EP0372113B1 - Verfahren zur Ermittlung der einer Brennkraftmaschine zuzuführenden Kraftstoffmenge - Google Patents

Verfahren zur Ermittlung der einer Brennkraftmaschine zuzuführenden Kraftstoffmenge Download PDF

Info

Publication number
EP0372113B1
EP0372113B1 EP88120463A EP88120463A EP0372113B1 EP 0372113 B1 EP0372113 B1 EP 0372113B1 EP 88120463 A EP88120463 A EP 88120463A EP 88120463 A EP88120463 A EP 88120463A EP 0372113 B1 EP0372113 B1 EP 0372113B1
Authority
EP
European Patent Office
Prior art keywords
supporting
pressure
value
intake
ambient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88120463A
Other languages
English (en)
French (fr)
Other versions
EP0372113A1 (de
Inventor
Ludwig Binnewies
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP88120463A priority Critical patent/EP0372113B1/de
Priority to DE8888120463T priority patent/DE3869617D1/de
Priority to US07/446,929 priority patent/US5060160A/en
Publication of EP0372113A1 publication Critical patent/EP0372113A1/de
Application granted granted Critical
Publication of EP0372113B1 publication Critical patent/EP0372113B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2409Addressing techniques specially adapted therefor
    • F02D41/2416Interpolation techniques
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/045Detection of accelerating or decelerating state
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/10Introducing corrections for particular operating conditions for acceleration
    • F02D41/107Introducing corrections for particular operating conditions for acceleration and deceleration

