EP0370197A1 - Ski muni de masses d'inertie latérales - Google Patents

Ski muni de masses d'inertie latérales Download PDF

Info

Publication number
EP0370197A1
EP0370197A1 EP89117608A EP89117608A EP0370197A1 EP 0370197 A1 EP0370197 A1 EP 0370197A1 EP 89117608 A EP89117608 A EP 89117608A EP 89117608 A EP89117608 A EP 89117608A EP 0370197 A1 EP0370197 A1 EP 0370197A1
Authority
EP
European Patent Office
Prior art keywords
ski
inertia
additional
vicinity
masses
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP89117608A
Other languages
German (de)
English (en)
Other versions
EP0370197B1 (fr
Inventor
Maurice Legrand
François Guers
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Salomon SAS
Original Assignee
Salomon SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Salomon SAS filed Critical Salomon SAS
Priority to AT89117608T priority Critical patent/ATE86873T1/de
Publication of EP0370197A1 publication Critical patent/EP0370197A1/fr
Application granted granted Critical
Publication of EP0370197B1 publication Critical patent/EP0370197B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63CSKATES; SKIS; ROLLER SKATES; DESIGN OR LAYOUT OF COURTS, RINKS OR THE LIKE
    • A63C5/00Skis or snowboards
    • A63C5/06Skis or snowboards with special devices thereon, e.g. steering devices
    • A63C5/075Vibration dampers

