EP0470347B1 - Ski à face supérieure convexe variable - Google Patents
Ski à face supérieure convexe variable Download PDFInfo
- Publication number
- EP0470347B1 EP0470347B1 EP91110208A EP91110208A EP0470347B1 EP 0470347 B1 EP0470347 B1 EP 0470347B1 EP 91110208 A EP91110208 A EP 91110208A EP 91110208 A EP91110208 A EP 91110208A EP 0470347 B1 EP0470347 B1 EP 0470347B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- ski
- average radius
- zone
- radius
- transverse section
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63C—SKATES; SKIS; ROLLER SKATES; DESIGN OR LAYOUT OF COURTS, RINKS OR THE LIKE
- A63C5/00—Skis or snowboards
- A63C5/003—Structure, covering or decoration of the upper ski surface
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63C—SKATES; SKIS; ROLLER SKATES; DESIGN OR LAYOUT OF COURTS, RINKS OR THE LIKE
- A63C5/00—Skis or snowboards
- A63C5/04—Structure of the surface thereof
- A63C5/0405—Shape thereof when projected on a plane, e.g. sidecut, camber, rocker
Definitions
- the present invention relates to skis used in winter sports, and intended to slide on snow and ice.
- the skis generally used have a lower sliding face connecting to two lateral faces along two lower edges provided with metal edges, the lateral faces connecting to an upper face.
- the skis have a relatively small width compared to their length, their anterior end being curved upwards to form a spatula.
- the thickness of the ski is generally greater in the central part than in the front and rear parts of the ski.
- the width of the lower face of the ski is smaller in the central part than in the rear and front parts, the width being maximum in the front part of the ski, that is to say at the neighborhood of the spatula.
- the upper face of the ski is generally a ruled surface, that is to say defined by the longitudinal displacement of a straight transverse line parallel to the lower face of the ski.
- the cross section of the ski is generally a rectangle or a trapezoid, the large opposite sides of the rectangle or the trapezium being formed by the lower face and the upper face of the ski, the small opposite sides of the rectangle or the trapezoid being formed by the side faces of the ski.
- the greater thickness of the ski in the central zone gives this central zone increased rigidity.
- This central zone is also intended to receive the bindings for the adaptation of a user's shoe.
- the front and rear areas of the ski which have a reduced thickness, are more flexible and elastically deform when the ski is used. If one wishes to make a ski having good flexibility in the anterior and posterior zones, it is therefore necessary to provide such anterior and posterior zones having a reduced thickness.
- a first problem encountered in traditional ski structures is that the central zone of the ski, which has a relatively large thickness to give it great rigidity, causes a fairly appreciable increase in the weight of the ski.
- a second problem encountered in known ski structures is that the necessary thickness of the ski, to obtain sufficient mechanical strength, leads to having ski side faces having a relatively large height. This relatively large height of the lateral faces gives the ski a relatively heavy appearance, and constitutes a lateral bearing surface of large surface opposing the lateral penetration of the ski into the snow, thus slowing the lateral movements of the ski when cornering or in skid.
- the central part of the ski has a relatively reduced width compared to the end parts of the ski, so that the ski boot adapted to the bindings in the central zone of the ski generally extends on both sides of the ski.
- the edge of the boot inside the turn is brought closer to the ground and tends to touch it, which risks slowing down the progression. of the skier and disturb the effectiveness of the support on edges.
- Document FR-A-2 565 836 relates to a one-piece ski structure which comprises a reinforced box with biconvex profile supported on a pair of edges. Such a shape makes the structure sensitive to various stresses (flexion, torsion, vertical compression, microdeformations ).
- the present invention proposes to remedy the aforementioned drawbacks by the design of a new form of ski.
- the shape of the ski is progressive as a function of the longitudinal portion considered along the ski, and this progressive shape is such that the ski can be given an increased real height while decreasing the height of the edges or side faces of the ski, giving in skiing the appearance of a thinner ski, and favoring the lateral penetration of the ski in the snow.
- the progressive shape of the ski according to the invention is such that the end regions of the ski can be given increased flexibility simultaneously without excessively reducing the height of the edges of the ski in said end zones, so as to maintain resistance. sufficient mechanics of the part supporting the lower edges of the ski.
- the ski structure according to the invention has the effect of raising the boot support zone relative to the lower sliding surface of the ski, favoring the release of the boot sole from the ground when driving the turns, without increasing the volume and weight of the ski compared to a traditional structure with rectangular or trapezoidal section.
- ski properties of increased mechanical resistance in bending in the central zone, and / or properties of increased mechanical resistance in torsion over the entire length of the ski without increasing the volume and the weight of the ski compared to a traditional structure with rectangular or trapezoidal section.
- the ski comprises, over most of its length, an upper blade of mechanical resistance arranged in the vicinity of the upper face of the ski in its median zone close to the vertical longitudinal median plane of the ski, so that the distance between the said upper blade and the plane of the neutral horizontal fibers of the ski varies as a function of the mean radius RM of the upper face of the ski, and the said blade is thus further from the plane of the neutral fibers in the zones with a small mean radius RM, and is closer to the plane of the neutral fibers in the zones with a larger medium radius RM.
- the ski comprises a box structure, formed of a central core surrounded by a tubular element of mechanical resistance, the tubular element having an external surface close to the external surface of the ski and substantially parallel to this, so that the cross section of the tubular element is rounded to follow the convex shape of the upper face of the ski, giving the tubular element better torsional rigidity.
- the ski according to the invention comprises a lower sliding face 1 connecting to two lateral faces 2 and 3 according to two respective lower edges 4 and 5 provided with metal edges.
