downstream of the valve (5), near the point (A) of CO₂ injection, an intermediate pressure (PI) greater than the pressure (PT) of the triple point of CO₂, via a line (23) with non-return valve (24). 2. Procédé suivant la revendication 1, du genre où, de façon connue en soi, avant de relier la conduite (3) à un réservoir (2) de CO₂ liquide, on injecte dans cette conduite, en aval de la vanne (5), du CO₂ gazeux à une pression (P2) comprise entre ladite pression (PT) du point triple et ladite pression intermédiaire (PI) via la conduite (23), caractérisé en ce qu'on injecte également du CO₂ gazeux à cette pression P2 en amont de la vanne (5) via la conduite (22).2. Method according to claim 1, of the kind where, in a manner known per se, before connecting the pipe (3) to a reservoir (2) of liquid CO₂, is injected into this pipe, downstream of the valve (5) , gaseous CO₂ at a pressure (P2) between said pressure (PT) of the triple point and said intermediate pressure (PI) via the pipe (23), characterized in that gaseous CO₂ is also injected at this pressure P2 by upstream of the valve (5) via the pipe (22). 3. Procédé de régulation selon la revendication 1, caractérisé en ce que le débit de CO₂ liquide est délivré au moyen d'un déverseur (4).3. A method of regulation according to claim 1, characterized in that the flow of liquid CO₂ is delivered by means of an overflow valve (4). 4. Dispositif de régulation d'un débit de CO₂ liquide, du genre comprenant un réservoir (2) de CO₂ sous pression, une conduite (3) de soutirage de CO₂ liquide à vanne régulatrice (5), une conduite (19) de soutirage gazeux à détendeur (21) aboutissant via le clapet anti-retour (24) dans la conduite de soutirage (3) en aval (7) de la vanne (5), caractérisé en ce que la conduite distributrice aboutit à un déverseur (4) du type à membrane (12) portant un obturateur (16) coopérant avec un siège d'éjection (17), ladite membrane étant sollicitée à fermeture de clapet par un ressort (13) à effet réglable en (14).4. Device for regulating a flow of liquid CO₂, of the type comprising a reservoir (2) of CO₂ under pressure, a line (3) for drawing off liquid CO₂ with a regulating valve (5), a line (19) for drawing off gaseous valve (21) terminating via the non-return valve (24) in the draw-off line (3) downstream (7) of the valve (5), characterized in that the distribution line ends in a spillway (4) of the membrane type (12) carrying a shutter (16) cooperating with an ejection seat (17), said membrane being urged to close by a valve by a spring (13) with adjustable effect at (14). 5. Dispositif de régulation d'un débit de CO₂ liquide, selon la revendication 4, caractérisé en ce que la conduite (19) de soutirage gazeux débouche également via un clapet anti-retour (24) en amont (6) de la vanne régulatrice (5).5. A device for regulating a liquid CO₂ flow rate, according to claim 4, characterized in that the gas withdrawal line (19) also opens out via a non-return valve (24) upstream (6) of the regulating valve. (5). 6. Dispositif suivant la revendication 4, caractérisé en ce qu'un tuyau (25) ayant sensiblement le même diamètre intérieur que l'orifice de sortie (18) du déverseur s'étend de cet orifice au point (A) d'injection du CO₂.6. Device according to claim 4, characterized in that a pipe (25) having substantially the same internal diameter as the outlet orifice (18) of the overflow extends from this orifice at the point (A) of injection of the CO₂. 7. Dispositif suivant l'une quelconque des revendications 4 à 6, caractérisé en ce que ledit tronçon (7) comporte plusieurs embranchements (7A, 7B, 7C) aboutissant chacun à un déverseur (4A, 4B, 4C) comprenant une réserve (2) de CO₂ liquide sous pression, une conduite distributrice (3) de vanne régulatrice (5), au moyen de mise sous pression gazeuse (20 - 21 - 24) de ladite conduite.7. Device according to any one of claims 4 to 6, characterized in that said section (7) comprises several branches (7A, 7B, 7C) each leading to a spillway (4A, 4B, 4C) comprising a reserve (2 ) of liquid CO₂ under pressure, a distributor valve distribution line (3) (5), by means of gas pressurization (20 - 21 - 24) of said line.
EP89403619A 1988-12-28 1989-12-22 Process and device for the flow rate control of liquid CO2, and their use in a cooling tunnel Expired - Lifetime EP0376823B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT89403619T ATE100921T1 (en) 1988-12-28 1989-12-22 METHOD AND DEVICE FOR FLOW CONTROL OF LIQUID CO2 AND THEIR APPLICATION FOR A COOLING TUNNEL.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8817305 1988-12-28
FR8817305A FR2641854B1 (en) 1988-12-28 1988-12-28 METHOD AND DEVICE FOR REGULATING A FLOW OF LIQUID CO2, AND APPLICATION TO A COOLING TUNNEL

