EP0374676B1 - Verfahren zur Herstellung einer zweiseitigen Hochdruckentladungslampe - Google Patents

Verfahren zur Herstellung einer zweiseitigen Hochdruckentladungslampe Download PDF

Info

Publication number
EP0374676B1
EP0374676B1 EP89122830A EP89122830A EP0374676B1 EP 0374676 B1 EP0374676 B1 EP 0374676B1 EP 89122830 A EP89122830 A EP 89122830A EP 89122830 A EP89122830 A EP 89122830A EP 0374676 B1 EP0374676 B1 EP 0374676B1
Authority
EP
European Patent Office
Prior art keywords
tube
discharge vessel
filling
pinch
electrode system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89122830A
Other languages
English (en)
French (fr)
Other versions
EP0374676A2 (de
EP0374676A3 (de
Inventor
Jürgen Dr. Heider
Dieter Lang
Hartmuth Bastian
Stefan Kotter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram GmbH
Original Assignee
Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH filed Critical Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Publication of EP0374676A2 publication Critical patent/EP0374676A2/de
Publication of EP0374676A3 publication Critical patent/EP0374676A3/de
Application granted granted Critical
Publication of EP0374676B1 publication Critical patent/EP0374676B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/24Manufacture or joining of vessels, leading-in conductors or bases
    • H01J9/245Manufacture or joining of vessels, leading-in conductors or bases specially adapted for gas discharge tubes or lamps
    • H01J9/247Manufacture or joining of vessels, leading-in conductors or bases specially adapted for gas discharge tubes or lamps specially adapted for gas-discharge lamps