Definitions

  • the invention relates to a method for determining the amount of fuel to be supplied to an internal combustion engine during dynamic transitional operation, according to the preamble of claim 1.
  • the object of the invention is to further improve the transition behavior by correcting the falsifying influence of other factors on the measured intake pressure.
  • the invention is based on the consideration that the influences of various ambient pressures and temperatures must first be compensated for an accurate correction of the measured intake pressure. If one assumes a certain throttle valve angle and a certain speed in stationary operation, different intake pressures result for different ambient pressures and temperatures.
  • the solution according to the invention therefore uses support maps in which, depending on the throttle valve angle and the speed a certain ambient pressure and a certain ambient temperature, the values for the suction pressure are stored. At least four such characteristic maps are used. Two of them apply to the same first ambient pressure, but for two different ambient temperatures. The other two apply to the same second ambient pressure and the two different ambient temperatures.
  • a support part ratio is calculated that relates the intake air temperature value to the values of the two ambient temperatures for which the two support maps apply. With this support part ratio, a support high value is then determined from the two support values for the pressure. In relation to the two support values, this high support value behaves like the intake air temperature value in relation to the two ambient temperatures.
  • the support high value therefore represents a temperature-compensated value for the intake pressure valid for the determined first ambient pressure.
  • additional support maps can also be used for further ambient pressures. Then the respective two base values for the calculation of the support high value or support low value are preferably taken from those support characteristic maps between whose ambient pressures the measured value of the suction pressure lies and which comes closest to it.
  • the value of the intake pressure measured in the stationary operation of the internal combustion engine is now somewhere between the high support value and the low support value.
  • a partial ratio is calculated for this position, which relates the size of this measured intake pressure to the high support value and the low support value.
  • the values for the degree of opening of the throttle valve and / or the speed change accordingly.
  • a new support high value and support low value are calculated from the four support maps. Since the measured values for the intake pressure are too imprecise in the present dynamic operation of the internal combustion engine, they are corrected with a compensated intake pressure valid for the new operating state, which is calculated from the new values for the support high and low support value and the partial ratio.
  • This compensated suction pressure in dynamic operation based on the new support high value and support low value, behaves like the measured suction pressure in stationary operation to the support high value and support low value valid there.
  • the measured intake pressure is now corrected to a dynamic intake pressure with the aid of the compensated intake pressure by adding the difference between the compensated intake pressure and the measured intake pressure divided by a time constant.
  • This time constant takes into account the time delay between the measured intake pressure and the dynamic intake pressure actually present in the intake manifold.
  • a corrected pressure value determined in this way is then the value which, together with the rotational speed, determines the quantity of fuel to be supplied in each case.
  • FIG. 1 shows a block diagram of a device which is used to supply the internal combustion engine with the required amount of fuel.
  • 1 denotes a microcomputer to which the values for a speed n, an opening degree ⁇ of the throttle valve, an intake air temperature TAL and a measured intake pressure pm are supplied as input signals.
  • the microcomputer 1 uses this to calculate the required fuel quantity for each work cycle of the internal combustion engine using various characteristic maps. It then issues a corresponding command to an injection system 2, which comprises all the components necessary for the process, such as a metering device, injection valves, etc.
  • the support maps each contain pressure values as a function of the opening degree ⁇ of the throttle valve and the speed n of the internal combustion engine. They have been determined experimentally and apply to various environmental conditions.
  • the two support maps shown on the right apply to a high ambient pressure PUH of 970 mbar, one for a high ambient temperature TUH of + 50 ° C and the other for a low ambient temperature TUL of -20 ° C. Accordingly, the two support maps shown on the left apply to one low ambient pressure PUL of 1040 mbar, one again for the high ambient temperature TUH and the other for the low ambient temperature TUL.
  • the support maps are stored in the microcomputer 1 as memory areas, the values for ⁇ and n each representing the addresses for the memory cells with the associated pressure value.
  • a steady-state operating state of the internal combustion engine is now assumed with an opening degree ⁇ 0 of the throttle valve and a speed n0. With these values, a support value psa to psd for the pressure is read from each of the support maps. In order to illustrate the following calculation method, these four basic values are transferred to a straight line in FIG. 2, the values increasing from left to right.