Publications (3)

Publication Number Publication Date
EP0376823A1 true EP0376823A1 (en) 1990-07-04
EP0376823B1 EP0376823B1 (en) 1994-01-26
EP0376823B2 EP0376823B2 (en) 2001-04-11

Family

ID=9373521

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89403619A Expired - Lifetime EP0376823B2 (en) 1988-12-28 1989-12-22 Process and device for the flow rate control of liquid CO2, and their use in a cooling tunnel

Country Status (8)

Country Link
US (1) US5040374A (en)
EP (1) EP0376823B2 (en)
AT (1) ATE100921T1 (en)
AU (1) AU629584B2 (en)
CA (1) CA2006789C (en)
DE (1) DE68912755T3 (en)
ES (1) ES2048312T5 (en)
FR (1) FR2641854B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0744578A1 (en) * 1995-05-24 1996-11-27 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Apparatus for injecting pressurized liquid in a vessel
WO1999020934A1 (en) * 1997-10-23 1999-04-29 Thermo King Corporation System and method for transferring liquid carbon dioxide from a high pressure storage tank to a lower pressure transportable tank
FR2787862A1 (en) * 1998-12-29 2000-06-30 Carboxyque Francaise METHOD AND DEVICE FOR REGULATED INJECTION OF LIQUID CARBON DIOXIDE INTO A PRESSURIZED LIQUID
FR2903482A1 (en) * 2006-07-10 2008-01-11 Air Liquide CRYOGENIC FLUID INJECTION SYSTEM FOR TREATING BULK PRODUCTS