Definitions

  • the present invention relates to skis in which one or more additional masses of inertia make it possible to modify and adjust the moment of inertia of the ski both around a vertical axis, around a horizontal axis perpendicular to the direction longitudinal of the ski, and around the longitudinal axis of the ski.
  • the moment of inertia around the vertical axis, or axis of rotation of the ski influences the behavior of the ski in rotation, by determining the resistance that the ski opposes to a variation in the direction of movement.
  • a ski with a low moment of inertia for example a short ski or a light ski at its ends, is easier to turn than a ski with a high moment of inertia.
  • An easy to turn ski is particularly suitable for special snow conditions such as deep snow, spring snow, and for special terrain conditions such as bumpy slopes.
  • a ski with a high moment of inertia for example an elongated ski or a ski having relatively large masses at its ends, is particularly stable in direction during a rapid descent, because the forces exerted laterally on the ski by the Track unevenness is better absorbed due to the higher moment of inertia.
  • a ski in which, in order to modify its moment of inertia, masses centered on the longitudinal axis of the ski can be moved in the direction of its length and immobilized on or inside its posterior part or earlier.
  • By modifying the distance of the masses at the two ends of a ski one can vary its moment of inertia both around the vertical axis and around the central horizontal axis perpendicular to its longitudinal direction.
  • the practical implementation of this system is however very difficult and costly.
  • the arrangement of the masses outside the ski cannot be used in practice, by the fact that snow can accumulate in the adjustment members and prevent their operation.
  • French patent FR-A-2 382 245 teaches to have additional masses of inertia in the longitudinal axis of the ski on the upper surface of the ski, at the two ends of the ski. This document does not include any teaching on the positioning of inertia masses in the particular zones which provide an appropriate effect as will be described below.
  • a ski is not only subjected to bending and pivoting forces, but also to torsional forces and excitations.
  • the present invention results from the observation that it is possible to modify appreciably and advantageously the natural modes of torsional vibration and the damping of the ski by placing additional masses of inertia no longer in the longitudinal axis of the ski, but distributed by on either side near the edges of the ski. This results in a significant improvement in the handling of the ski in the curves, and in the length of attachment of the ski to the snow. It is understood that the provision of additional masses of inertia in the vicinity of the edges of the ski increases the moment of inertia of the ski around its longitudinal axis.
  • the precision and regularity of driving a turn is significantly improved, by reducing sensitivity of the ski to the terrain of the piste; directional stability is significantly improved to make it similar to that of heavy skis, without however increasing the total weight of the ski and keeping it at a value substantially lower than that of heavy skis.
  • the ski can be easily oriented at low speed of movement or rotation, while its relatively high moment of inertia around its longitudinal axis absorbs the rapid stresses imparted by the reliefs of the track during turns. This results in less physical and psychological fatigue for the skier.
  • the ski according to the present invention comprises a light structure, with a cell nucleus, and is provided with at least one element of density greater than the average density of structure of the ski body and constituting a additional mass of inertia arranged in a suitable longitudinal position along the ski body; according to the invention, said additional mass of inertia is distributed off-center on either side of the vertical longitudinal median plane of the ski, so as to constitute an assembly equivalent to two weights offset respectively on either side of the plane vertical longitudinal median of the ski, said assembly having an appropriate moment of inertia with respect to the longitudinal axis of the ski.
  • the additional mass of inertia is a plate of non-uniform thickness, the thickness being small in the vicinity of the longitudinal axis of the ski and being greater in the vicinity of the edges of the ski.
  • the additional mass of inertia is a plate of non-uniform length, the plate length being shorter in the vicinity of the longitudinal axis of the ski and being greater in the vicinity of the edges of the ski.
  • This characteristic of non-uniform length can moreover be combined with the characteristic of non-uniform thickness mentioned above.
  • the additional mass of inertia comprises two separate lateral half-masses disposed respectively on either side of the longitudinal axis of the ski in the vicinity of the edges of the ski.
  • the additional masses of inertia can be placed on the upper surface of the ski.
  • the additional inertia masses are incorporated porées in the internal structure of the ski.
  • the lateral portions of additional inertia masses can be advantageously incorporated into the lateral portions of the ski on either side of the central cellular core.
  • the ski comprises inclined lateral edges, the inclination being such that the width of the ski is greater in the vicinity of its base than in the vicinity of its upper face, the lateral portions of inertia masses additional are shaped to follow the inclination of the edges, so that the center of gravity of the ski is thus lowered.
  • the ski according to the present invention comprises, in a traditional manner, a ski body 1 the central part of which is curved, curved in an upward arc and the two ends of which are raised upwards, the front end forming a spatula 2, the rear end 3 also being raised upwards.
  • the bending of the central part of the body 1 causes the ski to rest on the plane 4 along two transverse lines, a transverse front contact line 5, a transverse rear contact line 6.
  • the ski When in use, the ski is intended to rest on the ground according to its lower contact surface 7, which surface is limited by the two lines 5 and 6.
  • An additional front inertia mass 8 is placed in the vicinity of the front transverse contact line 5.
  • An additional rear inertia mass 9 is placed in the vicinity of the rear transverse contact line 6.
  • the additional masses of inertia 8 and 9 are fixed on the upper surface 10 of the ski.