  • a support part ratio ⁇ s which characterizes the size of the intake air temperature value TAL in relation to the high and low ambient temperature TUH and TUL, is determined according to the equation
  • the calculated quantities for this support high value psh and support low value psL are also entered in FIG. 2 on the pressure number line.
  • the measured intake pressure value pm is also shown.
  • a partial ratio ⁇ for this measured intake pressure pm with respect to the support high value psH and support low value psL then results in
  • This compensated intake pressure pk is now used to correct the values of the measured intake pressure pm during dynamic transitional operation.
  • a dynamic intake pressure pdyn results from the relationship ⁇ is an experimentally determined time constant that takes into account the dead times of the air masses in the intake tract. It therefore takes into account the time delay between the measured intake pressure pm and the dynamic intake pressure pdyn actually present in the intake manifold.
  • This dynamic suction pressure pdyn must finally be corrected by a computer factor that takes into account the computing times of the microcomputer 1.
  • This corrected intake pressure value pkorr is then the value which, together with the speed value n, determines the fuel quantity to be injected with each work cycle.
  • the method described above is to be applied analogously for all dynamic transition processes, regardless of whether the internal combustion engine e.g. is accelerated or decelerated.
  • the pressure increase gradient corresponds to a pressure reduction gradient.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Ermittlung der einer Brennkraftmaschine zuzuführenden Kraftstoffmenge während eines dynamischen Übergangsbetriebs, gemäß Oberbegriff von Anspruch 1.
  • Ein solches Verfahren ist in der US 4 424 568 beschrieben. Dabei wird während dynamischer Übergangsvorgänge, wie Beschleunigung oder Verzögerung, der gemessene Wert des Ansaugdrucks um einen Rechnerfaktor korrigiert. Dieser Rechnerfaktor berücksichtigt, daß während der für die Berechnung der zuzuführenden Kraftstoffmenge benötigten Zeit sich der Ansaugdruck gegenüber dem gemessenen Wert verändert hat. Die so ermittelten Kraftstoffmengen für den Übergangsbetrieb der Brennkraftmaschine bringen ein verbessertes Übergangsverhalten.
  • Die Aufgabe der Erfindung liegt darin, das Übergangsverhalten weiter zu verbessern, indem der verfälschende Einfluß von weiteren Faktoren auf den gemessenen Ansaugdruck korrigiert wird.
  • Die erfindungsgemäße Lösung ist im Anspruch 1 gekennzeichnet. Vorteilhafte Weiterbildungen der Erfindung finden sich in den Unteransprüchen.
  • Die Erfindung geht von der Überlegung aus, daß für eine genaue Korrektur des gemessenen Ansaugdrucks zuerst die Einflüsse verschiedener Umgebungsdrücke und Temperaturen ausgeglichen werden müssen. Geht man im stationären Betrieb von einem bestimmten Drosselklappenwinkel und einer bestimmten Drehzahl aus, so ergeben sich für verschiedene Umgebungsdrücke und Temperaturen jeweils unterschiedliche Ansaugdrücke.
  • Die erfindungsgemäße Lösung verwendet deshalb Stützkennfelder, in denen abhängig vom Drosselklappenwinkel und der Drehzahl für jeweils einen bestimmten Umgebungsdruck und eine bestimmte Umgebungstemperatur die Werte für den Ansaugdruck abgelegt sind. Es werden mindestens vier solcher Stützkennfelder verwendet. Zwei davon gelten für einen gleichen ersten Umgebungsdruck, aber für zwei verschiedene Umgebungstemperaturen. Die anderen beiden gelten für einen gleichen zweiten Umgebungsdruck und die beiden verschiedenen Umgebungstemperaturen.
  • Diese Stützkennfelder sind experimentell ermittelt und in der Rechnereinheit, die die Druckkorrektor ausführt, abgelegt.
  • Aus den beiden Kennfeldern für den gleichen ersten Umgebungsdruck werden nun gemäß den aktuell, bei jedem Arbeitstakt der Brennkraftmaschine, ermittelten Werten für den Öffnungsgrad der Drosselklappe und die Drehzahl zwei Stützwerte für den Druck ausgelesen. Diese beiden Stützwerte gelten jeweils für diejenige Umgebungstemperatur, für die das jeweilige Stützkennfeld ermittelt wurde. Um nun daraus einen Druckwert für die gerade herrschende Umgebungstemperatur zu gewinnen, wird eine lineare Näherung durchgeführt. Dabei wird angenommen, daß die herrschende Umgebungstemperatur einer Ansauglufttemperatur entspricht, die über einen Temperaturgeber erfaßt wird.
  • Es wird ein Stützteilverhältnis berechnet, das den Ansauglufttemperaturwert in Beziehung setzt zu den Werten der beiden Umgebungstemperaturen, für die die beiden Stützkennfelder gelten. Mit diesem Stützteilverhältnis wird dann aus den beiden Stützwerten für den Druck ein Stützhochwert ermittelt. Dieser Stützhochwert verhält sich also bezogen auf die beiden Stützwerte wie der Ansauglufttemperaturwert bezogen auf die beiden Umgebungstemperaturen.
  • Der Stützhochwert stellt also einen temperaturkompensierten Wert für den Ansaugdruck gültig für den bestimmten ersten Umgebungsdruck dar.
  • Das gleiche Verfahren wird mit den anderen beiden Kennfeldern, die für den gleichen zweiten Umgebungsdruck und die beiden Umgebungstemperaturen gültig sind, durchgeführt. Daraus ergibt sich dann entsprechend ein Stütztiefwert, der einen temperaturkompensierten Wert für den Ansaugdruck gültig für den zweiten Umgebungsdruck darstellt.
  • Statt der jeweils zwei verwendeten Stützkennfelder für die beiden Umgebungsdrücke können auch mehr benutzt werden. Bei der Temperaturkompensation wird aus den jeweiligen beiden Stützwerten ein Stützhochwert bzw. Stütztiefwert berechnet, wobei lineare Verhältnisse angenommen sind. Dies ist gezwungenermaßen eine Näherung, die durch den Einsatz weiterer Stützkennfelder und damit einer abschnittsweisen Linearisierung verbessert werden kann. Vorteilhafterweise wird dann das Stützteilverhältnis bezogen auf diejenigen beiden Stützkennfelder berechnet, zwischen deren Umgebungstemperaturen die Ansauglufttemperatur liegt und die der Ansauglufttemperatur am nächsten kommen.