Definitions

  • the invention relates to the manufacture of a lamp with the features specified in the main claim.
  • the invention relates in particular to the production of metal halide high-pressure discharge lamps with an electrical power consumption of at most 50 W, as have recently been increasingly proposed for the purpose of general lighting or for use in motor vehicle headlights.
  • Such lamps have hitherto been produced by first closing a quartz tube which is open on both sides, and then forming the olive-shaped shape at the location of the future discharge vessel by collecting the quartz glass. Then the tube end, which was initially closed, is opened again in further operations and a pump tube is attached to the center of the discharge vessel.
  • US-A-3 689 799 describes a method for introducing filling substances into compact high-pressure discharge lamps.
  • the substances are introduced into the semi-finished discharge vessel via the open tube provided for the pinch of the second electrode system.
  • the present invention is based on the object to shorten the start-up time of the metal halide lamp even further. External heating of the lamp should be avoided in view of the additional energy consumption and the measures for energy supply.
  • a simple manufacturing process for the lamps in question is to be created, in which there is no inhomogeneous material distribution on the discharge vessel in order to eliminate the disadvantages described above.
  • the pump tube no longer exists on the discharge vessel, there are also no different wall thicknesses or inhomogeneities of any other type, as a result of which the radiation emission of the lamp takes place much more uniformly than in the known lamps with a pump tube.
  • the xenon in the discharge vessel causes a high instantaneous light component in the immediate connection to the ignition, so that a sufficiently high luminous flux is available even before the metal halides evaporate.
  • the lamp is particularly suitable for use in optical systems, e.g. in motor vehicle headlights, in which extremely precise adjustment and arrangement of the light / dark boundary is important.
  • Figure 1a shows the tube 1 made of quartz glass cut to a length of about 150 mm.
  • the outside diameter of the tube is approx. 4.5 mm, the inside diameter d is approx. 2 mm.
  • the pipe 1, which is set in rotation, is first heated and, after the deformation temperature has been reached, both constrictions 4, 5 are simultaneously placed in the center and at a defined distance from one another by means of the forming roll 3 (FIG. 1b).
  • a nitrogen stream N 2 with a quantity of about 10 l / h is passed through the tube 1 from one side.
  • the future discharge vessel 6 (FIG. 1c) is precisely delimited in its length of approximately 7.5 mm.
  • the constriction 4 has a smaller clear diameter than the constriction 5. This results in a gas accumulation p of the nitrogen stream between the two constrictions in the heated area of the future discharge vessel 6 N2, so that this area is slightly inflated and assumes its olive shape with an outer diameter of approximately 5.5 mm.
  • the prefabricated electrode system (FIG. 2) is squeezed into that end of the tube 1 which has the constriction 4 with the smaller diameter.
  • the electrode system consists of an electrode 7 made of tungsten, a sealing film 8 made of molybdenum and a power supply 9 made of molybdenum.
  • the electrode 7 is provided with a ball 10 at its end arranged in the discharge vessel 6.
  • the power supply line 9 is bent in a zigzag shape in the yz plane, the angle ⁇ , by which the curved power supply line 9 deviates from the xz plane, being less than 45 °, preferably approximately 20 ° -30 °.
  • the height h that is the amount by which the kink or reversal point 11 of the curved power supply 9 deviates from the xz plane, is greater than half the inner diameter d of the tube 1. In practice, a ratio corresponding to h ⁇ 0 , 55 d proven.
  • the sealing film 8 is aligned in the xz plane, that is to say perpendicular to the yz plane of the curved power supply 9.
  • An electrode system shaped in this way is self-supporting within the tube 1 in that the kink or reversal points 11 of the power supply 9 are in contact with the inside wall of the tube . Once adjusted to its predetermined position, the electrode system maintains it until it is finally fixed.
  • each power supply 9 is centered on the axis of the Tube 1 by itself. This also automatically centering the electrode 7 in the discharge vessel 6 in the x coordinate of the sealing film 8. Any possible decentration perpendicular to the plane of the sealing film 8, that is to say in the y coordinate, for example by bending the sealing film 8, is compensated for during the squeezing process.
  • the first pinch 12 is then produced.
  • the tube 1 in the area of the sealing film 8 is brought to a temperature of above approximately 2200 ° C. suitable for the deformation.
  • a stream of argon is passed through the preformed tube 1.
  • the first pinch 12 is produced.
  • First the pinch is sealed, which is adjacent to the constriction 4 with the smaller diameter.
  • the production of the pinch itself is a process known to the person skilled in the lamp construction and is not shown separately in the figures.
  • the tube 1 provided with the first pinch 12 is now subjected to high-vacuum annealing at> 400 ° C. and ⁇ 2 ⁇ 10 ⁇ 5 mbar when it is introduced into the glove box for cleaning.
  • the glovebox 13 is filled with xenon.
  • the filling pressure does not deviate from the surrounding atmospheric pressure by more than a few 10 mbar.
  • the filling gas xenon of the Glovebox 13 corresponds to the future filling gas of the metal halide high-pressure discharge lamp.
  • the work steps within the glove box 13 are shown in FIG. 4.
  • FIG. 4a shows the lamp of FIG. 3 pinched on one side in the glovebox 13.
  • the filling substances consisting of a metal halide pill 14 and a mercury ball 15 and further introduced the second electrode system (FIG. 4b).
  • the filling substances fall through the still open constriction 5 with the larger diameter into the discharge vessel 6.
  • the electrode system is, as before during the preparation for the first squeeze 12, adjusted in a self-retaining manner at its predetermined position, so that the electrode 7 within of the discharge vessel 6 is arranged and the distance between the balls 10 of the two electrodes 7 is given its intended value.
  • the quartz tube 1 is then sealed at its open end inside the glovebox 13 by means of a plasma torch 16 or a laser (FIG. 4c), so that only one melting tip 17 (FIG. 4d) remains.
  • the glovebox 13 is filled with argon and the xenon for the desired final filling of the lamp is filled separately inside the glovebox 13. This is done by blowing the xenon through a flushing cannula through the still open end of the tube 1 into the discharge vessel 6. After the filling substances 14, 15 and the second electrode system 7 to 10 have been introduced, rinsing is carried out again with xenon. Instead of rinsing twice with xenon, a gas exchange can also be carried out after introducing the second electrode system 7-10 using a pump head arranged in the glovebox 13. The second, still open end of the tube is then closed with the plasma torch, as previously described.
  • the lamp vessel will produce a mixture of the argon atmosphere of the Glovebox 13 and the fill gas xenon.
  • the xenon content in the lamp vessel will be approx. 50 to 95%, depending on the length of time the tube stays between the gas exchange and the melting.
  • the xenon cold filling pressure resulting later in the discharge vessel 6 can be predetermined by the filling pressure and the composition of the filling gases.
  • the closed lamp vessel has a cold filling pressure of approx. 800 mbar.
  • the prefabricated lamp is now removed from the glovebox 13. Then, as already described for the first pinch 12, the area around the sealing film 8 of the second electrode system is heated to the pinch temperature of approximately 2200 ° C. and the second pinch 18 (FIG. 5) is applied by squeezing the second electrode system. During the heating and squeezing process, the area of the discharge vessel 6 is cooled to at least -112 ° C. by means of liquid nitrogen in order to freeze out the xenon in the discharge vessel 6 and to prevent the metal halide 14 and mercury 15 from evaporating. This low temperature has to be kept as long as until the bruising is done. The high temperature difference of approx. 2400 K over a length of only approx.
  • the xenon cold filling pressure resulting in the discharge vessel 6 is in the range 1 to 30 bar. It results when the xenon completely freezes out from the Xe partial pressure in the tightly melted tube 1 (FIG. 4d) and the ratio of the volumes of tube 1: discharge vessel 6. At a typical Xe partial pressure in tube 1 of 600 to 800 mbar, one Tube volume of 0.30 cm3 and a discharge vessel volume of 0.025 cm3 results in a xenon cold filling pressure in the discharge vessel 6 of 7 to 10 bar.
  • the filling of the mercury ball 15 can also be omitted.
  • the role of mercury in the discharge vessel is then taken over by the xenon.
  • the light color can be controlled with the metal halide filling (e.g. NaSc) and a longer service life can be achieved through the cyclic process.
  • the lamp is removed from the squeezing device and the tube ends 1 projecting beyond the squeezes 12, 18 are completely or partially removed.
  • the zigzag part of the Power supply lines 9 can be removed.
  • a finished metal halide high-pressure discharge lamp 19 is shown in FIG. 5. With the lamps and the filling according to the invention, the luminous efficiency is increased by more than 15%.
  • the start of the luminous flux of such a lamp is shown in FIG. 6.
  • the lamp 19 itself was operated on an electronic ballast that regulates the starting current.
  • the xenon cold filling pressure in the discharge vessel 6 is approximately 6 bar.
  • the starting current is approximately 3.3 A, which corresponds to approximately 8.5 times the nominal current of the lamp 19.
  • the 30% luminous flux ⁇ is reached almost immediately after commissioning due to the xenon filling, and the 90% luminous flux is reached at approx. 1 sec.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)
  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)