  • the additional inertia masses 8 and 9 are fixed and incorporated in the body of the ski, being non-visible or only partially visible on the upper surface 10 of the ski.
  • a ski according to the present invention provided with its two additional masses of inertia 8 and 9, placed on a flat surface 4, and subjected to a load such as the weight of a user.
  • a load such as the weight of a user.
  • the lower contact surface 7 of the ski is entirely in contact with the plane 4.
  • the contact pressure between the lower ski surface 7 and the plane 4 varies as a function of the longitudinal position considered along the ski.
  • This pressure has a maximum 11 under the central zone occupied by the bindings and receiving the weight of the skier.
  • This pressure then has a minimum on either side of the maximum 11, namely a minimum 12 in the front third of the ski and a minimum 13 in the rear third.
  • the pressure has a relative maximum 14 in the vicinity of the front transverse contact line 5 of the ski and a second relative maximum 15 in the vicinity of the rear transverse contact line 6 of the ski. It can therefore be seen that, when the additional inertia masses 8 and 9 are positioned in the vicinity of the front contact lines 5 and rear 6 of the ski, their position corresponds to a relative maximum of contact pressure below the surface of the ski.
  • the additional mass of inertia 8 before is in one piece, and is distributed in a non-uniform manner on either side of the median longitudinal axis II - II of the ski. It may for example be a plate with a density greater than the average density of the ski body 1.
  • the additional mass of inertia 8 extends to the vicinity of the edges 16 and 17 of the ski.
  • the additional mass of inertia 8 comprises a central zone 85 connecting a first lateral zone 86 arranged in the vicinity of the edge 16 of the ski and a second lateral zone 87 arranged in the vicinity of the second edge 17 of the ski.
  • the central zone 85 has a relatively small thickness E in comparison with the thickness of the lateral zones 86 and 87.
  • the central zone 85 is arranged above the central core 19 with a cellular structure of the ski.
  • the central zone 85 of the additional mass of inertia can be arranged below the central core 19.
  • the ski comprises lateral edges 16 and 17 inclined.
  • the lateral portions 86 and 87 of additional inertia masses are advantageously shaped to follow the inclination of the edges. In this case, it can advantageously have a greater width in the vicinity of the lower sliding surface 7 of the ski than in the vicinity of the upper surface 10 of the ski. In this way, the presence of the additional inertia masses lowers the center of gravity of the ski, that is to say, brings it closer to the lower sliding surface 7.
  • the lateral zones 86 and 87 of the additional inertia mass 8 have a triangular section and occupy the entire available section between the side edges 16 and 17 and the side faces of the central core 19.
  • the additional front mass of inertia 8 is a plate comprising a central cutout 18 in V, so that the mass 8 is distributed in a privileged manner in the vicinity of the edges 16 and 17 of the ski .
  • the length of the plate forming the additional mass of inertia before 8 is not uniform, this length being shorter in the vicinity of the longitudinal axis II - II of the ski and being greater in the vicinity of the edges 16 and 17 of the ski.
  • This embodiment can be combined with the previous characteristic according to which the thickness of the plate forming the additional front mass of inertia 8 of the ski is smaller in the vicinity of the longitudinal axis II - II of the ski and greater in the vicinity side edges 16 and 17 of the ski.
  • FIG. 7 and 8 there is shown an embodiment in which the additional mass of inertia before 8 of the ski consists of two half-masses 81 and 82, the first half-mass 81 being arranged along the edge 16 ski, the second half-mass 82 being disposed along the ski edge 17.
  • the ski according to the invention advantageously has a cellular structure, with a central core 19 of constant width. The core 19 is thus bordered, over part of its length, by the half-masses 81 and 82, as shown in FIG. 8.
  • the half-masses 81 and 82 are advantageously shaped to follow the inclined shape of the edges.
  • lateral inertia masses can be distributed in the vicinity of the front contact line 5.
  • the two lateral half-masses 81 and 82 are shown, similar to the half-masses of the modes of previous embodiments, but associated with two additional lateral auxiliary masses 83 and 84 arranged slightly behind the additional masses 81 and 82.
  • FIG. 10 shows an embodiment in which the rear additional inertia mass 9 consists of two lateral half inertia masses 91 and 92 disposed respectively in the vicinity of the edges 16 and 17 of the ski.
  • the additional mass of inertia before 8 is distributed on either side of the vertical plane I - I passing through the transverse line of contact before 5 along a certain length, of the order of 15 to 25 centimeters.
  • the distance L1 between the anterior end of the additional mass of inertia 8 and the vertical plane I - I passing through the front transverse contact line 5 is advantageously between 0 and 10 centimeters; similarly, the length L2 between the rear end of the additional mass of inertia 8 and the vertical plane I - I passing through the front transverse contact line 5 is advantageously between 0 and 15 centimeters.
  • ski For the types of ski corresponding to a preferred type of evolution, for example a slalom ski, a giant slalom ski, a downhill ski, or a multi-purpose ski, it is possible to approximately adapt the behavior of the ski by adjusting the value of the additional inertia masses 8 and 9.
  • the additional front mass of inertia 8 has a value greater than the rear additional mass of inertia 9, the difference between the two masses possibly being of the order of 50 grams.
  • the additional masses may consist of lead plates or other heavy materials. They can be placed in housings provided for this purpose.
  • the housing of the additional masses can be carried out by any conventional machining means such as milling, routing, either in the central part 19 forming the core, or in the lateral parts called edges.
  • the additional inertia masses can be partially housed in housings provided in the core 19 and partially housed in the side edges of the ski.
  • additional inertia masses can be a composite material, combining the forming and adhesion qualities of a thermoplastic material with the density qualities of a metal such as lead, brass, tungsten.