  • In ähnlicher Weise können auch weitere Stützkennfelder für weitere Umgebungsdrücke verwendet werden. Dann werden bevorzugt die jeweiligen beiden Stützwerte für die Berechnung des Stützhochwerts bzw. Stütztiefwerts aus denjenigen Stützkennfeldern entnommen, zwischen deren Umgebungsdrücken der gemessene Wert des Ansaugdrucks liegt und die ihm am nächsten kommen.
  • Der im stationären Betrieb der Brennkraftmaschine gemessene Wert des Ansaugdrucks liegt nun irgendwo zwischen dem Stützhochwert und dem Stütztiefwert. Für diese Lage wird ein Teilverhältnis berechnet, das die Größe dieses gemessenen Ansaugdrucks in Beziehung setzt zu dem Stützhochwert und dem Stütztiefwert.
  • Wird die Brennkraftmaschine nun aus dem stationären Betrieb heraus beschleunigt oder verzögert, so ändern sich dementsprechend die Werte für den Öffnungsgrad der Drosselklappe und/oder die Drehzahl. Bei jedem Arbeitstakt wird dann mit diesen neuen Werten aus den vier Stützkennfeldern wieder ein neuer Stützhochwert und Stütztiefwert berechnet. Da im jetzt vorliegenden dynamischen Betrieb der Brennkraftmaschine die gemessenen Werte für den Ansaugdruck zu ungenau sind, werden sie mit einem für den neuen Betriebszustand gültigen kompensierten Ansaugdruck, der aus den neuen Werten für den Stützhochwert und Stütztiefwert und dem Teilverhältnis berechnet wird, korrigiert. Dieser kompensierte Ansaugdruck im dynamischen Betrieb verhält sich bezogen auf den neuen Stützhochwert und Stütztiefwert wie der gemessene Ansaugdruck im stationären Betrieb zu dem dort gültigen Stützhochwert und Stütztiefwert.
  • Man schließt also vom statischen auf den dynamischen Betrieb, indem angenommen wird, daß dieses Teilverhältnis für den jeweils gültigen Ansaugdruck im dynamischen Betrieb gegenüber dem stationären Betrieb gleich bleibt.
  • Der gemessene Ansaugdruck wird nun mit Hilfe des kompensierten Ansaugdrucks zu einem dynamischen Ansaugdruck korrigiert, indem ihm die Differenz aus dem kompensierten Ansaugdruck und dem gemessenen Ansaugdruck dividiert durch eine Zeitkonstante hinzuaddiert wird. Diese Zeitkostante berücksichtigt den Zeitverzug zwischen dem gemessenen Ansaugdruck und dem in Saugrohr wirklich vorhandenen dynamischen Ansaugdruck.
  • Zu dem dynamischen Ansaugdruckwert wird schließlich noch ein Rechnerfaktor addiert. Der Rechnerfaktor berücksichtigt die Rechenzeit zur Durchführung der Korrekturrechnung. Ein so ermittelter korrigierter Druckwert ist dann der Wert, der zusammen mit der Drehzahl die jeweils zuzuführende Kraftstoffmenge bestimmt.
  • Das Verfahren wird anhand der Figuren näher erläutert. Dabei zeigen:
  • Figur 1
    ein grob vereinfachtes Blockschaltbild einer Einrichtung zur Durchführung des Verfahrens,
    Figur 2
    vier Stützkennfelder, von denen die Korrekturrechnung ausgeht und
    Figur 3
    ein Druckzeitdiagramm zur Erläuterung der Zeitverzögerung der Druckwerte während eines dynamischen Betriebs.
  • In Figur 1 ist ein Blockschaltbild einer Einrichtung dargestellt, die dazu dient, einer Brennkraftmaschine die jeweils notwendige Kraftstoffmenge zuzuführen. Mit 1 ist ein Mikrorechner bezeichnet, dem als Eingangssignale die Werte für eine Drehzahl n, einen Öffnungsgrad α der Drosselklappe, eine Ansauglufttemperatur TAL und einen gemessenen Ansaugdruck pm, zugeführt sind. Der Mikrorechner 1 berechnet daraus bei jedem Arbeitstakt der Brennkraftmaschine unter Verwendung von verschiedenen Kennfeldern die nötige Kraftstoffmenge. Er gibt dann einen entsprechenden Befehl an ein Einspritzsystem 2, das alle für den Vorgang notwendigen Komponenten, wie eine Zumeßeinrichtung, Einspritzventile etc, umfaßt.
  • In Figur 2 sind vier Stützkennfelder angedeutet, die in dem Mikrorechner 1 abgelegt sind. Diese Stützkennfelder bilden die Basis für die Berechnung eines korrigierten Ansaugdruckwerts pkorr während eines dynamischen Übergangsbetriebs ausgehend von einem gemessenen Ansaugdruckwert pm während einem stationären Betrieb der Brennkraftmaschine.
  • Die Stützkennfelder enthalten jeweils Druckwerte in Abhängigkeit von dem Öffnungsgrad α der Drosselklappe und der Drehzahl n der Brennkraftmaschine. Sie sind experimentell ermittelt und gelten für verschiedene Umgebungsbedingungen. Die beiden rechts dargestellten Stützkennfelder gelten für einen hohen Umgebungsdruck PUH von 970 mbar, das eine für eine hohe Umgebungstemperatur TUH von +50° C und das andere für eine niedrige Umgebungstemperatur TUL von -20° C. Entsprechend gelten die beiden links dargestellten Stützkennfelder für einen niedrigen Umgebungsdruck PUL von 1040 mbar, das eine wieder für die hohe Umgebungstemperatur TUH und das andere für die niedrige Umgebungstemperatur TUL.
  • Die Stützkennfelder sind in dem Mikrorechner 1 als Speicherbereiche abgelegt, wobei die Werte für α und n jeweils die Adressen für die Speicherzellen mit dem zugehörigen Druckwert darstellen.
  • Es sei nun ein stationärer Betriebszustand der Brennkraftmaschine vorausgesetzt mit einem Öffnungsgrad α 0 der Drosselklappe und einer Drehzahl n0. Mit diesen Werten wird aus jedem der Stützkennfelder ein Stützwert psa bis psd für den Druck ausgelesen. Zur Veranschaulichung des folgenden Rechenverfahrens sind in der Figur 2 diese vier Stützwerte auf eine Druckzahlengerade übertragen, wobei die Werte von links nach rechts ansteigen.
  • Ein Stützteilverhältnis λ s, das die Größe des Ansauglufttemperaturwerts TAL bezogen auf die hohe und die niedrige Umgebungstemperatur TUH und TUL kennzeichnet, wird bestimmt nach der Gleichung
    Figure imgb0001
  • Um aus den beiden Stützwerten psa und psb gültig für den hohen Umgebungsdruck PUH einen temperaturkompensierten Stützhochwert psH zu berechnen, wird das Stützteilverhältnis λ s verwendet. Dementsprechend ist also
    Figure imgb0002