Description

  • Die Erfindung betrifft die Herstellung einer Lampe mit den im Hauptanspruch bezeichneten Merkmalen. Die Erfindung betrifft insbesondere die Herstellung von Metallhalogenidhochdruckentladungslampen mit einer elektrischen Leistungsaufnahme von maximal 50 W, wie sie in letzter Zeit vermehrt zum Zweck der Allgemeinbeleuchtung oder zum Einsatz in Kraftfahrzeugscheinwerfern vorgeschlagen wurden. Solche Lampen wurden bisher hergestellt, indem ein beidseitig offenes Quarzrohr zuerst einseitig verschlossen und anschließend an der Stelle des künftigen Entladungsgefäßes durch Versammeln des Quarzglases dessen olivenförmige Gestalt ausgebildet wird. Danach werden in weiteren Arbeitsgängen das anfangs verschlossene Rohrende wieder geöffnet sowie ein Pumprohr mittig an das Entladungsgefäß angesetzt. Nachdem in die offenen Rohrenden jeweils ein Elektrodensystem eingeführt und eingeschmolzen wurde, werden die Füllsubstanzen und das Füllgas durch das Pumprohr in das Entladungsgefäß eingebracht und letztlich das Pumprohr abgeschmolzen. Dieses aufwendige, arbeitsintensive Herstellverfahren hat den gravierenden Nachteil, daß an dem ohnehin sehr kleinen Entladungsgefäß - seine Länge beträgt nur ca. 7,5 mm, sein Durchmesser nur ca. 5,5 mm - durch das Ansetzen und Abschmelzen des Pumprohres Inhomogenitäten in der Materialverteilung entstehen, die zum einen die Cold-Spot-Temperatur und damit die Lichtfarbe der Lampe nachteilig beeinflussen und zum anderen die von der Lampe emittierte Strahlung in einem nicht reproduzierbaren Maß streuen, was sich bei dem vorgesehenen Einsatz dieser Lampen in optischen Systemen besonders nachteilig bemerkbar macht.
  • In der US-A-3 689 799 wird eine Methode zum Einbringen von Füllungssubstanzen in kompakte Hochdruckentladungslampen beschrieben. Die Substanzen werden hierbei über das für die Quetschung des zweiten Elektrodensystems vorgesehene offene Rohr in das halbfertige Entladungsgefäß eingebracht.
  • Des weiteren ist bei dieser Art Lampen die Anlaufzeit zwischen der Zündung und dem Erreichen des Endlichtstroms noch immer unbefriedigend. Sie beträgt bei einer konventionell betriebenen Lampe ca. 40 sec. In dem DE-GM 86 23 908 wurde deshalb vorgeschlagen, die Lampe im ausgeschalteten Zustand fremd zu beheizen, um so die Füllsubstanzen verdampft zu halten und auf diese Weise von einem höheren Temperatur- und damit Druckniveau ausgehend eine verkürzte Anlaufzeit von nur ca. 8 sec zu erreichen. Abgesehen von der für die Fremdheizung erforderlichen zusätzlichen elektrischen Energie und dem damit verbundenen Installationsaufwand ist aber auch eine derart verkürzte Anlaufzeit für viele Anwendungszwecke noch immer nicht befriedigend.
  • Der vorliegenden Erfindung liegt die Aufgabe zugrunde, die Anlaufzeit der Metallhalogenidlampe noch weiter zu verkürzen. Auf eine Fremdbeheizung der Lampe soll mit Rücksicht auf den zusätzlichen Energieverbrauch und die Maßnahmen für die Energieversorgung verzichtet werden. Außerdem soll ein einfaches Herstellverfahren für die in Frage kommenden Lampen geschaffen werden, bei dem keine inhomogene Materialverteilung am Entladungsgefäß auftritt, um die zuvor beschriebenen Nachteile auszuschalten.
  • Diese Aufgaben werden erfindungsgemäß durch die im Hauptanspruch aufgeführte Folge von Arbeitsschritten gelöst. Den Unteransprüchen sind weitere Details für die Herstellung der Metallhalogenid-Hochdruckentladungslampen entnehmbar. Da die Arbeitsschritte des Füllens und Verschließens des Entladungsgefäßes in der hochreinen Atmosphäre der Glovebox erfolgen, können Verunreinigungen durch Fremdgase, wie H₂, O₂ oder durch H₂O, auf ein Minimum reduziert werden. Durch das Einfrieren des im verschlossenen Entladungsgefäß enthaltenen Xenon auf mindestens -112 °C kann die zweite Quetschung außerhalb der Glovebox zügig hergestellt werden. Mit der beschriebenen Herstellungsweise wird eine erhebliche Verkürzung der Verfahrenszeit und eine Vereinfachung des gesamten Herstellverfahrens erreicht. Aufgrund des am Entladungsgefäß nicht mehr vorhandenen Pumprohres treten auch dort keine unterschiedlichen Wanddicken oder Inhomogenitäten anderer Art auf, wodurch die Strahlungsemission der Lampe sehr viel gleichmäßiger erfolgt als bei den bekannten Lampen mit Pumprohr. Das Xenon im Entladungsgefäß bewirkt einen hohen Sofortlichtanteil im unmittelbaren Anschluß an die Zündung, so daß auch schon vor dem Verdampfen der Metallhalogenide ein ausreichend hoher Lichtstrom zur Verfügung steht. Die Lampe ist für den Einsatz in optischen Systemen besonders geeignet, wie z.B. in Kraftfahrzeugscheinwerfern, bei denen es auf eine äußerst präzise Justierung und Anordnung der Hell-/Dunkelgrenze ankommt.
  • Die Erfindung wird nachstehend anhand von 6 Figuren näher erläutert. Es zeigen
  • Figuren 1a bis c
    die Herstellung eines vorgeformten Entladungsgefäßes
    Figur 2
    ein Elektrodensystem
    Figur 3
    das Entladungsgefäß mit vorhandener erster Quetschung
    Figuren 4a bis d
    die Bearbeitungsschritte in der Glovebox
    Figur 5