- the lateral faces 2 and 3 are connected to an upper face 6.
- the front end of the ski is bent upwards to form a spatula 7.
- the rear end of the ski is slightly bent upwards to form the heel 8.
- the ski may in particular comprise a tip tip 7 and a heel protector 8, fixed by any means such as snap-fastening, bonding or the like.
- the lateral faces 2 and 3 of the ski in the embodiment shown in FIGS. 3 to 5, are inclined relative to the perpendicular to the lower face 1 of the ski, at a substantially constant angle A.
- the side faces 2 and 3 of the ski are substantially perpendicular to the underside 1.
- the angle A can be greater in the vicinity of the ends of the ski, on the sections AA of FIG. 3 or CC of FIG. 5, than in the central zone of the ski on the section BB of FIG. 4.
- the lateral faces 2 and 3 of the ski are connected to the upper face 6 by upper lateral edges 9 and 10 with rounded cross section of radius RL.
- the radius RL advantageously has a value less than 6 millimeters.
- the upper face 6 of the ski according to the invention has, in cross section, over at least the greatest part of the length of the ski, a convex shape, for example rounded.
- This convex cross-sectional shape of the upper face 6 of the ski is an upper line, the central part of which forms an apex and the two ends of which are inclined at an angle of less than about 60 degrees relative to the lower face of the ski.
- Said upper line has a shape identical to or slightly different from a circle, that is to say that it deviates relatively little from the circle passing through said vertex and said ends.
- Said circle which most closely approximates the convex cross-sectional shape of the upper face of the ski has a radius called the average radius RM of cross-section.
- the average radius RM of cross section varies as a function of the longitudinal position of cross section considered along the ski.
- the values that the average radius RM takes in the central zone of the ski are lower than the values that the average radius RM takes in at least one of the front or rear end zones of the ski.
- the convex cross-sectional shape of the upper ski face is substantially identical to a circle, that is to say that its curvature is substantially constant over the entire width of the cross section. This embodiment confers a certain regularity on the upper surface.
- the invention also applies to other convex shapes of cross section of the upper face.
- it must be avoided that the curvature of the lateral zones of the upper face is too great, because it then approaches a rectangle, and the advantages of the invention are lost.
- an upper face of the ski the cross section of which is a polygonal line close to the circle of average radius RM, for example a line with three segments, with a central segment substantially parallel to the underside of the ski and two inclined lateral segments. .
- said convex shape of cross section of the upper ski face must remain little different from a circle passing through its central part and its ends.
- the values which the average radius RM takes in the central zone of the ski, represented in FIG. 4 are less than the values of said average radius RM in the anterior end zone of the ski, represented in FIG. 3, and are smaller than the values taken by said mean radius RM in the rear end region of the ski, represented in FIG. 5.
- the maximum average radius REA in the anterior end zone of the ski is advantageously greater than the maximum average radius REP in the rear end region of the ski.
- the maximum average radius REA in the anterior end region of the ski is less than the maximum average radius REP in the rear region of the ski.
- the ski bindings intended to secure a ski boot on the upper face 6 of the ski, are generally arranged in the central area of the ski or a little behind the middle of the ski in the area shown in FIGS. 1 and 2 between the cross sections FF and GG.
- the bindings are fixed on the upper face of the ski in longitudinal positions which can differ from one case to another, and which lie in an area between 40 and 60 cm in length.
- the mean radius RM of cross section it is advantageously possible to provide for the mean radius RM of cross section to keep a substantially constant value RC throughout the central area lying between the planes FF and GG. Bindings can thus be provided, the lower support face of which is shaped to apply exactly to the upper ski face, whatever the longitudinal position in the central zone intended to receive the bindings.
- FIG. 9 illustrates the variations in average radius RM, or curvature, of the cross section of the upper face of the ski as a function of the longitudinal position of the cross section considered.
- the curve 20 represents the transverse profile of the upper ski face in the central area of the ski. In this central zone, the curvature is constant, and, to follow the variations in width of the ski, the curve stops at the ends 21 and 22 in the narrowest part of the ski, and extends to the ends 23 and 24 in the cross sections of the central ski part closer to the ends of the ski.
- the curve 30 represents the transverse profile of the upper ski face in the heel area.
- Curve 40 represents the transverse profile of the upper ski face in the tip region.
- the mean radius RM of the upper face 6 of the ski varies continuously as a function of the longitudinal position of transverse section considered along the ski, from the value RC in the central area of the ski, up to maximum REA and REP in the anterior and posterior ski areas.
- the average radius RM of the upper ski face varies as a function of the longitudinal position of the cross section considered, because to obtain the desired flexibility, the thickness of the ski must decrease the closer you get to the ends. And, as the ski widens at the same time, the upper face 6 must be flattened more and more in a progressive manner, to avoid reducing the height of the edges too much in the vicinity of the ends. As a result, it is advantageous to continuously increase the value of the average radius RM when one approaches the ends.
- the ski according to the present invention makes it possible to increase the height H1 or distance of the sole of the shoe relative to the ground, and makes it possible simultaneously to decrease the height H2 of the edges or lateral faces 2 and 3 of the ski.
- the internal structure of the ski comprises an upper blade of mechanical strength 11, of thickness E1 and of width B1, disposed near the upper face 6 of the ski.
- the upper blade of mechanical strength 11 has the effect of giving the ski sufficient rigidity to correctly oppose the flexing of the ski in the longitudinal direction.
- the ski reacts like a beam and forms an arc, the fibers located towards the inside of the arc tending to shorten, the fibers located towards the outside of the arc tending to lengthen , and one can define a mean plane 12 containing the neutral fibers, that is to say the fibers whose length is not significantly modified during bending.