    und damit

    psH = psa - λ s x (psa - psb).
    Figure imgb0003

  • In gleicher Weise wird für die beiden Stützwerte psc und psd, gültig für den niedrigen Umgebungsdruck PUL, ein Stütztiefwert psL berechnet aus

    psL = psc - λ s x (psc - psd).
    Figure imgb0004

  • Die berechneten Größen für diesen Stützhochwert psh und Stütztiefwert psL sind in Figur 2 ebenfalls auf der Druckzahlengeraden eingetragen. Außerdem ist der gemessene Ansaugdruckwert pm eingezeichnet. Ein Teilverhältnis λ für diesen gemessenen Ansaugdruck pm bezüglich dem Stützhochwert psH und Stütztiefwert psL ergibt sich dann zu
    Figure imgb0005
  • Alle diese bis jetzt berechneten Werte bleiben gleich, solange der stationäre Betriebszustand (α0, n0) fortbesteht. Es sei nun angenommen, daß ausgehend von diesem stationären Betriebszustand die Brennkraftmaschine durch Öffnen der Drosselklappe von einem Öffnungsgrad α0 auf einen Öffnungsgrad α 1 beschleunigt wird.
  • Während jedem Arbeitstakt wird dann für die jeweils aktuell erfaßten Werte des Öffnungsgrads α und der Drehzahl n das vorbeschriebene Verfahren bis zur Ermittlung eines jeweiligen neuen Stützhochwerts psH und Stütztiefwerts psL durchgeführt.
  • Ein kompensierter Ansaugdruckwert pk ergibt sich dann mit dem während des stationären Betriebs berechneten Teilverhältnis λ. Dementsprechend ist
    Figure imgb0006

    und damit

    pk = psH1 - λ x (psH1 - psL1).
    Figure imgb0007

  • Dieser kompensierte Ansaugdruck pk dient nun zur Korrektur der Werte des gemessenen Ansaugdrucks pm während des dynamischen Übergangsbetriebs. Ein dynamischer Ansaugdruck pdyn ergibt sich aus der Beziehung
    Figure imgb0008