    eine fertige Metallhalogenidhochdruckentladungslampe
    Figur 6
    die Anlaufkurve des Lichtstroms φ für die erfindungsgemäße Lampe
  • Figur 1a zeigt das auf eine Länge von ca. 150 mm geschnittene Rohr 1 aus Quarzglas. Der Außendurchmesser des Rohres beträgt ca. 4,5 mm, der Innendurchmesser d ca. 2 mm.
  • Mit Hilfe der Flammen 2 wird zunächst das in Rotation versetzte Rohr 1 erwärmt und nach Erreichen der Verformungstemperatur werden mittels der Formrolle 3 gleichzeitig beide Einschnürungen 4, 5 mittig und in einem definierten Abstand zueinander angebracht (Fig. 1b). Während des Erwärmens und des Verformens wird von einer Seite ein Stickstoffstrom N₂ mit einer Menge von ca. 10 l/h durch das Rohr 1 geführt. Durch das Anbringen der Einschnürungen 4, 5 wird das zukünftige Entladungsgefäß 6 (Fig. 1c) in seiner Länge von ca. 7,5 mm genau abgegrenzt. Die Einschnürung 4 weist einen geringeren lichten Durchmesser auf als die Einschnürung 5. Hierdurch entsteht zwischen den beiden Einschnürungen im erwärmten Bereich des zukünftigen Entladungsgefäßes 6 ein Gasstau p des Stickstoffstromes N₂, so daß dieser Bereich etwas aufgeblasen wird und seine olivenförmige Gestalt mit einem Außendurchmesser von ca. 5,5 mm annimmt.
  • Im nächsten Arbeitsgang wird das vorgefertigte Elektrodensystem (Fig. 2) in dasjenige Ende des Rohres 1 eingequetscht, das die Einschnürung 4 mit dem geringeren Durchmesser aufweist. Das Elektrodensystem besteht aus einer Elektrode 7 aus Wolfram, einer Dichtungsfolie 8 aus Molybdän sowie aus einer Stromzuführung 9 aus Molybdän. Die Elektrode 7 ist an ihrem im Entladungsgefäß 6 angeordneten Ende mit einer Kugel 10 versehen. Die Stromzuführung 9 ist in der y-z-Ebene zickzackförmig gebogen, wobei der Winkel α , um den die gebogene Stromzuführung 9 von der x-z-Ebene abweicht, kleiner als 45°, vorzugsweise ca. 20° - 30° ist. Die Höhe h, das ist jener Betrag, um den der Knick- oder Umkehrpunkt 11 der gebogenen Stromzuführung 9 von der x-z-Ebene abweicht, ist größer als der halbe Innendurchmesser d des Rohres 1. In der Praxis hat sich ein Verhältnis entsprechend h≃ 0,55 d bewährt. Die Dichtungsfolie 8 ist in der x-z-Ebene ausgerichtet, also senkrecht zur y-z-Ebene der gebogenen Stromzuführung 9. Ein derart geformtes Elektrodensystem haltert sich innerhalb des Rohres 1 von selbst, indem die Knick- oder Umkehrpunkte 11 der Stromzuführung 9 klemmend an der Rohrinnenwand anliegen. Einmal an seiner vorbestimmten Position einjustiert, behält das Elektrodensystem diese bis zur endgültigen Fixierung bei. Zur sicheren Abstützung der Stromzuführung 9 an der Innenwand des Rohres 1 sind mindestens drei Knick- oder Umkehrpunkte 11 an jeder Stromzuführung 9 angebracht. Eine derart gestaltete Stromzuführung 9 zentriert sich in der Achse des Rohres 1 von selbst. Dadurch wird auch automatisch eine Zentrierung der Elektrode 7 im Entladungsgefäß 6 in der x-Koordinate der Dichtungsfolie 8 erreicht. Eine eventuell mögliche Dezentrierung senkrecht zur Ebene der Dichtungsfolie 8, also in der y-Koordinate, z.B. durch Verbiegen der Dichtungsfolie 8, wird beim Quetschvorgang ausgeglichen.
  • Wie aus der Figur 3 ersichtlich, wird anschließend die erste Quetschung 12 hergestellt. Hierfür wird das Rohr 1 im Bereich der Dichtungsfolie 8 auf eine für die Verformung geeignete Temperatur von oberhalb ca. 2200 °C gebracht. Gleichzeitig wird ein Argonstrom durch das vorgeformte Rohr 1 geleitet. Nachdem die Quetschtemperatur erreicht ist, wird die erste Quetschung 12 hergestellt. Es wird zuerst die Quetschung abgedichtet, die der Einschnürung 4 mit dem geringeren Durchmesser benachbart ist. Die Herstellung der Quetschung an sich ist ein dem Fachmann im Lampenbau bekannter Vorgang und in den Figuren nicht gesondert dargestellt.
  • Das mit der ersten Quetschung 12 versehene Rohr 1 wird nun beim Einschleusen in die Glovebox zur Reinigung einer Hochvakuumglühung bei >400 °C und <2 x 10⁻⁵ mbar unterzogen. Die Glovebox 13 ist mit Xenon gefüllt. Der Fülldruck weicht um nicht mehr als einige 10 mbar vom umgebenden Atmosphärendruck ab. Das Füllgas Xenon der Glovebox 13 entspricht dem künftigen Füllgas der Metallhalogenidhochdruckentladungslampe. Die Arbeitsschritte innerhalb der Glovebox 13 sind in der Figur 4 dargestellt.
  • Figur 4a zeigt die einseitig gequetschte Lampe der Figur 3 in der Glovebox 13. Als Nächstes werden in das wieder erkaltete Entladungsgefäß 6 zuerst die Füllsubstanzen, bestehend aus einer Metallhalogenid-Pille 14 und einer Quecksilber-Kugel 15 und weiterhin das zweite Elektrodensystem (Fig. 4b) eingebracht. Die Füllsubstanzen fallen durch die noch offene Einschnürung 5 mit dem größeren Durchmesser in das Entladungsgefäß 6. Das Elektrodensystem wird, wie schon zuvor bei der Vorbereitung auf die erste Quetschung 12, selbsthalternd an seine ihm vorbestimmte Stelle in Position einjustiert, so daß die Elektrode 7 innerhalb des Entladungsgefäßes 6 angeordnet ist und der Abstand der Kugeln 10 beider Elektroden 7 genau seinen vorgesehenen Wert erhält. Danach wird das Quarzrohr 1 an seinem offenen Ende innerhalb der Glovebox 13 mittels eines Plasmabrenners 16 oder eines Lasers dichtgeschmolzen (Fig. 4c), so daß nur noch eine Abschmelzspitze 17 (Fig. 4d) verbleibt.