- the stiffening effect obtained by the upper blade of mechanical strength 11 naturally depends on the thickness E1 and the width B1 of the blade, as well as on the nature of the material used to form this blade, but also depends very significantly on the average distance 0.5 x (Y1 + Z1) between this strip 11 and the plane 12 of the neutral fibers.
- the rigidity obtained is thus greatly increased when the distance Y1 between said blade 11 and the plane 12 of the neutral fibers is increased.
- the convex shape of the upper face 6 of the ski makes it possible to arrange the upper blade of mechanical resistance 11 at an average distance 0.5 x (Y1 + Z1) greater than the average distance 0, 5 x (Y + Z) possible in a structure with rectangular section as shown in FIG. 6. Thanks to this increase in distance, the invention makes it possible to significantly reduce the thickness E1 and the width B1, and therefore the volume and the weight of the upper blade of mechanical strength 11 for equivalent performance compared to a traditional structure with rectangular section of thickness E and width B. It is possible, for example, to provide an upper blade of mechanical strength 11 whose width B1 is less than the width B of the blade required in a traditional structure with rectangular section, for the same thicknesses E1 and E. It follows that the total weight of the ski according to the present invention can be less than the weight of a traditional ski with rectangular or trapezoidal section.
- the particular shape of the ski according to the invention is used to increase its torsional rigidity.
- the ski comprises a box structure, formed of a central core 13 surrounded by a tubular element 14 of mechanical strength.
- the tubular element 14 has an outer surface which is close to the outer surface of the ski and substantially parallel thereto, or which can constitute the outer surface of the ski itself.
- the cross section of the tubular element is convex, for example rounded convex at least in the portion corresponding to the upper face 6 of the ski, so that the general section of the tubular element approaches a section circular, giving the tubular element better torsional rigidity.
Landscapes
- Footwear And Its Accessory, Manufacturing Method And Apparatuses (AREA)
- Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
- Silicon Compounds (AREA)
- Fittings On The Vehicle Exterior For Carrying Loads, And Devices For Holding Or Mounting Articles (AREA)
- Hybrid Cells (AREA)
- Road Paving Structures (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Toys (AREA)
Description
- La présente invention concerne les skis utilisés en sport d'hiver, et destinés à glisser sur la neige et la glace.
- Les skis généralement utilisés comportent une face inférieure de glissement se raccordant à deux faces latérales selon deux arêtes inférieures munies de carres métalliques, les faces latérales se raccordant à une face supérieure. Les skis ont une largeur relativement petite par rapport à leur longueur, leur extrémité antérieure étant recourbée vers le haut pour former une spatule. L'épaisseur du ski est généralement plus importante dans la partie centrale que dans les parties antérieure et postérieure du ski. Dans les formes conventionnelles les plus généralement utilisées, la largeur de la face inférieure du ski est plus petite dans la partie centrale que dans les parties postérieure et antérieure, la largeur étant maximale en partie antérieure du ski, c'est-à-dire au voisinage de la spatule.
- Dans les structures connues de ski, la face supérieure du ski est généralement une surface réglée, c'est-à-dire définie par le déplacement longitudinal d'une ligne droite transversale parallèle à la face inférieure du ski. En d'autres termes, la section transversale du ski est généralement un rectangle ou un trapèze, les grands côtés opposés du rectangle ou du trapèze étant formés par la face inférieure et la face supérieure du ski, les petits côtés opposés du rectangle ou du trapèze étant formés par les faces latérales du ski.
- L'épaisseur plus importante du ski dans la zone centrale confère à cette zone centrale une rigidité accrue. Cette zone centrale est également destinée à recevoir les fixations pour l'adaptation d'une chaussure d'utilisateur. Par contre, les zones antérieure et postérieure du ski, qui présentent une épaisseur réduite, sont plus flexibles et se déforment élastiquement lors de l'utilisation du ski. Si l'on veut réaliser un ski présentant une bonne souplesse dans les zones antérieure et postérieure, il est donc nécessaire de prévoir de telles zones antérieure et postérieure présentant une épaisseur plus réduite.
- Un premier problème rencontré dans les structures traditionnelles de ski est que la zone centrale du ski, qui présente une épaisseur relativement importante pour lui conférer une grande rigidité, provoque une augmentation assez sensible du poids du ski.
- Un second problème rencontré dans les structures connues de ski est que l'épaisseur nécessaire du ski, pour obtenir une résistance mécanique suffisante, conduit à avoir des faces latérales de ski présentant une hauteur relativement importante. Cette hauteur relativement importante des faces latérales confère au ski une apparence relativement lourde, et constitue une face d'appui latérale de surface importante s'opposant à la pénétration latérale du ski dans la neige, freinant ainsi les mouvements latéraux du ski en virage ou en dérapage.
- Un autre problème rencontré dans les structures connues de ski est que la partie centrale du ski présente une largeur relativement réduite par rapport aux parties d'extrémité du ski, de sorte que la chaussure de ski adaptée sur les fixations en zone centrale du ski déborde généralement de part et d'autre du ski. Il en résulte que, lors de la conduite d'un virage, le ski et la chaussure étant inclinés par rapport au sol, le bord de chaussure intérieur au virage est rapproché du sol et tend à le toucher, ce qui risque de freiner la progression du skieur et de perturber l'efficacité de l'appui sur carres.
- Le document FR-A-2 565 836 concerne une structure monobloc de ski qui comprend un caisson renforcé de profil biconvexe s'appuyant sur une paire de carres. Une telle forme rend la structure sensitive à diverses sollicitations (flexion, torsion, compression verticale, microdéformations...).