    τ ist dabei eine experimentell ermittelte Zeitkonstante, die die Totzeiten der Luftmassen im Ansaugtrakt berücksichtigt. Sie berücksichtigt also den Zeitverzug zwischen dem gemessenen Ansaugdruck pm und dem im Saugrohr wirklich vorhandenen dynamischen Ansaugdruck pdyn.
  • Die unterschiedlichen Verläufe des gemessenen Ansaugdrucks pm und des im Saugrohr wirklich vorhandenen dynamischen Ansaugdrucks pdyn während des dynamischen Übergangsbetriebs durch Öffnen der Drosselklappe von α 0 auf α 1 ist in Figur 3 in einem Druckzeitdiagramm dargestellt.
  • Man schließt also für die Korrektur vom statischen auf den dynamischen Betrieb, indem angenommen wird, daß das im statischen Betrieb ermittelte Teilverhältnis für diesen kompensierten Ansaugdruck im dynamischen Betrieb gilt.
  • Dieser dynamische Ansaugdruck pdyn muß schließlich noch durch einen Rechnerfaktor korrigiert werden, der die Rechenzeiten des Mikrorechners 1 berücksichtigt. Dieser Rechnerfaktor RF ergibt sich aus einem Druckanstiegsgradienten multipliziert mit der Verzugszeit tv des Mikrorechners 1. Also

    RF = (pdyn neu - pdyn alt ) x tv.
    Figure imgb0009


    Ein korrigierter Ansaugdruckwert pkorr berechnet sich dann aus

    pkorr = pdyn neu + RF.
    Figure imgb0010


    Dieser korrigierte Ansaugdruckwert pkorr ist dann derjenige Wert, der zusammen mit dem Drehzahlwert n die bei jedem Arbeitstakt einzuspritzende Kraftstoffmenge bestimmt.
  • Das vorbeschriebene Verfahren ist sinngemäß für alle dynamischen Übergangsvorgänge anzuwenden, gleich ob die Brennkraftmaschine z.B. beschleunigt oder verzögert wird. Im zweitgenannten Fall entspricht dann dem Druckanstiegsgradienten ein Druckminderungsgradient.

Claims (3)

  1. Verfahren zur Ermittlung der einer Brennkraftmaschine zuzuführenden Kraftstoffmenge während eines dynamischen Übergangsbetriebs, bei dem bei jedem Arbeitstakt der Brennkraftmaschine - ein Ansaugdruck pm, eine Drehzahl (n), ein Öffnungsgrad (α) der Drosselklappe sowie eine Ansauglufttemperatur (TAL) gemessen werden,
    - ausgehend von dem Ansaugdruckwert pm ein korrigierter Ansaugdruckwert (pkorr) ermittelt wird, der zusammen mit dem Drehzahlwert (n) die Kraftstoffmenge bestimmt,
    dadurch gekennzeichnet,
    a) daß Stützkennfelder abgelegt sind, jeweils gültig für einen Umgebungsdruck und eine Umgebungstemperatur, die Stützwerte für den Druck abhängig von der Drehzahl (n) und dem Öffnungsgrad (α) enthalten,
    b) daß bei jedem Arbeitstakt
    ba) ein Stützteilverhältnis berechnet wird, das die Größe des Ansauglufttemperaturwerts (TAL) bezogen auf die Größen von zwei Umgebungstemperaturen zweier für einen ersten gleichen Umgebungsdruck gültiger Stützkennfelder kennzeichnet, wobei das Stützteilverhältnis bezogen auf diejenigen beiden Umgebungstemperaturen berechnet wird, zwischen denen die Ansauglufttemperatur (TAL) liegt, die ihr am nächsten kommen,
    bb) mit den aktuell bestimmten Werten für die Drehzahl (n) und dem Öffnungsgrad (α) aus den zwei Stützkennfeldern für den ersten Umgebungsdruck und zwei weiteren für einen zweiten Umgebungsdruck und die beiden Umgebungstemperaturen gültigen Stützkennfeldern je ein Stützwert (psa bis psd) entnommen wird, wobei derjenige erste Umgebungsdruck und derjenige zweite Umgebungsdruck verwendet wird, zwischen denen der gemessene Ansaugdruck pm liegt und die ihm am nächsten kommen,
    bc) daß ein Stützhochwert (psH) aus dem Stützteilverhältnis und den zwei Stützwerten für den ersten Umgebungsdruck ermittelt wird,
    bd) daß ein Stütztiefwert (psL) entsprechend aus den zwei Stützwerten für den zweiten Umgebungsdruck ermittelt wird,
    be) daß ein Teilverhältnis berechnet wird, das die Größe des gemessenen Ansaugdrucks pm bezogen auf den Stützhochwert (psH) und den Stütztiefwert (psL) kennzeichnet,
    c) daß bei jedem folgenden Arbeitstakt die unter b) genannten Schritte wiederholt werden,
    d) daß ein kompensierter Ansaugdruck pk aus dem Teilverhältnis und dem jeweils aktuellen Stützhochwert (psH) und Stütztiefwert (psL) berechnet wird, wobei nach einer Änderung der Drosselklappenstellung von einem stationären Wert (α0) auf einen Wert (α1), das im stationären Betrieb berechnete Teilverhältnis benutzt wird.
    e) daß mit dem kompensierten Ansaugdruck pk der jeweils aktuell gemessene Ansaugdruck pm zu einem dynamischen Ansaugdruck pdyn korrigiert wird nach der Beziehung
    Figure imgb0011
    wobei τ eine Zeitkonstante ist, die Totzeiten der Luftmassen im Ansaugtrakt berücksichtigt und
    f) daß sich der korrigierte Ansaugdruck (pkorr) aus dem dynamischen Ansaugdruck pdyn zuzüglich einem Rechnerfaktor (RF) ergibt, der eine durch die Rechenvorgänge bedingte Verzugszeit (tv) berücksichtigt.
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet,
    daß vier Stützkennfelder abgelegt sind, wobei
    - ein erster Stützwert (pna) aus einem ersten Kennfeld gültig für einen ersten hohen Umgebungsdruck (PUH) und eine hohe Umgebungstemperatur (TUH),
    - ein zweiter Stützwert (pnb) aus einem zweiten Kennfeld gültig für den ersten hohen umgebungsdruck (PUH) und eine niedrige Umgebungstemperatur (TUL),
    - ein dritter Stützwert (pnc) aus einem dritten Kennfeld gültig für einen zweiten niedrigen Umgebungsdruck (PUL) und die hohe Umgebungstemperatur (TUH),
    - ein vierter Stützwert (pnc) aus einem vierten Kennfeld gültig für den zweiten niedrigen Umgebungsdruck (PUL) und die niedrige Umgebungstemperatur (TUL) gewonnen wird.
  3. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet,
    daß der Rechnerfaktor (FR) aus einem Druckanstiegsgradienten multipliziert mit einer Verzugszeit (tv) berechnet wird, also