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5311927A (en) * 1992-11-27 1994-05-17 Thermo King Corporation Air conditioning and refrigeration apparatus utilizing a cryogen
US5285644A (en) * 1992-11-27 1994-02-15 Thermo King Corporation Air conditioning and refrigeration apparatus utilizing a cryogen
US5320167A (en) * 1992-11-27 1994-06-14 Thermo King Corporation Air conditioning and refrigeration systems utilizing a cryogen and heat pipes
US5259198A (en) * 1992-11-27 1993-11-09 Thermo King Corporation Air conditioning and refrigeration systems utilizing a cryogen
US5267443A (en) * 1992-11-27 1993-12-07 Thermo King Corporation Air conditioning and refrigeration methods and apparatus utilizing a cryogen
US5305825A (en) * 1992-11-27 1994-04-26 Thermo King Corporation Air conditioning and refrigeration apparatus utilizing a cryogen
US5315840A (en) * 1992-11-27 1994-05-31 Thermo King Corporation Air conditioning and refrigeration methods and apparatus utilizing a cryogen
US5267446A (en) * 1992-11-27 1993-12-07 Thermo King Corp. Air conditioning and refrigeration systems utilizing a cryogen
US5287705A (en) * 1993-02-16 1994-02-22 Thermo King Corporation Air conditioning and refrigeration systems utilizing a cryogen
US5363658A (en) * 1993-07-09 1994-11-15 The Boc Group, Inc. Apparatus and process for chilling food products
US5365744A (en) * 1993-11-08 1994-11-22 Thermo King Corporation Air conditioning and refrigeration systems utilizing a cryogen
DE19621835A1 (en) * 1996-05-31 1997-12-04 Aga Ab Expansion nozzle and method for producing carbon dioxide snow
US5813237A (en) * 1997-06-27 1998-09-29 The Boc Group, Inc. Cryogenic apparatus and method for spraying a cryogen incorporating generation of two phase flow
US5868003A (en) * 1997-07-14 1999-02-09 Praxair Technology, Inc. Apparatus for producing fine snow particles from a flow liquid carbon dioxide
US6751966B2 (en) * 2001-05-25 2004-06-22 Thermo King Corporation Hybrid temperature control system
US6609382B2 (en) * 2001-06-04 2003-08-26 Thermo King Corporation Control method for a self-powered cryogen based refrigeration system
US6631621B2 (en) * 2001-07-03 2003-10-14 Thermo King Corporation Cryogenic temperature control apparatus and method
US6698212B2 (en) * 2001-07-03 2004-03-02 Thermo King Corporation Cryogenic temperature control apparatus and method
US6694765B1 (en) * 2002-07-30 2004-02-24 Thermo King Corporation Method and apparatus for moving air through a heat exchanger
US6895764B2 (en) * 2003-05-02 2005-05-24 Thermo King Corporation Environmentally friendly method and apparatus for cooling a temperature controlled space
DE102008052802A1 (en) 2008-10-22 2010-04-29 Messer France S.A.S Arrangement for introducing liquid carbon dioxide into a medium
ES2510290B2 (en) 2013-03-20 2015-04-30 Emilio PALOMO PINTO Autonomous, portable and self-cooling refrigeration system, based on the use of a sealed tank, containing a liquefied gas under pressure, used as a vaporizer, as a consequence of the controlled evaporation of said LPG
US10512278B2 (en) 2015-04-24 2019-12-24 Messer Industries Usa, Inc. Inline mixing injector for liquid products
US20170038117A1 (en) * 2015-08-03 2017-02-09 Michael D. Newman Pulsed liquid-gas entrained cryogen flow generator
WO2021121652A1 (en) 2019-12-18 2021-06-24 Linde Gmbh Method and arrangement for introducing gas into a medium
CN111254858B (en) * 2020-03-06 2021-09-21 西南交通大学 Liquid carbon dioxide cleaning machine and cleaning method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB351839A (en) * 1929-09-23 1931-07-02 Hugo Mestern
GB807088A (en) * 1954-06-09 1959-01-07 Pyrene Co Ltd Improvements in valves for controlling the discharge of gas stored in the liquid state
FR2142309A5 (en) * 1971-06-18 1973-01-26 Mille Gaston Cryogenic liq spray - of carbon dioxide eliminates snow formation
FR2368665A1 (en) * 1976-10-25 1978-05-19 Carboxyque Francaise Accurately controlled liq. gas supply system - providing gas at constant pressure and feed rate for cooling oxygen nozzles feeding a steel-making furnace

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3109296A (en) * 1961-09-29 1963-11-05 Chemetron Corp Apparatus and method for refrigeration by carbon dioxide
US3214928A (en) * 1963-03-22 1965-11-02 Oberdorfer Karl Method and apparatus for freezing food products
US3661483A (en) * 1969-08-08 1972-05-09 Robert N Bose Apparatus for controlling the flow of liquid
US3708995A (en) * 1971-03-08 1973-01-09 D Berg Carbon dioxide food freezing method and apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB351839A (en) * 1929-09-23 1931-07-02 Hugo Mestern
GB807088A (en) * 1954-06-09 1959-01-07 Pyrene Co Ltd Improvements in valves for controlling the discharge of gas stored in the liquid state
FR2142309A5 (en) * 1971-06-18 1973-01-26 Mille Gaston Cryogenic liq spray - of carbon dioxide eliminates snow formation
FR2368665A1 (en) * 1976-10-25 1978-05-19 Carboxyque Francaise Accurately controlled liq. gas supply system - providing gas at constant pressure and feed rate for cooling oxygen nozzles feeding a steel-making furnace