- La présente invention se propose de remédier aux inconvénients précités par la conception d'une nouvelle forme de ski. La forme du ski est évolutive en fonction de la portion longitudinale considérée le long du ski, et cette forme évolutive est telle que l'on peut donner au ski une hauteur réelle accrue tout en diminuant la hauteur des chants ou faces latérales du ski, donnant au ski l'apparence d'un ski moins épais, et favorisant la pénétration latérale du ski dans la neige.
- La forme évolutive du ski selon l'invention est telle que l'on peut simultanément donner aux zones d'extrémité du ski une souplesse accrue sans réduire exagérément la hauteur des chants du ski dans lesdites zones d'extrémité, de façon à conserver une résistance mécanique suffisante de la partie supportant les carres inférieures du ski.
- Simultanément, la structure de ski selon l'invention a pour effet de réhausser la zone d'appui de chaussure par rapport à la surface inférieure de glisse du ski, favorisant le dégagement de la semelle de chaussure par rapport au sol lors de la conduite des virages, sans pour autant augmenter le volume et le poids du ski par rapport à une structure traditionnelle à section rectangulaire ou trapézoïdale.
- Dans certains modes de réalisation, il est en outre possible de mettre à profit la forme extérieure particulière du ski selon l'invention, pour conférer au ski des propriétés de résistance mécanique accrue en flexion dans la zone centrale, et/ou des propriétés de résistance mécanique accrue en torsion sur toute la longueur du ski, sans pour autant augmenter le volume et le poids du ski par rapport à une structure traditionnelle à section rectangulaire ou trapézoïdale.
- Pour atteindre ces objets ainsi que d'autres, le ski selon l'invention est tel que :
- la face supérieure présente, en coupe transversale, sur au moins la plus grande partie de la longueur du ski, une forme convexe,
- ladite forme convexe de coupe transversale de face supérieure est identique à ou peu différente d'un cercle passant par la partie centrale et les extrémités de la forme convexe, le rayon du cercle définissant le rayon moyen RM de ladite coupe transversale,
- ledit rayon moyen RM de coupe transversale de face supérieure varie en fonction de la position longitudinale de coupe transversale considérée le long du ski,
- ledit rayon moyen RM prend dans la zone centrale de ski des valeurs inférieures aux valeurs dudit rayon moyen RM dans l'une au moins des zones d'extrémité antérieure et postérieure du ski.
- Selon un mode de réalisation avantageux, le ski comprend, sur la plus grande partie de sa longueur, une lame supérieure de résistance mécanique disposée au voisinage de la face supérieure du ski dans sa zone médiane proche du plan vertical longitudinal médian du ski, de sorte que la distance entre ladite lame supérieure et le plan des fibres horizontales neutres du ski varie en fonction du rayon moyen RM de face supérieure du ski, et ladite lame est ainsi plus éloignée du plan des fibres neutres dans les zones à rayon moyen RM faible, et est plus proche du plan des fibres neutres dans les zones à rayon moyen RM plus grand.
- Selon un autre mode de réalisation, le ski comprend une structure en caisson, formée d'un noyau central entouré d'un élément tubulaire de résistance mécanique, l'élément tubulaire ayant une surface extérieure proche de la surface extérieure du ski et sensiblement parallèle à celle-ci, de sorte que la section transversale de l'élément tubulaire est arrondie pour suivre la forme convexe de la face supérieure du ski, conférant à l'élément tubulaire une meilleure rigidité en torsion.
- D'autres objets, caractéristiques et avantages de la présente invention ressortiront de la description suivante de modes de réalisation particuliers, faite en relation avec les figures jointes, parmi lesquelles :
- la figure 1 est une vue schématique de dessus d'un ski selon la présente invention ;
- la figure 2 est une vue schématique de côté d'un ski selon la présente invention, les dimensions et déformations dans le sens de l'épaisseur du ski ayant été volontairement représentées à plus grande échelle que la longueur du ski, dans un but de compréhension de l'invention ;
- les figures 3 à 5 représentent respectivement la silhouette des coupes transversales du ski selon la présente invention selon les plans A-A, B-B, C-C mentionnnés sur les figures 1 et 2 ;
- la figure 6 représente schématiquement une coupe transversale d'un ski traditionnel à section rectangulaire muni d'une lame supérieure de résistance mécanique ;
- la figure 7 illustre schématiquement une structure de ski selon l'invention, en coupe transversale montrant une lame de résistance mécanique supérieure ;
- la figure 8 est une coupe schématique transversale d'un ski selon un mode de réalisation avantageux de l'invention ; et
- la figure 9 illustre les variations de courbures de face supérieure d'un ski selon un mode de réalisation de l'invention, dans les zones antérieure, centrale et postérieure du ski.
- Comme le représentent les figures, le ski selon l'invention comporte une face inférieure de glissement 1 se raccordant à deux faces latérales 2 et 3 selon deux arêtes inférieures respectives 4 et 5 munies de carres métalliques. Les faces latérales 2 et 3 se raccordent à une face supérieure 6. L'extrémité antérieure du ski est recourbée vers le haut pour former une spatule 7. L'extrémité postérieure du ski est légèrement recourbée vers le haut pour former le talon 8. Le ski peut notamment comprendre un embout de spatule 7 et un protège talon 8, fixés par tous moyens tels que encliquetage, collage ou autres.