Landscapes

  • Golf Clubs (AREA)
  • Fittings On The Vehicle Exterior For Carrying Loads, And Devices For Holding Or Mounting Articles (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Le ski selon l'invention présente une structure légère, et est muni d'au moins un élément (81, 82) de densité supérieure à la densité moyenne de structure du ski et constituant une masse d'inertie additionnelle. Selon l'invention, ladite masse d'inertie additionnelle est répartie de manière décentrée de part et d'autre de l'axe longitudinal médian (II - II) du ski, et consitue un ensemble équivalent à deux masselottes (81, 82) décalées de part et d'autre de l'axe médian du ski.

Description

  • La présente invention se rapporte aux skis dans lesquels une ou plusieurs masses d'inertie additionnelles permettent de modifier et de régler le moment d'inertie du ski à la fois autour d'un axe vertical, autour d'un axe horizontal perpendiculaires à la direction longitudinale du ski, et autour de l'axe longitudinal du ski.
  • Le moment d'inertie autour de l'axe vertical, ou axe de rotation du ski, influence le comportement du ski en rotation, en déterminant la résistance que le ski oppose à une variation de la direction du mouvement. Un ski de faible moment d'inertie, par exemple un ski court ou un ski léger à ses extrémités, est plus facile à faire tourner qu'un ski de fort moment d'inertie. Un ski facile à faire tourner convient particulièrement pour des conditions d'enneigement spéciales telles que la neige profonde, la neige de printemps, et pour des conditions de terrain spéciales telles que les pistes bosselées. Un ski de moment d'inertie élevé, par exemple un ski allongé ou un ski comportant des masses relativement importantes à ses extrémités, est particulièrement stable en direction lors d'une descente rapide, du fait que les forces exercées latéralement sur le ski par les inégalités de la piste sont mieux absorbées en raison du plus fort moment d'inertie.
  • Le moment d'inertie du ski autour de son axe horizontal central perpendiculaire à la direction longitudinale du ski influence le comportement vibratoire du ski. On sait que les vibrations peuvent être néfastes, et conduire à une perte d'adhérence au sol des bords du ski, et, par suite, à une instabilité directionnelle.
  • Par ailleurs, les techniques modernes de construction de ski conduisent à réaliser des structures de ski de plus en plus légères, comportant par exemple un noyau central en materiau cellulaire léger, entouré d'une structure de résistance mécanique en caisson. La légèreté d'une telle structure conduit à diminuer sensiblement le moment d'inertie et à introduire les défauts mentionnés ci-dessus. On sait que de tels défauts peuvent être corrigés en adaptant des masses d'inertie additionnelles.
  • Ainsi, on connaît, par le brevet allemand N° 2 052 332, un ski dans lequel, pour modifier son moment d'inertie, des masses centrées sur l'axe longitudinal du ski peuvent être déplacées dans le sens de sa longueur et immobilisées sur ou à l'intérieur de sa partie postérieure ou antérieure. En modifiant la distance des masses aux deux extrémités d'un ski, on peut faire varier son moment d'inertie à la fois autour de l'axe vertical et autour de l'axe horizontal central perpendiculaires à sa direction longitudinale. La réalisation pratique de ce système est cependant très difficile et coûteuse. La disposition des masses à l'extérieur du ski ne peut pas être utilisée en pratique, par le fait que la neige peut s'accumuler dans les organes de réglage et interdire leur fonctionnement. La disposition des masses à l'intérieur du ski affaiblit de façon fâcheuse la section du ski, et exige la construction de skis entièrement nouveaux à section creuse et mécanique de déplace­ment. Il apparaît d'autre part qu'une telle structure réglable ne permet pas de positionner les masses d'inertie additionnelles dans les zones qui procurent un résultat satisfaisant, car ces zones ont une épaisseur trop faible pour recevoir la mécanique de déplacement des masses d'inertie. L'emplacement satisfaisant de ces zones fait l'objet de la présente invention, et sera exposé en détail dans la description qui suit.
  • Le brevet français FR-A-2 382 245 enseigne de disposer des masses d'inertie additionnelles dans l'axe longitudinal du ski sur la surface supérieure du ski, aux deux extrémités du ski. Ce document ne comporte aucun enseignement sur le positionnement de masses d'inertie dans les zones particulières qui procurent un effet approprié comme cela sera décrit ci-après.
  • Lors de son évolution, un ski est non seulement soumis à des efforts de flexion et de pivotement, mais également à des efforts et des excitations en torsion. La présente invention résulte de l'observation selon laquelle on peut modifier sensiblement et avantageusement les modes propres de vibration en torsion et l'amortissement du ski en plaçant des masses d'inertie additionnelles non plus dans l'axe longitudinal du ski, mais réparties de part et d'autre au voisinage des bords du ski. Il en résulte une amélioration sensible de la conduite du ski dans les courbes, et de la longueur d'accrochage du ski sur la neige. On comprend que la disposition de masses d'inertie additionnelles au voisinage des chants du ski augmente le moment d'inertie du ski autour de son axe longitudinal.
  • Avec un tel ski selon l'invention, on améliore sensiblement la précision et la régularité de conduite d'un virage, par moindre sensibilité du ski au relief de la piste ; on améliore sensiblement la stabilité directionnelle pour la rendre similaire à celle des skis lourds, sans toutefois augmenter le poids total du ski et en le maintenant à une valeur sensiblement inférieure à celle des skis lourds. Le ski peut être orienté aisément à faible vitesse de déplacement ou de rotation, tandis que son moment d'inertie relativement élevé autour de son axe longitudinal amortit les sollicitations rapides imprimées par les reliefs de la piste lors des virages. Il en résulte une moindre fatigue physique et psychologique du skieur.
  • Pour atteindre ces objets ainsi que d'autres, le ski selon la présente invention comprend une structure légère, à noyau cellulaire, et est muni d'au moins un élément de densité supérieure à la densité moyenne de structure du corps de ski et constituant une masse d'inertie additionnelle disposée en une position longitudinale appropriée le long du corps de ski ; selon l'invention, ladite masse d'inertie addition­nelle est répartie de manière décentrée de part et d'autre du plan vertical longitudinal médian du ski, de facon à constituer un ensemble équivalent à deux masselottes décalées respectivement de part et d'autre du plan vertical longitudinal médian du ski, ledit ensemble présentant un moment d'inertie approprié par rapport à l'axe longitudinal du ski.