  • In einer Alternative zu dem zuvor beschriebenen Verfahren ist die Glovebox 13 mit Argon gefüllt und das Xenon für die gewünschte endgültige Füllung der Lampe wird innerhalb der Glovebox 13 gesondert eingefüllt. Dies erfolgt, indem das Xenon durch eine Spülkanüle durch das noch offene Ende des Rohres 1 in das Entladungsgefäß 6 geblasen wird. Nach dem Einbringen der Füllsubstanzen 14, 15 und des zweiten Elektrodensystems 7 bis 10 wird nochmals mit Xenon gespült. Anstelle der zweimaligen Spülung mit Xenon kann auch nach dem Einbringen des zweiten Elektrodensystems 7 - 10 mit Hilfe eines in der Glovebox 13 angeordneten Pumpkopfes ein Gasaustausch vorgenommen werden. Anschließend wird das zweite, noch offene Ende des Rohres mit dem Plasmabrenner verschlossen, wie bereits zuvor beschrieben. Bei einem derart verschlossenen Lampengefäß wird sich eine Mischung von der Argon-Atmosphäre der Glovebox 13 und des Füllgases Xenon einstellen. Der Xenon-Anteil im Lampengefäß wird bei ca. 50 bis 95 %, liegen, je nach Verweildauer des Rohres zwischen dem Gasaustausch und dem Abschmelzen. Durch den Fülldruck und die Zusammensetzung der Füllgase kann der später im Entladungsgefäß 6 resultierende Xenon-Kaltfülldruck vorbestimmt werden. Das verschlossene Lampengefäß hat einen Kaltfülldruck von ca. 800 mbar.
  • Anstelle einer Glovebox-Atmosphäre mit Argon, wie in der Alternative beschrieben, ist auch eine Füllung der Glovebox 13 mit Stickstoff oder Helium denkbar, wobei das Xenon dann wieder mittels einer Spülkanüle oder eines Pumpkopfes, wie zuvor beschrieben, eingefüllt werden muß. Der Vorteil eines solchen Vorgehens liegt darin, daß für die Füllung der Glovebox 13 ein billigeres Gas verwendet wird und das teure Xenon selbst ausschließlich für die Füllung der Lampengefäße verwendet wird.
  • Die vorgefertigte Lampe wird jetzt wieder der Glovebox 13 entnommen. Danach wird, wie schon bei der ersten Quetschung 12 beschrieben, der Bereich um die Dichtungsfolie 8 des zweiten Elektrodensystems auf die Quetschtemperatur von ca. 2200 °C aufgeheizt und die zweite Quetschung 18 (Fig. 5) angebracht, indem das zweite Elektrodensystem eingequetscht wird. Während des Aufheiz- und Quetschvorganges wird der Bereich des Entladungsgefäßes 6 mittels flüssigem Stickstoff auf mindestens -112 °C gekühlt, um das Xenon im Entladungsgefäß 6 auszufrieren und ein Verdampfen des Metallhalogenids 14 und Quecksilbers 15 zu verhindern. Diese tiefe Temperatur muß solange gehalten werden, bis die Quetschung erfolgt ist. Die hohe Temperaturdifferenz von ca. 2400 K auf einer Länge von nur ca. 6 mm wird erreicht, indem die Flammen durch Abschirmbleche abgehalten werden, während gleichzeitig der untere Bereich des Entladungsgefäßes durch Anspritzen mit dem flüssigen Stickstoff gekühlt wird. Aufgrund der geringen aufzuheizenden Masse der Quetschung 18 wird der Quetschungsbereich bis zum Ausführen der Quetschung 18 nur während ca. 5 bis 6 sec aufgeheizt. Die Quetschung 18 selbst kann anschließend mit Blasluft abgekühlt werden. Der im Entladungsgefäß 6 resultierende Xenon-Kaltfülldruck liegt im Bereich 1 bis 30 bar. Er ergibt sich bei vollständigem Ausfrieren des Xenon aus dem Xe-Partialdruck im dichtgeschmolzenen Rohr 1 (Fig. 4d) und dem Verhältnis der Volumina vom Rohr 1 : Entladungsgefäß 6. Bei einem typischen Xe-Partialdruck im Rohr 1 von 600 bis 800 mbar, einem Rohrvolumen von 0,30 cm³ und einem Entladungsgefäßvolumen von 0,025 cm³ resultiert ein Xenon-Kaltfülldruck im Entladungsgefäß 6 von 7 bis 10 bar.
  • Des weiteren kann auch das Füllen der Quecksilber-Kugel 15 weggelassen werden. Die Rolle des Quecksilbers im Entladungsgefäß wird dann durch das Xenon übernommen. Gegenüber den herkömmlichen Xenon-Hochdrucklampen kann mit der Metallhalogenidfüllung (z.B. NaSc) die Lichtfarbe gesteuert und durch den Kreisprozeß eine höhere Lebensdauer erreicht werden.
  • Abschließend wird die Lampe der Quetschvorrichtung entnommen und es werden die über die Quetschungen 12, 18 hinausstehenden Rohrenden 1 ganz oder teilweise entfernt. Auch der zickzackförmig ausgeführte Teil der Stromzuführungen 9 kann entfernt werden. Eine fertige Metallhalogenidhochdruckentladungslampe 19 ist in Figur 5 dargestellt. Mit den Lampen und der erfindungsgemäßen Füllung wird eine Erhöhung der Lichtausbeute um mehr als 15 % erreicht.
  • Der Anlauf des Lichtstroms einer derartigen Lampe ist in der Figur 6 dargestellt. Die Lampe 19 selbst wurde an einem elektronischen, den Anlaufstrom regelnden Vorschaltgerät betrieben. Der Xenon-Kaltfülldruck im Entladungsgefäß 6 beträgt ca. 6 bar. Der Anlaufstrom liegt bei ca. 3,3 A, was etwa dem 8,5fachen Nennstrom der Lampe 19 entspricht. Wie hier deutlich zu erkennen ist, wird der 30 %-Lichtstrom φ aufgrund der Xenon-Füllung quasi sofort nach der Inbetriebnahme und der 90 %-Lichtstrom schon bei ca. 1 sec erreicht.