- Les faces latérales 2 et 3 du ski, dans le mode de réalisation représenté sur les figures 3 à 5, sont inclinées par rapport à la perpendiculaire à la face inférieure 1 du ski, selon un angle A sensiblement constant. Dans le mode de réalisation représenté sur les figures 7 et 8, les faces latérales 2 et 3 du ski sont sensiblement perpendiculaires à la face inférieure 1. En réalité, dans un ski selon l'invention, on peut choisir un angle A voisin de zéro degré comme dans le mode de réalisation des figures 7 et 8, ou un angle A voisin de cinq degrés et constant comme dans le mode de réalisation des figures 3 à 5, ou un angle A dont la valeur est évolutive en fonction de la position longitudinale considérée le long du ski. Par exemple, l'angle A peut être plus grand au voisinage des extrémités du ski, sur les coupes A-A de la figure 3 ou C-C de la figure 5, que dans la zone centrale du ski sur la coupe B-B de la figure 4.
- Les faces latérales 2 et 3 du ski se raccordent à la face supérieure 6 par des arêtes latérales supérieures 9 et 10 à section transversale arrondie de rayon RL. Le rayon RL présente avantageusement une valeur inférieure à 6 millimètres.
- La face supérieure 6 du ski selon l'invention présente, en coupe transversale, sur au moins la plus grande partie de la longueur du ski, une forme convexe, par exemple arrondie. Cette forme convexe de coupe transversale de face supérieure 6 de ski est une ligne supérieure dont la partie centrale constitue un sommet et dont les deux extrémités sont inclinées d'un angle inférieur à 60 degrés environ par rapport à la face inférieure du ski. Ladite ligne supérieure présente une forme identique à ou peu différente d'un cercle, c'est-à-dire qu'elle s'écarte relativement peu du cercle passant par ledit sommet et lesdites extrémités. Ledit cercle qui approxime le mieux la forme convexe de coupe transversale de face supérieure du ski présente un rayon appelé rayon moyen RM de coupe transversale.
- Le rayon moyen RM de coupe transversale varie en fonction de la position longitudinale de coupe transversale considérée le long du ski. Les valeurs que prend le rayon moyen RM dans la zone centrale du ski sont inférieures aux valeurs que prend le rayon moyen RM dans l'une au moins des zones d'extrémité antérieure ou postérieure du ski.
- Dans les modes de réalisation qui ont été représentés sur les figures, la forme convexe de coupe transversale de face supérieure de ski est sensiblement identique à un cercle, c'est-à-dire que sa courbure est sensiblement constante sur toute la largeur de la section transversale. Ce mode de réalisation confère une certaine régularité de surface supérieure.
- Cependant, l'invention s'applique également à d'autres formes convexes de coupe transversale de face supérieure. Par exemple, on peut définir une face supérieure de forme plus élliptique, avec une partie centrale dont la courbure est plus faible que la courbure des zones latérales de face supérieure. Il faut cependant éviter que la courbure des zones latérales de face supérieure soit trop importante, car on se rapproche alors d'un rectangle, et l'on perd les avantages de l'invention.
- On peut également concevoir une face supérieure de ski dont la coupe transversale est une ligne polygonale proche du cercle de rayon moyen RM, par exemple une ligne à trois segments, avec un segment central sensiblement parallèle à la face inférieure du ski et deux segments latéraux inclinés.
- Dans tous les cas, que ce soit une ligne elliptique, une ligne polygonale ou toute autre forme, ladite forme convexe de coupe transversale de face supérieure de ski doit rester peu différente d'un cercle passant par sa partie centrale et ses extrémités.
- Dans le mode de réalisation avantageux représenté sur les figures 3 à 5, les valeurs que prend le rayon moyen RM dans la zone centrale du ski, représentée sur la figure 4, sont inférieures aux valeurs dudit rayon moyen RM dans la zone d'extrémité antérieure du ski, représentée sur la figure 3, et sont inférieures aux valeurs que prend ledit rayon moyen RM dans la zone d'extrémité postérieure du ski, représentée sur la figure 5. Egalement, le rayon moyen maximum REA dans la zone d'extrémité antérieure du ski est avantageusement supérieur au rayon moyen maximum REP dans la zone d'extrémité postérieure du ski.
- En alternative, pour rechercher d'autres effets, on pourrait prévoir que le rayon moyen maximum REA dans la zone d'extrémité antérieure du ski est inférieur au rayon moyen maximum REP dans la zone postérieure du ski.
- Les fixations de ski, destinées à assujettir une chaussure de ski sur la face supérieure 6 du ski, sont généralement disposées dans la zone centrale du ski ou un peu en arrière du milieu du ski dans la zone représentée sur les figures 1 et 2 entre les plans de coupe transversaux F-F et G-G. Selon les cas, et en particulier en fonction de la dimension des chaussures de ski de l'utilisateur, les fixations sont fixées sur la face supérieure du ski en des positions longitudinales qui peuvent différer d'un cas à l'autre, et qui se situent dans une zone de longueur comprise entre 40 et 60 centimètres environ. Pour faciliter le positionnement des fixations sur la face supérieure du ski, on peut avantageusement prévoir que le rayon moyen RM de section transversale garde une valeur sensiblement constante RC dans toute la zone centrale comprise entre les plans F-F et G-G. On peut ainsi prévoir des fixations dont la face inférieure d'appui est conformée pour s'appliquer exactement sur la face supérieure de ski, quelle que soit la position longitudinale dans la zone centrale destinée à recevoir les fixations.
- On peut avantageusement prévoir une courbure de face supérieure de ski telle que :
- le rayon moyen RM dans la zone centrale du ski soit compris entre 70 et 90 millimètres environ ;
- le rayon moyen maximum REA dans la zone antérieure du ski soit compris entre 120 et 155 millimètres environ ;
- le rayon moyen maximum REP dans la zone postérieure du ski soit compris entre 108 et 138 millimètres environ.