  • Selon un mode de réalisation avantageux, la masse d'inertie additionnelle est une plaque d'épaisseur non uniforme, l'épaisseur étant faible au voisinage de l'axe longitudinal du ski et étant plus importante au voisinage des chants du ski.
  • Selon une autre possibilité, la masse d'inertie additionnelle est une plaque de longueur non uniforme, la longueur de plaque étant plus faible au voisinage de l'axe longitudinal du ski et étant plus importante au voisinage des chants du ski. Cette caractéristique de longueur non uniforme peut d'ailleurs être combinée avec la caracté­ristique d'épaisseur non uniforme mentionnée ci-dessus.
  • Selon un mode de réalisation, la masse d'inertie additionnelle comprend deux demi-masses latérales distinctes disposées respectivement de part et d'autre de l'axe longitudinal du ski au voisinage des chants du ski.
  • En pratique, les masses d'inertie additionnelles peuvent être disposées sur la surface supérieure du ski.
  • De préférence, les masses d'inertie additionnelles sont incor­ porées dans la structure interne du ski. En particulier, les portions latérales de masses d'inertie additionnelles peuvent être avantageu­sement incorporées dans les portions latérales du ski de part et d'autre du noyau central cellulaire.
  • Dans les modes de réalisation dans lesquelles le ski comporte des chants latéraux inclinés, l'inclinaison étant telle que la largeur du ski est plus importante au voisinage de sa base qu'au voisinage de sa face supérieure, les portions latérales de masses d'inertie addition­nelles sont conformées pour suivre l'inclinaison des chants, de sorte que le centre de gravité du ski se trouve ainsi abaissé.
  • D'autres objets, caractéristiques et avantages de la présente invention ressortiront de la description suivante de modes de réalisa­tions particuliers, faite en relation avec les figures jointes, parmi lesquelles :
    • - la figure 1 est une vue schématique de côté d'un ski selon la présente invention, posé à vide sur un plan ;
    • - la figure 2 illustre la répartition des pressions de contact sous la face inférieure du ski ;
    • - la figure 3 représente, en vue de dessus, la position de la masse d'inertie additionnelle avant selon un premier mode de réalisation de l'invention ;
    • - la figure 4 est une vue de côté du ski de la figure 3 ;
    • - la figure 5 est une vue en coupe transversale selon le plan I - I de la figure 3 ;
    • - la figure 6 représente, en vue de dessus, un second mode de réalisation de la masse d'inertie additionnelle avant ;
    • - la figure 7 représente, en vue de dessus, un troisième mode de réalisation de la masse d'inertie additionnelle avant, comportant deux demi-masses latérales ;
    • - la figure 8 est une vue en coupe transversale selon le plan I - I de la figure 7 ;
    • - la figure 9 illustre un autre mode de réalisation de la masse d'inertie additionnelle avant selon l'invention ; et
    • - la figure 10 illustre un mode de réalisation de la masse additionnelle arrière selon l'invention.
  • Comme le représentent les figures 1 et 2, le ski selon la présente invention comporte, de façon traditionnelle, un corps de ski 1 dont la partie centrale est cintrée, incurvée en arc vers le haut et dont les deux extrémités sont relevées vers le haut, l'extrémité antérieure formant spatule 2, l'extrémité postérieure 3 étant également relevée vers le haut.
  • Lorsque le ski repose, à vide, sur un plan 4, le cintrage de la partie centrale du corps 1 fait que le ski repose sur le plan 4 selon deux lignes transversales, une ligne transversale de contact avant 5, une ligne transversale de contact arrière 6. Lors de son utilisation, le ski est destiné à reposer sur le sol selon sa surface inférieure de contact 7, surface qui est limitée par les deux lignes 5 et 6.
  • Une masse d'inertie additionnelle avant 8 est placée au voisinage de la ligne transversale de contact avant 5. Une masse d'inertie additionnelle arrière 9 est placée au voisinage de la ligne transversale de contact arrière 6.
  • Selon une première possibilité, les masses d'inertie addition­nelles 8 et 9 sont fixées sur la surface supérieure 10 du ski.
  • Selon une autre réalisation, les masses d'inertie addi­tionnelles 8 et 9 sont fixées et incorporées dans le corps du ski, étant non apparentes ou seulement partiellement apparentes sur la surface supérieure 10 du ski.
  • On a représenté, sur la figure 2, un ski selon la présente invention muni de ses deux masses d'inertie additionnelles 8 et 9, posé sur une surface plane 4, et soumis à une charge telle que le poids d'un utilisateur. Sous l'effet de la charge, la surface inférieure de contact 7 du ski est entièrement au contact du plan 4. Toutefois, par l'effet du cintrage du corps de ski, la pression de contact entre la surface inférieure 7 de ski et le plan 4 varie en fonction de la position longitudinale considérée le long du ski. Cette pression présente un maximum 11 sous la zone centrale occupée par les fixations et recevant le poids du skieur. Cette pression présente ensuite un minimum de part et d'autre du maximum 11, à savoir un minimum 12 dans le tiers antérieur du ski et un minimum 13 dans le tiers postérieur. La pression présente un maximum relatif 14 au voisinage de la ligne transversale de contact avant 5 du ski et un second maximum relatif 15 au voisinage de la ligne transversale de contact arrière 6 du ski. On constate donc que, lorsque les masses d'inertie additionnelles 8 et 9 sont positionnées au voisinage des lignes de contact avant 5 et arrière 6 du ski, leur position correspond à un maximum relatif de pression de contact sous la surface du ski.
  • On a représenté, sur les figures 3 à 5, un premier mode de réalisation d'une masse d'inertie additionnelle avant du ski. Selon ce premier mode de réalisation, la masse d'inertie additionnelle 8 avant est monobloc, et est répartie de manière non uniforme de part et d'autre de l'axe longitudinal médian II - II du ski. Il peut s'agir par exemple d'une plaque de densité supérieure à la densité moyenne du corps 1 de ski. La masse d'inertie additionnelle 8 s'étend jusqu'au voisinage des chants 16 et 17 du ski. La masse d'inertie additionnelle 8 comprend une zone centrale 85 reliant une première zone latérale 86 disposée au voisinage du chant 16 du ski et une seconde zone latérale 87 disposée au voisinage du second chant 17 du ski. La zone centrale 85 présente une épaisseur E relativement faible en comparaison de l'épaisseur des zones latérales 86 et 87. Dans le mode de réalisation représenté sur la figure 5, la zone centrale 85 est disposée au dessus du noyau central 19 à structure cellulaire du ski. Selon une autre variante, non représentée sur les figures, la zone centrale 85 de la masse d'inertie additionnelle peut être disposée au-dessous du noyau central 19.