Claims (11)

  1. Verfahren zur Herstellung einer zweiseitigen Hochdruckentladungslampe (19) mit einem Entladungsgefäß (6) und zwei an gegenüberliegenden Seiten des Entladungsgefäßes angeordneten Einschmelzungen oder Quetschungen (12, 18), in die jeweils ein Elektrodensystem gasdicht eingeschmolzen ist, das aus einer im Entladungsgefäß (6) angeordneten Elektrode (7), einer von der Einschmelzung oder Quetschung (12, 18) eingebetteten Dichtungsfolie (8) und einer aus der Einschmelzung oder Quetschung (12, 18) in Lampenlängsachse austretenden Stromzuführung (9) besteht, und das Entladungsgefäß (6) eine den Betrieb aufrechterhaltende Füllung enthält, wobei das Verfahren folgende Arbeitsgänge beinhaltet:
    a) Erwärmen und Einrollen eines durchgehend zylindrischen Rohres (1) aus Quarz auf eine vorbestimmte Länge zur Abgrenzung des künftigen Entladungsgefäßes (6);
    b) Einführen und Ausrichten eines ersten, vorgefertigten Elektrodensystems (7-10) in ein Ende des Rohres (1);
    c) Erwärmen des Rohres (1) im Bereich der Dichtungsfolie (8) des ersten Elektrodensystems und Herstellen einer ersten Einschmelzung in Form einer Quetschung (12);
    d) Einbringen der Füllsubstanzen (14, 15) durch das zweite, noch offene Ende des Rohres (1);
    e) Fluten des Entladungsgefäßes (6) mit einem Edelgas durch das zweite, noch offene Ende des Rohres (1);
    f) Einführen und Ausrichten des zweiten, vorgefertigten Elektrodensystems (7-10) durch das zweite, noch offene Ende des Rohres (1);
    g) Verschmelzen des noch offenen Rohres (1) an seinem dem Entladungsgefäß (6) abgewandten Ende;
    h) Erwärmen des Rohres (1) im Bereich der Dichtungsfolie (8) des zweiten Elektrodensystems (7-10) und Herstellen der zweiten Einschmelzung in Form einer Quetschung (18),
    dadurch gekennzeichnet, daß die Arbeitsgänge d) bis g) in einer Glovebox (13) mit einer Inertgasfüllung erfolgen und zur Durchführung des Arbeitsganges h) das Entladungsgefäß (6) teilweise auf mindestens - 112 °C gekühlt wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß während der Arbeitsgänge a) und c) ein Inertgasstrom durch das offene Rohr (1) geführt wird.
  3. Verfahren nach Anspruch 1 und 2, dadurch gekennzeichnet, daß nach dem Arbeitsgang c) das Entladungsgefäß (6) im Hochvakuum geglüht wird.
  4. Verfahren nach Anspruch 1 bis 3, dadurch gekennzeichnet, daß die Glovebox (13) ein mit dem Füllgas des Entladungsgefäßes (6) übereinstimmendes Inertgas enthält.
  5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß das Edelgas Xenon ist.
  6. Verfahren nach Anspruch 1 bis 3, dadurch gekennzeichnet, daß die Glovebox (13) ein von dem Füllgas des Entladungsgefäßes (6) abweichendes Inertgas enthält.
  7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß vor den Arbeitsgängen d) und g) das zukünftige Entladungsgefäß (6) mit dem endgültigen Füllgas geflutet wird.
  8. Verfahren nach Anspruch 1 bis 7, dadurch gekennzeichnet, daß zur Durchführung des Arbeitsganges g) ein Plasmabrenner (16) oder ein Laser verwendet wird.
  9. Verfahren nach Anspruch 1 bis 8, dadurch gekennzeichnet, daß zur Durchführung der Arbeitsgänge b) und f) die Stromzuführung (9) eine sich innerhalb des Rohres (1) selbsthalternde Gestalt aufweist.
  10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß die Stromzuführung (9) mit mindestens drei Auflagepunkten (11) an der Innenwand des Rohres (1) abgestützt ist.
  11. Verfahren nach Anspruch 1 bis 10, dadurch gekennzeichnet, daß im Anschluß an den Arbeitsgang h) das jeweilige, über die Einschmelzung oder Quetschung (12, 18) hinausstehende Rohr (1), in dem auch der die Auflagepunkte (11) aufweisende Teil der Stromzuführung (9) angeordnet ist, ganz oder teilweise abgetrennt wird.
EP89122830A 1988-12-19 1989-12-11 Verfahren zur Herstellung einer zweiseitigen Hochdruckentladungslampe Expired - Lifetime EP0374676B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3842770 1988-12-19
DE3842770A DE3842770A1 (de) 1988-12-19 1988-12-19 Verfahren zur herstellung einer zweiseitigen hochdruckentladungslampe