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0744578A1 (en) * 1995-05-24 1996-11-27 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Apparatus for injecting pressurized liquid in a vessel
FR2734624A1 (en) * 1995-05-24 1996-11-29 Carboxyque Francaise DEVICE FOR INJECTING LIQUID UNDER PRESSURE INTO A CHAMBER
WO1999020934A1 (en) * 1997-10-23 1999-04-29 Thermo King Corporation System and method for transferring liquid carbon dioxide from a high pressure storage tank to a lower pressure transportable tank
FR2787862A1 (en) * 1998-12-29 2000-06-30 Carboxyque Francaise METHOD AND DEVICE FOR REGULATED INJECTION OF LIQUID CARBON DIOXIDE INTO A PRESSURIZED LIQUID
WO2000038825A1 (en) * 1998-12-29 2000-07-06 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method and device for regulated injection of liquid carbon dioxide in a pressurised liquid
US6533252B1 (en) 1998-12-29 2003-03-18 L'air Liquide Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for regulated injection of liquid carbon dioxide in a pressured liquid
FR2903482A1 (en) * 2006-07-10 2008-01-11 Air Liquide CRYOGENIC FLUID INJECTION SYSTEM FOR TREATING BULK PRODUCTS
WO2008007000A2 (en) * 2006-07-10 2008-01-17 L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Cryogenic fluid injection system for processing products in bulk and method of cooling implementing said system
WO2008007000A3 (en) * 2006-07-10 2008-03-13 Air Liquide Cryogenic fluid injection system for processing products in bulk and method of cooling implementing said system
US8621878B2 (en) 2006-07-10 2014-01-07 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Cryogenic fluid injection system for processing products in bulk and method of cooling implementing said system

Also Published As

Publication number Publication date
EP0376823B2 (en) 2001-04-11
CA2006789C (en) 1994-10-25
FR2641854B1 (en) 1994-01-14
DE68912755D1 (en) 1994-03-10
ES2048312T5 (en) 2001-05-16
AU4732889A (en) 1990-07-05
CA2006789A1 (en) 1990-06-28
ES2048312T3 (en) 1994-03-16
DE68912755T3 (en) 2001-08-02
AU629584B2 (en) 1992-10-08
FR2641854A1 (en) 1990-07-20
DE68912755T2 (en) 1994-05-11
ATE100921T1 (en) 1994-02-15
EP0376823B1 (en) 1994-01-26
US5040374A (en) 1991-08-20

Similar Documents

Publication Publication Date Title
EP0376823B1 (en) Process and device for the flow rate control of liquid CO2, and their use in a cooling tunnel
EP0819458B1 (en) Fuel filter for diesel engin and feeding device with such filter
EP1097663B1 (en) Device and method for continuous heating of liquids at a constant temperature
CA1304283C (en) Process and apparatus for supplying carbon dioxide under high pressure
WO1989000683A1 (en) Process and device for apportioning a primary volume of fluid into a given number of secondary volumes in predetermined proportions
FR2472012A1 (en) DEVICE FOR
FR2544708A1 (en) APPARATUS FOR FILLING LIQUID OR VERY VISCOUS PRODUCTS AND STERILIZER
EP1386668B1 (en) Water spraying device producing a hollow thin-walled jet for making artificial snow
FR2463271A1 (en) FUEL INJECTION PUMP FOR INTERNAL COMBUSTION ENGINES
FR2651765A1 (en) PROCESS FOR MAINTAINING A PREDETERMINED PRESSURE LIMIT IN STORAGE OF PRODUCT IN TWO PHASES LIQUID AND STEAM DURING FILLING THEREOF AND ASSOCIATED RECONDENSATION PLANT
CH517261A (en) Fluid flow regulator and use of this regulator
EP0744578B1 (en) Apparatus for injecting pressurized liquid in a vessel
EP0625630B1 (en) Autonomous energy supply device for a gas driven apparatus and its use in a freezing plant
FR2459679A1 (en) Mixer for charging liq. prod. in fixed proportion into flowing liq. - incorporating means of reducing pressure drop when suction of liq. prod. is dispensed with
EP3312133A1 (en) Drinking water dispensing apparatus capable of producing carbonated water
EP0635679A1 (en) Injection and control device for atmospheric gas burners of heating appliances, in particular the infrared type
EP1885208B1 (en) Installation for the heat treatment of a heat-sensitive liquid
FR2716955A1 (en) Low-pressure gas burner carburation regulator
CH668983A5 (en) PROCESS AND INSTALLATION FOR SULFITTING WINES IN TANKS.
FR2962197A1 (en) Device for producing carbon dioxide snow by expansion of liquid carbon dioxide at pressure lower than a pressure corresponding to triple point of carbon dioxide, comprises nozzle for ejection of carbon dioxide in end of discharge horn
EP0328505B1 (en) Device for cooling metal rod or wire
EP0924465B1 (en) Water activated hot water generator
FR2578000A1 (en) Liquid conveying installation, particularly for waste water
FR2470327A2 (en) Flow regulator for automatic water trough - has notched screwed plug to regulate flow
FR2582948A1 (en) DETENDER FILTER DEVICE AND AIR DISTRIBUTOR FOR PROTECTIVE SCAFFOLD