  • Dans les modes de réalisation qui ont été représentés sur les figures, le ski comporte des chants latéraux 16 et 17 inclinés. Les portions latérales 86 et 87 de masses d'inertie additionnelles sont avantageusement conformées pour suivre l'inclinaison des chants. Dans ce cas, elle peuvent avantageusement présenter une largeur plus grande au voisinage de la surface inférieure de glisse 7 du ski qu'au voisinage de la surface supérieure 10 du ski. De cette façon, la présence des masses d'inertie additionnelles abaisse le centre de gravité du ski, c'est-à­dire le rapproche de la surface inférieure de glisse 7. Dans le mode de réalisation représenté sur la figure 5, les zones latérales 86 et 87 de la masse d'inertie additionnelle 8 présentent une section triangulaire et occupent toute la section disponible entre les chants latéraux 16 et 17 et les faces latérales du noyau central 19.
  • Dans le mode de réalisation représenté sur la figure 6, la masse d'inertie additionnelle avant 8 est une plaque comportant une découpe centrale 18 en V, de sorte que la masse 8 est répartie de façon privilégiée au voisinage des chants 16 et 17 du ski. En d'autres termes, la longueur de la plaque formant la masse d'inertie additionnelle avant 8 n'est pas uniforme, cette longueur étant plus faible au voisinage de l'axe longitudinal II - II du ski et étant plus importante au voisinage des chants 16 et 17 du ski. Ce mode de réalisation peut être combiné avec la caractéristique précédente selon laquelle l'épaisseur de la plaque formant la masse d'inertie additionnnelle avant 8 du ski est plus faible au voisinage de l'axe longitudinal II - II du ski et plus importante au voisinage des chants latéraux 16 et 17 du ski.
  • Sur les figures 7 et 8, on a représenté un mode de réalisation dans lequel la masse d'inertie additionnelle avant 8 du ski est constituée de deux demi-masses 81 et 82, la première demi-masse 81 étant disposée le long du chant 16 de ski, la seconde demi-masse 82 étant disposée le long du chant 17 de ski. Le ski selon l'invention présente avantageusement une structure cellulaire, avec un noyau central 19 de largeur constante. Le noyau 19 est ainsi bordé, sur une partie de sa longueur, par les demi-masses 81 et 82, comme le représente la figure 8.
  • Dans les modes de réalisation dans lesquels les chants 16 et 17 du ski sont inclinés, comme le représente la figure 8, les demi-masses 81 et 82 sont avantageusement conformées pour suivre la forme inclinée des chants.
  • Lorsque cela s'avère utile, il est possible d'associer une troisième masse d'inertie additionnelle 20, centrée sur l'axe longitu­dinal II - II du ski, à deux demi-masses 81 et 82 latérales, comme le représente la figure 7.
  • En alternative, on peut répartir plusieurs masses d'inertie latérales au voisinage de la ligne de contact avant 5. Par exemple, sur la figure 9, on a représenté les deux demi-masses latérales 81 et 82, similaires aux demi-masses des modes de réalisation précédents, mais associées à deux masses additionnelles latérales auxiliaires 83 et 84 disposées légèrement en arrière des masses additionnelles 81 et 82.
  • Sur la figure 10, on a représenté un mode de réalisation dans lequel la masse d'inertie additionnelle arrière 9 est constituée de deux demi-masses d'inertie latérales 91 et 92 disposées respectivement au voisinage des chants 16 et 17 du ski.
  • De préférence, la masse d'inertie additionnelle avant 8 est répartie de part et d'autre du plan vertical I - I passant par la ligne transversale de contact avant 5 selon une certaine longueur, de l'ordre de 15 à 25 centimètres. La distance L1 entre l'extrémité antérieure de la masse additionnelle d'inertie 8 et le plan vertical I - I passant par la ligne transversale de contact avant 5 est avantageusement comprise entre 0 et 10 centimètres ; de même, la longueur L2 entre l'extrémité postérieure de la masse additionnelle d'inertie 8 et le plan vertical I - I passant par la ligne transversale de contact avant 5 est avantageusement comprise entre 0 et 15 centimètres.
  • Pour les types de ski correspondant à un type d'évolution privilégiée, par exemple un ski de slalom, un ski de slalom géant, un ski de descente, ou un ski polyvalent, il est possible d'adapter approximativement le comportement du ski en ajustant la valeur des masses d'inertie additionnelles 8 et 9. On choisira avantageusement une masse d'inertie additionnelle avant 8 de valeur comprise entre 40 et 200 grammes, et une masse d'inertie additionnelle arrière 9 de valeur comprise entre 0 et 100 grammes. En général, la masse d'inertie additionnelle avant 8 a une valeur supérieure à la masse d'inertie additionnelle arrière 9, la différence entre les deux masses pouvant être de l'ordre de 50 grammes.
  • On a pu constater que, lorsque la masse d'inertie additionnelle avant 8 a une valeur dépassant les 75 grammes, il est nécessaire de compenser l'effet survireur ainsi obtenu en disposant une masse d'inertie additionnelle 9 à l'arrière.
  • En pratique, les masses additionnelles peuvent être constituées de plaques de plomb ou d'autres matériaux pondéreux. On peut les disposer dans des logements prévus à cet effet. Le logement des masses additionnelles peut être exécuté par tout moyen d'usinage classique tel que fraisage, toupillage, soit dans la pièce centrale 19 formant le noyau, soit dans les parties latérales appelées chants. De même, les masses d'inertie additionnelles peuvent être partiellement logées dans des logements prévus dans le noyau 19 et partiellement logées dans les chants latéraux du ski.
  • La nature des masses d'inertie additionnelles peut être un matériau composite, alliant les qualités de formage et d'adhésion d'un matériau thermoplastique aux qualités de densité d'un métal tel que le plomb, le laiton, le tungstène.
  • La présente invention n'est pas limitée aux modes de réali­sations qui ont été explicitement décrits, mais elle en inclut les diverses variantes et généralisations contenues dans le domaine des revendications ci-après.