Publications (3)

Publication Number Publication Date
EP0374676A2 EP0374676A2 (de) 1990-06-27
EP0374676A3 EP0374676A3 (de) 1991-05-08
EP0374676B1 true EP0374676B1 (de) 1995-03-29

Family

ID=6369558

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89122830A Expired - Lifetime EP0374676B1 (de) 1988-12-19 1989-12-11 Verfahren zur Herstellung einer zweiseitigen Hochdruckentladungslampe

Country Status (5)

Country Link
EP (1) EP0374676B1 (de)
JP (1) JP2723638B2 (de)
DD (1) DD290503A5 (de)
DE (2) DE3842770A1 (de)
HU (1) HU203427B (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3842769A1 (de) 1988-12-19 1990-06-21 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Verfahren zur herstellung einer zweiseitigen hochdruckentladungslampe
JPH05174785A (ja) * 1991-12-25 1993-07-13 Koito Mfg Co Ltd アークチューブおよびその製造方法
DE10225612A1 (de) * 2002-06-07 2003-12-18 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Herstellungsverfahren für Entladungslampe
JP2008507091A (ja) * 2004-07-13 2008-03-06 アドバンスド ライティング テクノロジイズ,インコーポレイティド 高輝度放電ランプ、発光管およびその製造方法
DE102004044366A1 (de) 2004-09-10 2006-03-16 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Hockdruckentladungslampe