- La figure 9 illustre les variations de rayon moyen RM, ou de courbure, de la section transversale de face supérieure du ski en fonction de la position longitudinale de la coupe transversale considérée. La courbre 20 représente le profil transversal de la face supérieure de ski dans la zone centrale du ski. Dans cette zone centrale, la courbure est constante, et, pour suivre les variations de largeur du ski, la courbe s'arrête aux extrémités 21 et 22 dans la partie la plus étroite du ski, et se prolonge jusqu'aux extrémités 23 et 24 dans les sections transversales de partie centrale de ski plus proche des extrémités du ski. La courbe 30 représente le profil transversal de face supérieure de ski dans la zone de talon. La courbe 40 représente le profil transversal de face supérieure de ski dans la zone de spatule.
- De préférence, pour éviter les discontinuités de forme, le rayon moyen RM de face supérieure 6 de ski varie de façon continue en fonction de la position longitudinale de coupe transversale considérée le long du ski, depuis la valeur RC dans la zone centrale du ski, jusqu'aux maximums REA et REP des zones antérieure et postérieure du ski.
- Le rayon moyen RM de face supérieure de ski varie en fonction de la position longitudinale de la coupe transversale considérée, car pour obtenir la flexibilité voulue, l'épaisseur du ski doit s'amenuiser plus on s'approche des extrémités. Et, comme le ski s'élargit en même temps, la face supérieure 6 doit s'aplatir de plus en plus d'une façon progressive, pour éviter de trop diminuer la hauteur des chants au voisinage des extrémités. Il en résulte que l'on a intérêt à augmenter de façon continue la valeur du rayon moyen RM lorsque l'on se rapproche des extrémités.
- Grâce à la forme arrondie convexe de la face supérieure 6 de ski, notamment dans la zone centrale de ski représentée sur la figure 4, on comprend que l'on obtient une hauteur H1 du ski relativement importante et une hauteur H2 des chants du ski relativement faible, pour une même section transversale de ski, par rapport à la hauteur H constante obtenue dans le cas d'un ski à section rectangulaire tel que représenté sur la figure 6. Ainsi, par rapport à un ski traditionnel à section rectangulaire, pour une même section et donc un même poids, le ski selon la présente invention permet d'augmenter la hauteur H1 ou distance de la semelle de chaussure par rapport au sol, et permet de diminuer simultanément la hauteur H2 des chants ou faces latérales 2 et 3 du ski.
- Selon l'invention, on peut avantageusement mettre à profit la forme particulière convexe de la face supérieure 6 du ski pour adapter des moyens particuliers de structure interne du ski conférant au ski une rigidité accrue.
- Par exemple, sur la figure 7, la structure interne du ski comprend une lame supérieure de résistance mécanique 11, d'épaisseur E1 et de largeur B1, disposée à proximité de la face supérieure 6 du ski. La lame supérieure de résistance mécanique 11 a pour effet de conférer au ski une rigidité suffisante pour s'opposer correctement à la flexion du ski dans le sens longitudinal. Lors d'une flexion, le ski réagit comme une poutre et se forme en arc, les fibres situées vers l'intérieur de l'arc tendant à se raccourcir, les fibres situées vers l'extérieur de l'arc tendant à s'allonger, et l'on peut définir un plan moyen 12 contenant les fibres neutres c'est-à-dire les fibres dont la longueur n'est pas sensiblement modifiée lors de la flexion. L'effet de rigidification obtenu par la lame supérieure de résistance mécanique 11 dépend naturellement de l'épaisseur E1 et de la largeur B1 de la lame, ainsi que de la nature du matériau utilisé pour former cette lame, mais dépend également de manière très importante de la distance moyenne 0,5 x (Y1 + Z1) entre cette lame 11 et le plan 12 des fibres neutres. La rigidité obtenue est ainsi fortement augmentée lorsque l'on augmente la distance Y1 entre ladite lame 11 et le plan 12 des fibres neutres.
- Dans le cas de la présente invention, la forme convexe de la face supérieure 6 du ski, permet de disposer la lame supérieure de résistance mécanique 11 à une distance moyenne 0,5 x (Y1 + Z1) plus grande que la distance moyenne 0,5 x (Y + Z) possible dans une structure à section rectangulaire telle que représentée sur la figure 6. Grâce à cette augmentation de distance, l'invention permet de réduire sensiblement l'épaisseur E1 et la largeur B1, et donc le volume et le poids de la lame supérieure de résistance mécanique 11 pour une performance équivalente par rapport à une structure traditionnelle à section rectangulaire d'épaisseur E et de largeur B. On peut, par exemple, prévoir une lame supérieure de résistance mécanique 11 dont la largeur B1 est inférieure à la largeur B de la lame nécessaire dans une structure traditionnelle à section rectangulaire, pour des mêmes épaisseurs E1 et E. Il en résulte que le poids total du ski selon la présente invention peut être inférieur au poids d'un ski traditionnel à section rectangulaire ou trapézoïdale.
- Dans le mode de réalisation de la figure 8, on met à profit la forme particulière du ski selon l'invention pour augmenter sa rigidité en torsion. Dans ce cas, le ski comprend une structure en caisson, formée d'un noyau central 13 entouré d'un élément tubulaire 14 de résistance mécanique. L'élément tubulaire 14 présente une surface extérieure qui est proche de la surface extérieure du ski et sensiblement parallèle à celle-ci, ou qui peut constituer la surface extérieure du ski elle-même. De cette façon, la section transversale de l'élément tubulaire est convexe, par exemple arrondie convexe au moins dans la portion correspondant à la face supérieure 6 du ski, de sorte que la section générale de l'élément tubulaire se rapproche d'une section circulaire, conférant à l'élément tubulaire une meilleure rigidité en torsion.
