EP0369235B1 - Matériau d'enregistrement photographique - Google Patents

Matériau d'enregistrement photographique Download PDF

Info

Publication number
EP0369235B1
EP0369235B1 EP89120154A EP89120154A EP0369235B1 EP 0369235 B1 EP0369235 B1 EP 0369235B1 EP 89120154 A EP89120154 A EP 89120154A EP 89120154 A EP89120154 A EP 89120154A EP 0369235 B1 EP0369235 B1 EP 0369235B1
Authority
EP
European Patent Office
Prior art keywords
compounds
silver halide
color
couplers
alkyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89120154A
Other languages
German (de)
English (en)
Other versions
EP0369235A1 (fr
Inventor
Hans Dr. Vetter
Hans Dr. Öhlschläger
Heinrich Dr. Odenwälder
Bernhard Dr. Morcher
Friedhelm Dipl.-Chem. Sommer
Lothar Dr. Rosenhahn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Agfa Gevaert AG
Original Assignee
Agfa Gevaert AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agfa Gevaert AG filed Critical Agfa Gevaert AG
Publication of EP0369235A1 publication Critical patent/EP0369235A1/fr
Application granted granted Critical
Publication of EP0369235B1 publication Critical patent/EP0369235B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/005Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
    • G03C1/06Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein with non-macromolecular additives
    • G03C1/34Fog-inhibitors; Stabilisers; Agents inhibiting latent image regression
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/005Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
    • G03C1/06Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein with non-macromolecular additives
    • G03C1/34Fog-inhibitors; Stabilisers; Agents inhibiting latent image regression
    • G03C1/346Organic derivatives of bivalent sulfur, selenium or tellurium