Claims (12)

1 - Ski à structure légère, muni d'au moins un élément (8) de densité supérieure à la densité moyenne de structure du corps (1) de ski et constituant une masse d'inertie additionnelle (8) disposée en une position longitudinale appropriée le long du corps (1) de ski, caractérisé en ce que ladite masse d'inertie additionnelle (8) est répartie de manière décentrée de part et d'autre du plan vertical longitudinal médian (II - II) du ski, de façon à constituer un ensemble équivalent à deux masselottes décalées respectivement de part et d'autre du plan vertical longitudinal médian (II - II) du ski.
2 - Ski selon la revendication 1, caractérisé en ce que la masse d'inertie additionnelle (8) est une plaque d'épaisseur non uniforme, l'épaisseur (E) étant faible dans la partie centrale (85) au voisinage de l'axe longitudinal (II - II) du ski et étant plus importante dans les parties latérales (86, 87) au voisinage des chants latéraux (16, 17) du ski.
3 - Ski selon l'une des revendications 1 ou 2, caractérisé en ce que la masse d'inertie additionnelle (8) est une plaque de longueur non uniforme, la longueur étant plus faible au voisinage de l'axe longitudinal (II - II) du ski et étant plus importante au voisinage des chants latéraux (16, 17) du ski.
4 - Ski selon la revendication 1, caractérisé en ce que la masse d'inertie additionnelle (8) comprend deux demi-masses latérales (81, 82) disposées respectivement de part et d'autre de l'axe longi­tudinal (II - II) du ski au voisinage des chants latéraux (16, 17) du ski.
5- Ski selon l'une quelconque des revendications 1 à 4, caractérisé en ce que les masses d'inertie additionnelles (8, 9) sont fixées sur la surface supérieure du ski.
6 - Ski selon l'une quelconque des revendications 1 à 4, caractérisé en ce que les masses d'inertie additionnelles (8, 9) sont incorporées dans la structure interne du ski.
7 - Ski selon la revendication 6, caractérisé en ce que les parties latérales (86, 87) de masses d'inertie additionnelles (8) sont incorporées dans les portions latérales de ski de part et d'autre du noyau central (19).
8 - Ski selon la revendication 7, caractérisé en ce qu'il comprend des chants latéraux inclinés (16, 17), et en ce que les portions latérales (86, 87) de masses d'inertie additionnelles sont conformées pour suivre l'inclinaison des chants.
9 - Ski selon la revendication 8, caractérisé en ce que les portions latérales (86, 87) de masses d'inertie additionnelles présen­tent une largeur plus grande au voisinage de la surface inférieure de glisse (7) qu'au voisinage de la surface supérieure (10) du ski.
10 - Ski selon la revendication 9, caractérisé en ce que les portions latérales (86, 87) de masses d'inertie additionnelles pré­sentent une section transversale triangulaire.
11 - Ski selon l'une quelconque des revendications 1 à 10, caractérisé en ce qu'il comprend une masse d'inertie additionnelle (8) avant disposée au voisinage de la ligne transversale de contact avant (5) du ski.
12 - Ski selon l'une quelconque des revendications 1 à 11, caractérisé en ce qu'il comprend une masse d'inertie additionnelle arrière (9) disposée au voisinage de la ligne transversale de contact arrière (6) du ski.
EP89117608A 1988-11-07 1989-09-23 Ski muni de masses d'inertie latérales Expired - Lifetime EP0370197B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT89117608T ATE86873T1 (de) 1988-11-07 1989-09-23 Ski, versehen mit seitwaerts gelegener traegheitsmasse.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8815725A FR2638649B1 (fr) 1988-11-07 1988-11-07 Ski muni de masses d'inertie laterales
FR8815725 1988-11-07

Publications (2)

Publication Number Publication Date
EP0370197A1 true EP0370197A1 (fr) 1990-05-30
EP0370197B1 EP0370197B1 (fr) 1993-03-17

Family

ID=9372463

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89117608A Expired - Lifetime EP0370197B1 (fr) 1988-11-07 1989-09-23 Ski muni de masses d'inertie latérales

Country Status (5)

Country Link
EP (1) EP0370197B1 (fr)
JP (1) JPH0736843B2 (fr)
AT (1) ATE86873T1 (fr)
DE (1) DE68905440T2 (fr)
FR (1) FR2638649B1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0496352A1 (fr) * 1991-01-22 1992-07-29 Kent Hunter Monoski
FR2675700A1 (fr) * 1991-02-22 1992-10-30 Head Sport Ag Ski, en particulier ski alpin.
FR2716117A1 (fr) * 1994-02-17 1995-08-18 Rossignol Sa Procédé pour la fabrication d'un ski à noyau et ski ainsi obtenu.
FR2951955A1 (fr) * 2009-11-03 2011-05-06 Alain Nicolas Calmet Masselottes aimantees pour le ski de randonnee
AT512157A4 (de) * 2012-03-27 2013-06-15 Fischer Sports Gmbh Vorrichtung zur Aufnahme einer Skibindung