- La présente invention n'est pas limitée aux modes de réalisation qui ont été explicitement décrits, mais elle en inclut les diverses variantes et généralisations contenues dans le domaine des revendications ci-après.
Claims (13)
- Ski pour évolution sur neige, comportant une face inférieure de glissement (1) se raccordant à deux faces latérales (2, 3) selon deux arêtes inférieures (4, 5), les faces latérales (2, 3) se raccordant à une face supérieure (6) ;- la face supérieure (6) présentant, en coupe transversale, sur au moins la plus grande partie de la longueur du ski, une forme convexe,- ladite forme convexe de coupe transversale de face supérieure étant identique à ou peu différente d'un cercle passant par la partie centrale et les extrémités de la forme convexe, le rayon du cercle définissant le rayon moyen RM de ladite coupe transversale, caractérisé en ce que ;- ledit rayon RM de coupe transversale de face supérieure (6) varie en fonction de la position longitudinale de coupe transversale considérée le long du ski et,- ledit rayon RM prend dans la zone centrale de ski des valeurs inférieures aux valeurs dudit rayon moyen RM dans l'une au moins des zones d'extrémité antérieure et postérieure du ski.
- Ski selon la revendication 1, caractérisé en ce que le rayon moyen RM dans la zone centrale de ski est sensiblement égal à une valeur RC constante dans la partie de zone centrale (F-F ; G-G) destinée à recevoir les fixations.
- Ski selon la revendication 2, caractérisé en ce que la partie de zone centrale dans laquelle le rayon moyen RM est sensiblement égal à la valeur constance RC a une longueur comprise entre 40 et 60 centimètres.
- Ski selon l'une quelconque des revendications 1 à 3, caractérisé en ce que les valeurs que prend le rayon moyen RM dans la zone centrale sont inférieures aux valeurs dudit rayon moyen RM dans la zone d'extrémité antérieure du ski et aux valeurs dudit rayon moyen RM dans la zone d'extrémité postérieure du ski.
- Ski selon la revendication 4, caractérisé en ce que le rayon moyen maximum REA dans la zone d'extrémité antérieure du ski est supérieur au rayon moyen maximum REP dans la zone d'extrémité postérieure du ski.
- Ski selon la revendication 4, caractérisé en ce que le rayon moyen maximum REA dans la zone d'extrémité antérieure du ski est inférieur au rayon moyen maximum REP dans la zone d'extrémité postérieure du ski.
- Ski selon l'une quelconque des revendications 1 à 5, caractérisé en ce que la valeur sensiblement constante RC du rayon moyen RM dans la zone centrale du ski est comprise entre 70 et 90 millimètres.
- Ski selon l'une quelconque des revendications 1 à 7, caractérisé en ce que la valeur maximale REA du rayon moyen dans la zone antérieure du ski est comprise entre 120 et 155 millimètres.
- Ski selon l'une quelconque des revendications 1 à 8, caractérisé en ce que la valeur maximale REP du rayon moyen dans la zone postérieure du ski est comprise entre 108 et 138 millimètres.
- Ski selon l'une quelconque des revendications 1 à 9, caractérisé en ce que le rayon moyen RM de face supérieure (6) de ski varie de façon continue en fonction de la position longitudinale de coupe transversale considérée le long du ski.
- Ski selon l'une quelconque des revendications 1 à 10, caractérisé en ce que la face supérieure arrondie (6) se raccorde aux faces latérales (2, 3) par des arêtes latérales supérieures (9, 10) à section transversale arrondie de rayon RL inférieur à 6 millimètres.
- Ski selon l'une quelconque des revendications 1 à 11, caractérisé en ce qu'il comprend, sur la plus grande partie de sa longueur, une lame supérieure de résistance mécanique (11) disposée au voisinage de la face supérieure (6) du ski dans sa zone médiane proche du plan vertical longitudinal médian du ski, de sorte que la distance entre ladite lame supérieure (11) et le plan (12) des fibres horizontales neutres du ski varie en fonction du rayon moyen RM de face supérieure (6) du ski, et ladite lame (11) est ainsi plus éloignée du plan (12) des fibres neutres dans les zones à rayon moyen RM faible, et est plus proche du plan (12) des fibres neutres dans les zones à rayon moyen RM plus grand.