    FR = (pdyn neu pdyn alt ) x tv.
    Figure imgb0012
EP88120463A 1988-12-07 1988-12-07 Verfahren zur Ermittlung der einer Brennkraftmaschine zuzuführenden Kraftstoffmenge Expired - Lifetime EP0372113B1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP88120463A EP0372113B1 (de) 1988-12-07 1988-12-07 Verfahren zur Ermittlung der einer Brennkraftmaschine zuzuführenden Kraftstoffmenge
DE8888120463T DE3869617D1 (de) 1988-12-07 1988-12-07 Verfahren zur ermittlung der einer brennkraftmaschine zuzufuehrenden kraftstoffmenge.
US07/446,929 US5060160A (en) 1988-12-07 1989-12-06 Method for calculating the quantity of fuel to be supplied to an internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP88120463A EP0372113B1 (de) 1988-12-07 1988-12-07 Verfahren zur Ermittlung der einer Brennkraftmaschine zuzuführenden Kraftstoffmenge

Publications (2)

Publication Number Publication Date
EP0372113A1 EP0372113A1 (de) 1990-06-13
EP0372113B1 true EP0372113B1 (de) 1992-03-25

Family

ID=8199637

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88120463A Expired - Lifetime EP0372113B1 (de) 1988-12-07 1988-12-07 Verfahren zur Ermittlung der einer Brennkraftmaschine zuzuführenden Kraftstoffmenge

Country Status (3)

Country Link
US (1) US5060160A (de)
EP (1) EP0372113B1 (de)
DE (1) DE3869617D1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5136517A (en) * 1990-09-12 1992-08-04 Ford Motor Company Method and apparatus for inferring barometric pressure surrounding an internal combustion engine
FR2731050B1 (fr) * 1995-02-28 1997-04-18 Siemens Automotive Sa Procede d'estimation du remplissage en air d'un cylindre d'un moteur a combustion interne
US5564390A (en) * 1995-03-31 1996-10-15 Caterpillar Inc. Method for controlling engine timing
DE19609132A1 (de) * 1995-03-31 1996-10-02 Caterpillar Inc Vorrichtung zum Steuern des Motortimings
DE10234144A1 (de) * 2002-07-26 2004-02-05 Dornier Medtech Gmbh Lithotripter