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19891228

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

17Q First examination report despatched

Effective date: 19920124

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19940126

Ref country code: GB

Effective date: 19940126

Ref country code: AT

Effective date: 19940126

REF Corresponds to:

Ref document number: 100921

Country of ref document: AT

Date of ref document: 19940215

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: ING. A. GIAMBROCONO & C. S.R.L.

REF Corresponds to:

Ref document number: 68912755

Country of ref document: DE

Date of ref document: 19940310

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2048312

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3010563

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19940126

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: GCT GASE- UND CRYO-TECHNIK GMBH

Effective date: 19941026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19941222

EAL Se: european patent in force in sweden

Ref document number: 89403619.3

NLR1 Nl: opposition has been filed with the epo

Opponent name: GCT GASE-UND CRYO-TECHNIK GMBH

REG Reference to a national code

Ref country code: GR

Ref legal event code: MM2A

Free format text: 3010563

PLBO Opposition rejected

Free format text: ORIGINAL CODE: EPIDOS REJO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

APAE Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOS REFNO

APCC Communication from the board of appeal sent

Free format text: ORIGINAL CODE: EPIDOS OBAPO

APCC Communication from the board of appeal sent

Free format text: ORIGINAL CODE: EPIDOS OBAPO

APCC Communication from the board of appeal sent

Free format text: ORIGINAL CODE: EPIDOS OBAPO

APCC Communication from the board of appeal sent

Free format text: ORIGINAL CODE: EPIDOS OBAPO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

PLAW Interlocutory decision in opposition

Free format text: ORIGINAL CODE: EPIDOS IDOP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20001211

Year of fee payment: 12

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20010411

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

REG Reference to a national code

Ref country code: CH

Ref legal event code: AEN

Free format text: MAINTIEN DU BREVET DONT L'ETENDUE A ETE MODIFIEE

REG Reference to a national code

Ref country code: ES

Ref legal event code: DC2A

Kind code of ref document: T5

Effective date: 20010420

NLR2 Nl: decision of opposition
NLR3 Nl: receipt of modified translations in the netherlands language after an opposition procedure
ITF It: translation for a ep patent filed

Owner name: ING. A. GIAMBROCONO & C. S.R.L.

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20011112

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20011116

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20011120

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20011121

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20011126

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20011219

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021223

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021231

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021231

BERE Be: lapsed

Owner name: *CARBOXYQUE FRANCAISE

Effective date: 20021231

Owner name: S.A. L'*AIR LIQUIDE POUR L'ETUDE ET L'EXPLOITATION

Effective date: 20021231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030701

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030701

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20030701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030901

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20021223

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051222