- Ski selon l'une quelconque des revendications 1 à 11, caractérisé en ce qu'il comprend une structure en caisson, formée d'un noyau central (13) entouré d'un élément tubulaire (14) de résistance mécanique, l'élément tubulaire ayant une surface extérieure proche de la surface extérieure du ski et sensiblement parallèle à celle-ci, de sorte que la section transversale de l'élément tubulaire (14) est arrondie pour suivre la forme convexe de la face supérieure (6) du ski, conférant à l'élément tubulaire (14) une meilleure rigidité en torsion.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9010228 | 1990-08-06 | ||
FR9010228A FR2665369B1 (fr) | 1990-08-06 | 1990-08-06 | Ski a face superieure convexe variable. |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0470347A1 EP0470347A1 (fr) | 1992-02-12 |
EP0470347B1 true EP0470347B1 (fr) | 1994-09-21 |
Family
ID=9399596
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP91110208A Expired - Lifetime EP0470347B1 (fr) | 1990-08-06 | 1991-06-21 | Ski à face supérieure convexe variable |
Country Status (6)
Country | Link |
---|---|
US (1) | US5244227A (fr) |
EP (1) | EP0470347B1 (fr) |
JP (1) | JPH04244177A (fr) |
AT (1) | ATE111755T1 (fr) |
DE (1) | DE69104156T2 (fr) |
FR (1) | FR2665369B1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9216343B2 (en) | 2005-12-09 | 2015-12-22 | Hansjürg Kessler | Snowboard |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5375868A (en) * | 1993-03-03 | 1994-12-27 | Sarver; Jeff | Ski having compound curve undersurface |
FR2705905B1 (fr) * | 1993-06-02 | 1995-07-07 | Rossignol Sa | Ski à profil perfectionné. |
US5405161A (en) * | 1994-02-04 | 1995-04-11 | Dennis Young | Alpine ski with exaggerated tip and tail |
EP0940160B1 (fr) * | 1998-03-06 | 2005-06-01 | Jean-Claude Bibollet | Véhicule glissant pour sport de neige |
FR2799659B1 (fr) * | 1999-10-14 | 2002-01-11 | Rossignol Sa | Planche de glisse |
US6955236B2 (en) * | 2002-06-21 | 2005-10-18 | Starting Line Products, Inc. | Snowmobile ski |
DE102008034293A1 (de) * | 2008-07-22 | 2010-01-28 | Marker Völkl (International) GmbH | Ski, insbesondere Abfahrtski |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2126613A5 (fr) * | 1971-02-12 | 1972-10-06 | Sactra Sa | |
DE3236016A1 (de) * | 1982-09-29 | 1984-04-12 | Hubert Dipl.-Ing. Architekt 7833 Endingen Brinckemper | Hohlkoerper-ski |
FR2565836A1 (fr) * | 1983-11-25 | 1985-12-20 | Cheramy Sylvain | Structure monobloc de ski a profil bi-convexe |
FR2652507B1 (fr) * | 1989-09-29 | 1991-12-13 | Rossignol Sa | Ski de neige, procede pour sa fabrication et dispositif pour la mise en óoeuvre de ce procede. |
-
1990
- 1990-08-06 FR FR9010228A patent/FR2665369B1/fr not_active Expired - Fee Related
-
1991
- 1991-06-21 DE DE69104156T patent/DE69104156T2/de not_active Expired - Fee Related
- 1991-06-21 AT AT91110208T patent/ATE111755T1/de not_active IP Right Cessation
- 1991-06-21 EP EP91110208A patent/EP0470347B1/fr not_active Expired - Lifetime
- 1991-07-22 US US07/733,649 patent/US5244227A/en not_active Expired - Fee Related
- 1991-08-06 JP JP3196272A patent/JPH04244177A/ja not_active Withdrawn
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9216343B2 (en) | 2005-12-09 | 2015-12-22 | Hansjürg Kessler | Snowboard |
Also Published As
Publication number | Publication date |
---|---|
FR2665369A1 (fr) | 1992-02-07 |
FR2665369B1 (fr) | 1992-10-16 |
DE69104156T2 (de) | 1995-01-19 |
ATE111755T1 (de) | 1994-10-15 |
US5244227A (en) | 1993-09-14 |
JPH04244177A (ja) | 1992-09-01 |
EP0470347A1 (fr) | 1992-02-12 |
DE69104156D1 (de) | 1994-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0622096B1 (fr) | Planche de surf de neige | |
EP0465794B1 (fr) | Ski à face supérieure nervurée | |
EP0628327B1 (fr) | Ski alpin à profil perfectionné | |
FR2598932A1 (fr) | Ski profile dissymetrique | |
EP0470347B1 (fr) | Ski à face supérieure convexe variable | |
EP0977502A1 (fr) | Chaussure comportant un insert grind | |
FR2686520A1 (fr) | Perfectionnement pour ski comprenant une plateforme centrale en saillie. | |
EP0473898B1 (fr) | Ski de fond, notamment pour la pratique du pas alternatif | |
EP0439713B1 (fr) | Ski de fond pour patinage | |
EP0855201B1 (fr) | Planche de glisse | |
CH672259A5 (fr) | ||
EP0373083B1 (fr) | Ski alpin | |
CH673227A5 (fr) | ||
EP0571763B1 (fr) | Ski de slalom et embout destiné à un tel ski | |
CH668000A5 (fr) | Ski. | |
FR2773998A1 (fr) | Planche de glisse comportant une plateforme rigide de surelevation | |
FR2848466A1 (fr) | Ski alpin | |
FR2664172A1 (fr) | Ski a face superieure nervuree. | |
FR2804343A1 (fr) | Spatule pour engin de portance | |
FR2722418A1 (fr) | Ski alpin en forme et a profil evolutif ameliore | |
FR2659562A1 (fr) | Planche de neige de type ski alpin ou surf de neige. | |
WO1995016505A1 (fr) | Plaque d'appui pour une chaussure, notamment une chaussure de ski | |
FR2674443A1 (fr) | Ski a face superieure nervuree. | |
FR2805471A1 (fr) | Ski | |
FR2848465A1 (fr) | Ski alpin |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT CH DE LI |
|
17P | Request for examination filed |
Effective date: 19920730 |
|
17Q | First examination report despatched |
Effective date: 19930908 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT CH DE LI |
|
REF | Corresponds to: |
Ref document number: 111755 Country of ref document: AT Date of ref document: 19941015 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 69104156 Country of ref document: DE Date of ref document: 19941027 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Effective date: 19950630 Ref country code: CH Effective date: 19950630 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19950726 Year of fee payment: 5 |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19970301 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20040611 Year of fee payment: 14 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050621 |