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3305289A (en) * 1963-05-09 1967-02-21 Gen Electric Electric lamp manufacture
US3689799A (en) * 1970-09-14 1972-09-05 Gen Electric Method of dosing lamps
DE2127526A1 (de) * 1971-06-03 1972-12-14 Licentia Gmbh Verfahren zur Durchfuhrung des Verfahrens zum Erzeugen eines Hochvakuums und Vornch
JPS51128179A (en) * 1975-04-30 1976-11-08 Iwasaki Electric Co Ltd Discharge lamp manufacturing method
JPS6057654B2 (ja) * 1980-12-26 1985-12-16 株式会社東芝 管球の封止加工方法
SE457033B (sv) * 1985-05-23 1988-11-21 Lumalampan Ab Kompaktlysroer
ZA859137B (de) * 1985-11-28 1986-06-16
HU207175B (en) * 1986-02-12 1993-03-01 Tungsram Reszvenytarsasag Device for manufacturing discharge tube of a sodium vapour discharge lamp

Also Published As

Publication number Publication date
HU203427B (en) 1991-07-29
JPH02220327A (ja) 1990-09-03
EP0374676A2 (de) 1990-06-27
DE3842770A1 (de) 1990-06-21
EP0374676A3 (de) 1991-05-08
DD290503A5 (de) 1991-05-29
HU896664D0 (en) 1990-02-28
HUT52892A (en) 1990-08-28
JP2723638B2 (ja) 1998-03-09
DE58909143D1 (de) 1995-05-04

Similar Documents

Publication Publication Date Title
EP0602530B1 (de) Verfahren zur Herstellung einer vakuumdichten Abdichtung für ein keramisches Entladungsgefäss und Entladungslampe
DE19613502C2 (de) Langlebiger Excimerstrahler und Verfahren zu seiner Herstellung
DE19710204A1 (de) Bogenentladungsröhre, die mit einem Paar von Molybdänfolien versehen ist, und zugehöriges Herstellungsverfahren
DE2212536A1 (de) Fluoreszenzlampe und Verfahren zu ihrer Herstellung
EP1492146A2 (de) Verfahren zur Herstellung einer elektrischen Lampe mit Aussenkolben
EP0374676B1 (de) Verfahren zur Herstellung einer zweiseitigen Hochdruckentladungslampe
DE102009039899B4 (de) Entladungslampe mit Wasserstoff-Getter, der an der Innenwand eines Gefäßes durch Schmelzen befestigt ist
DE10031182A1 (de) Bogenentladungsröhre mit Restdruckbelastungsschicht für eine Entladungslampeneinheit und Verfahren zur Herstellung derselben
EP0374679B1 (de) Verfahren zur Herstellung einer zweiseitigen Hochdruckentladungslampe
EP0374677B1 (de) Verfahren zur Herstellung einer zweiseitigen Hochdruckentladungslampe
DE19623499A1 (de) Verfahren zur Herstellung einer Halogenglühlampe
DE10128273A1 (de) Entladungslampe und Verfahren zu deren Herstellung
DE10030807B4 (de) Verfahren zur Herstellung einer Bogenentladungsröhre für eine Entladungslampeneinheit
EP0591777A2 (de) Verfahren zur Herstellung einer einseitig gequetschten Hochdruckentladungslampe kleiner Leistung und Hochdruckentladungslampen
DE4031116A1 (de) Hochdruckentladungslampe und verfahren zur herstellung der lampe
CH621889A5 (de)
EP0219860B1 (de) Verfahren zur Herstellung einer einseitig gequetschten Metallhalogenidhochdruckentladungslampe und eine nach diesem Verfahren hergestellte Lampe
DE2821162A1 (de) Elektrische lampe
EP0369370B1 (de) Verfahren zur Herstellung eines Lampengefässes
EP0295592A2 (de) Elektrische Lampe
DE2515607A1 (de) Ultraviolett-strahlungsquelle
WO2006122634A2 (de) Lampe und verfahren zur herstellung derselben
DE2209868B2 (de) Verfahren zur Herstellung einer elektrischen Metalldampfentladungslampe
DE102005035779A1 (de) Elektrische Lampe mit Aussenkolben
DE3321479A1 (de) Hochdruckentladungslampe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT NL SE

17P Request for examination filed

Effective date: 19901220

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT NL SE

17Q First examination report despatched

Effective date: 19930630

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL SE

REF Corresponds to:

Ref document number: 58909143

Country of ref document: DE

Date of ref document: 19950504

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950612

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20021205

Year of fee payment: 14

Ref country code: GB

Payment date: 20021205

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20021217

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20021220

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030217

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040701

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040701

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20031211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040831

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20040701

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051211