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1960684A1 (de) * 1968-11-29 1970-06-18 Minnesota Mining & Mfg Gedaempfter Ski und Verfahren zur Herstellung desselben
AT337581B (de) * 1974-11-25 1977-07-11 Werner Konradler Amann Langgestreckter gleitkorper mit aufgebogenem vorderen ende, insbesondere schi
US4405149A (en) * 1980-02-21 1983-09-20 Skis Rossignol S.A. Ski with vibration-damping means
EP0102653A2 (fr) * 1982-06-11 1984-03-14 Skis Dynastar Sa Ski muni d'un dispositif amortisseur de vibrations
FR2615406A1 (fr) * 1987-05-22 1988-11-25 Salomon Sa Ski a amortissement reparti

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1960684A1 (de) * 1968-11-29 1970-06-18 Minnesota Mining & Mfg Gedaempfter Ski und Verfahren zur Herstellung desselben
AT337581B (de) * 1974-11-25 1977-07-11 Werner Konradler Amann Langgestreckter gleitkorper mit aufgebogenem vorderen ende, insbesondere schi
US4405149A (en) * 1980-02-21 1983-09-20 Skis Rossignol S.A. Ski with vibration-damping means
EP0102653A2 (fr) * 1982-06-11 1984-03-14 Skis Dynastar Sa Ski muni d'un dispositif amortisseur de vibrations
FR2615406A1 (fr) * 1987-05-22 1988-11-25 Salomon Sa Ski a amortissement reparti

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0496352A1 (fr) * 1991-01-22 1992-07-29 Kent Hunter Monoski
FR2675700A1 (fr) * 1991-02-22 1992-10-30 Head Sport Ag Ski, en particulier ski alpin.
FR2716117A1 (fr) * 1994-02-17 1995-08-18 Rossignol Sa Procédé pour la fabrication d'un ski à noyau et ski ainsi obtenu.
FR2951955A1 (fr) * 2009-11-03 2011-05-06 Alain Nicolas Calmet Masselottes aimantees pour le ski de randonnee
AT512157A4 (de) * 2012-03-27 2013-06-15 Fischer Sports Gmbh Vorrichtung zur Aufnahme einer Skibindung
AT512157B1 (de) * 2012-03-27 2013-06-15 Fischer Sports Gmbh Vorrichtung zur Aufnahme einer Skibindung

Also Published As

Publication number Publication date
EP0370197B1 (fr) 1993-03-17
DE68905440D1 (de) 1993-04-22
FR2638649A1 (fr) 1990-05-11
DE68905440T2 (de) 1994-03-10
FR2638649B1 (fr) 1991-01-11
JPH02177980A (ja) 1990-07-11
JPH0736843B2 (ja) 1995-04-26
ATE86873T1 (de) 1993-04-15

Similar Documents

Publication Publication Date Title
EP0622096B1 (fr) Planche de surf de neige
EP0567780B1 (fr) Dispositif interface d'un ski
EP0465794B1 (fr) Ski à face supérieure nervurée
EP0744195A1 (fr) Planche de glisse sur neige comportant une plate-forme de réception et de surélévation des fixations de la chaussure
EP0682961A1 (fr) Ski alpin muni d'un dispositif de raidissement et/ou d'amortissement à double effet
EP0617638B1 (fr) Dispositif visant a repartir la pression d'un ski sur une surface de glisse
EP0370197B1 (fr) Ski muni de masses d'inertie latérales
WO2002087711A1 (fr) Châssis a deformation controlee pour un engin de glisse, notamment pour une planche a roulettes
EP1092454A1 (fr) Planche de glisse
EP0439713B1 (fr) Ski de fond pour patinage
FR2823983A1 (fr) Engin de glisse comprenant deux planches
EP0367964B2 (fr) Ski muni de masses d'inertie avant
EP0470347B1 (fr) Ski à face supérieure convexe variable
WO1997010033A1 (fr) Patin a roues en ligne
EP1011818B1 (fr) Raquette de tennis equipee d'elements oscillants pour l'amortissement des vibrations
EP0577595B1 (fr) Planche a voile
EP0753330B1 (fr) Moyens pour pratiquer le ski de fond selon la technique du pas du patineur
WO2003088777A2 (fr) Semelage de chaussure
WO2001034254A1 (fr) Dispositif interface entre un ski et des elements de retenue d'une chaussure sur le ski et ski ainsi equipe
FR2670392A1 (fr) Ski pour sport d'hiver constitue d'une embase et d'un raidisseur.
FR2666279A1 (fr) Suspension elastique a flexibilite variable.
FR2664172A1 (fr) Ski a face superieure nervuree.
FR2798073A1 (fr) Ski alpin prevu pour etre equipe d'un dispositif interface et ensemble a skier
FR2674443A1 (fr) Ski a face superieure nervuree.
FR2690079A1 (fr) Dispositif interface destiné à modifier la répartition naturelle de pression d'un ski sur sa surface de glisse.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE IT LI SE

17P Request for examination filed

Effective date: 19900511

17Q First examination report despatched

Effective date: 19910725

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE IT LI SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19930317

Ref country code: SE

Effective date: 19930317

REF Corresponds to:

Ref document number: 86873

Country of ref document: AT

Date of ref document: 19930415

Kind code of ref document: T

REF Corresponds to:

Ref document number: 68905440

Country of ref document: DE

Date of ref document: 19930422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19930930

Ref country code: LI

Effective date: 19930930

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19971027

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990701

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20050913

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060923