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS549257B2 (de) * 1972-02-21 1979-04-23
JPS5191421A (de) * 1975-02-07 1976-08-11
JPS55131535A (en) * 1979-04-02 1980-10-13 Honda Motor Co Ltd Engine controller
US4424568A (en) * 1980-01-31 1984-01-03 Hitachi, Ltd. Method of controlling internal combustion engine
JPS5865950A (ja) * 1981-10-14 1983-04-19 Nippon Denso Co Ltd 内燃機関の制御方法
JPS58172446A (ja) * 1982-04-02 1983-10-11 Honda Motor Co Ltd 内燃機関の作動状態制御装置
JPS6397843A (ja) * 1986-10-13 1988-04-28 Nippon Denso Co Ltd 内燃機関の燃料噴射制御装置
US4823755A (en) * 1987-01-27 1989-04-25 Toyota Jidosha Kabushiki Kaisha Fuel injection system for an internal combustion engine
JPH01280645A (ja) * 1988-04-30 1989-11-10 Fuji Heavy Ind Ltd エンジンの燃料噴射制御装置
JPH0740671Y2 (ja) * 1988-11-18 1995-09-20 富士重工業株式会社 2サイクルエンジンの空燃比制御装置

Also Published As

Publication number Publication date
US5060160A (en) 1991-10-22
DE3869617D1 (de) 1992-04-30
EP0372113A1 (de) 1990-06-13

Similar Documents

Publication Publication Date Title
DE3636810C2 (de)
DE3823277C2 (de)
DE102017009583B3 (de) Verfahren zur modellbasierten Steuerung und Regelung einer Brennkraftmaschine
DE102018001727A1 (de) Verfahren zur modellbasierten Steuerung und Regelung einer Brennkraftmaschine
DE3546168C2 (de)
EP0370091B1 (de) Regelverfahren und -vorrichtung, insbesondere lambdaregelung
DE19852755A1 (de) Kraftstoffeinspritzsystem für ein Fahrzeug
DE3714543C2 (de)
DE3242795A1 (de) Vorrichtung zur korrektur des luft/kraftstoffverhaeltnisses fuer eine verbrennungsmaschine in abhaengigkeit von der ansaugtemperatur
DE102017005783B4 (de) Verfahren zur modellbasierten Steuerung und Regelung einer Brennkraftmaschine
DE69209460T2 (de) Elektronisches System zur Regelung der Benzineinspritzung
EP0372113B1 (de) Verfahren zur Ermittlung der einer Brennkraftmaschine zuzuführenden Kraftstoffmenge
DE3725521C2 (de)
DE3822300A1 (de) Verfahren und vorrichtung zur tankentlueftungsadaption bei lambdaregelung
EP0449851B1 (de) Verfahren zur kraftstoffmengenbestimmung
DE3726892A1 (de) Gemischverhaeltnissteuersystem fuer einen kraftfahrzeugmotor
DE102018006312B4 (de) Verfahren zur modellbasierten Steuerung und Regelung einer Brennkraftmaschine
EP1212526B1 (de) Verfahren und vorrichtung zum regeln der abgasrückführung einer brennkraftmaschine
DE10034789B4 (de) Verfahren und Vorrichtung zur Kompensation des nichtlinearen Verhaltens des Luftsystems einer Brennkraftmaschine
EP1753950B1 (de) Verfahren zur momentenorientierten steuerung einer brennkraftmaschine
DE3525393C2 (de)
DE102004049812A1 (de) Verfahren zum Betreiben einer Kraftstoffeinspritzanlage insbesondere eines Kraftfahrzeugs
DE3832270C2 (de)
EP0707685A1 (de) Verfahren zur anpassung der luftwerte aus einem ersatzkennfeld, das bei pulsationen der luft im ansaugrohr einer brennkraftmaschine zur steuerung der gemischaufbereitung verwendet wird, an die aktuell herrschenden zustandsgrössen der aussenluft
DE69628231T2 (de) Elektronische Kraftstoffeinspritzsteuervorrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

RBV Designated contracting states (corrected)

Designated state(s): DE ES FR GB IT

17P Request for examination filed

Effective date: 19900726

17Q First examination report despatched

Effective date: 19910124

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19920325

REF Corresponds to:

Ref document number: 3869617

Country of ref document: DE

Date of ref document: 19920430

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19921119

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19921221

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19930218

Year of fee payment: 5

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19931207

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19931207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19940831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940901

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051207