Definitions

  • the invention relates to a photographic recording material with a layer support and at least one photosensitive silver halide emulsion layer arranged thereon.
  • the material contains special triazoles as antifoggants.
  • antifoggants or stabilizers to photographic silver halide emulsions to reduce the formation of fog, e.g. B. heterocyclic compounds containing sulfur, for example in the form of a mercapto group.
  • German interpretation documents 1 183 371 (GB 1 067 066), 1 189 380 (US 3 364 028 and 3 365 294), 1 597 503 (US 3 615 617), DE 1 979 027, to the German published documents 1 522 363 (GB 1 186 441), 2 042 533 (US 3 761 278), 2 130 031 and 2 308 530.
  • these compounds are used to adapt the sensitivity of the emulsions to the specified standard in the event of production fluctuations.
  • the object of the invention was now to develop a photographic recording material in which the sensitivity of the silver halide emulsions in the event of production fluctuations can be regulated in accordance with the specified standard without a gradation flattening occurring at the same time.
  • Examples of cations of a metal atom according to group A are Na ⁇ , K ⁇ , Mg 2 ⁇ and Zn 2 ⁇ ; a cation of a non-metal radical represents, for example, NH4 ⁇ .
  • Suitable heteroaryl radicals are, for example: thiophene, furan, 1,2,4-triazole and pyridine.
  • Suitable substituents of the radicals R1, R2 and R3 are conventional substituents in the field of photographic antifoggants, such as halogen, in particular chlorine or bromine, C1-C4-alkoxy groups, C1-C4-alkoxycarbonyl, C6-C10-aryloxycarbonyl and C1-C4-alkylcarbonyloxy.
  • Aryl and heteroaryl can also be substituted with C1-C8 alkyl.
  • Suitable examples are the following compounds according to the invention, in which group A each represents hydrogen.
  • the antifoggants according to the invention are used in an amount of 10 ⁇ 5 to 10 ⁇ 2, preferably 1 to 5 x 10 x3 mol per mol of silver halide.
  • the alcohol component of the ester can be exchanged by transesterification with sodium alcoholate catalysis at 60 to 100 ° C.
  • 5-Mercapto-1,2,3-triazole can be used, for example, to obtain alkylthio-1,2,3-triazoles by alkylation with alkyl bromides.
  • 1,2,4-triazole-substituted 1,2,3-triazoles can be prepared in a conventional manner by ring-closing reaction of a 1,2,3-triazolecarboxylic acid ester with thiosemicarbazide.
  • photographic materials are black and white films, color negative films, color reversal films, color positive films, color photographic paper, color reversal photographic paper, color sensitive materials for the color diffusion transfer process or the silver color bleaching process.
  • Color photographic recording materials with a transparent layer support and at least three light-sensitive silver halide emulsion layers of different spectral sensitivity arranged thereon, to which a yellow coupler, a magenta coupler and a cyan coupler are each spectrally assigned, are preferred.
  • Suitable supports for the production of color photographic materials are, for example, films and foils of semisynthetic and synthetic polymers, such as cellulose nitrate, cellulose acetate, cellulose butyrate, polystyrene, polyvinyl chloride, polyethylene terephthalate and polycarbonate, and paper laminated with a baryta layer or ⁇ -olefin polymer layer (eg polyethylene).
  • These carriers can be colored with dyes and pigments, for example titanium dioxide. They can also be colored black for the purpose of shielding light.
  • the surface of the support is generally subjected to a treatment in order to improve the adhesion of the photographic emulsion layer, for example a corona discharge with subsequent application of a substrate layer.
  • the color photographic materials usually contain at least one red-sensitive, green-sensitive and blue-sensitive silver halide emulsion layer and, if appropriate, intermediate layers and protective layers.
  • Binding agents, silver halide grains and color couplers are essential components of the photographic emulsion layers.
  • Gelatin is preferably used as the binder. However, this can be replaced in whole or in part by other synthetic, semi-synthetic or naturally occurring polymers.
  • Synthetic gelatin substitutes are, for example, polyvinyl alcohol, poly-N-vinylpyrrolidone, polyacrylamides, polyacrylic acid and their derivatives, in particular their copolymers.
  • Naturally occurring gelatin substitutes are, for example, other proteins such as albumin or casein, cellulose, starch or alginates.
  • Semi-synthetic gelatin substitutes are usually modified natural products.
  • Cellulose derivatives such as hydroxyalkyl cellulose, carboxymethyl cellulose and phthalyl cellulose and gelatin derivatives, which have been obtained by reaction with alkylating or acylating agents or by grafting on polymerizable monomers, are examples of this.
  • the binders should have a sufficient amount of functional groups so that enough resistant layers can be produced by reaction with suitable hardening agents.
  • Such functional Groups are in particular amino groups, but also carboxyl groups, hydroxyl groups and active methylene groups.
  • the gelatin which is preferably used can be obtained by acidic or alkaline digestion. Oxidized gelatin can also be used. The production of such gelatins is described, for example, in The Science and Technology of Gelatine, published by A.G. Ward and A. Courts, Academic Press 1977, page 295 ff.
  • the gelatin used in each case should contain the lowest possible level of photographically active impurities (inert gelatin). High viscosity, low swelling gelatins are particularly advantageous.
  • the silver halide present as a light-sensitive component in the photographic material can contain chloride, bromide or iodide or mixtures thereof as the halide.
  • the halide content of at least one layer can consist of 0 to 15 mol% of iodide, 0 to 100 mol% of chloride and 0 to 100 mol% of bromide.
  • silver bromide iodide emulsions are usually used; in the case of color negative and color reversal paper, silver chloride bromide emulsions are usually used. It can be predominantly compact crystals, which are, for example, regularly cubic or octahedral or can have transitional forms.
  • platelet-shaped crystals can preferably also be present, whose average ratio of diameter to thickness is preferably at least 5: 1, the diameter of a grain being defined as the diameter of a circle with a circle content corresponding to the projected area of the grain.
  • the layers can also have tabular silver halide crystals in which the ratio of diameter to thickness is substantially greater than 5: 1, for example 12: 1 to 30: 1.
  • the silver halide grains can also have a multi-layered grain structure, in the simplest case with an inner and an outer grain area (core / shell), the halide composition and / or other modifications, such as e.g. Doping of the individual grain areas are different.
  • the average grain size of the emulsions is preferably between 0.2 ⁇ m and 2.0 ⁇ m, the grain size distribution can be either homodisperse or heterodisperse. Homodisperse grain size distribution means that 95% of the grains do not deviate from the mean grain size by more than ⁇ 30%.
  • the emulsions can also contain organic silver salts, e.g. Silver benzotriazolate or silver behenate.
  • Two or more kinds of silver halide emulsions, which are prepared separately, can be used as a mixture.
  • the photographic emulsions can be prepared using various methods (e.g. P. Glafkides, Chimie et Physique Photographique, Paul Montel, Paris (1967), GF Duffin, Photographic Emulsion Chemistry, The Focal Press, London (1966), VL Zelikman et al, Making and Coating Photographic Emulsions, The Focal Press, London (1966) from soluble silver salts and soluble halides.
  • various methods e.g. P. Glafkides, Chimie et Physique Photographique, Paul Montel, Paris (1967), GF Duffin, Photographic Emulsion Chemistry, The Focal Press, London (1966), VL Zelikman et al, Making and Coating Photographic Emulsions, The Focal Press, London (1966) from soluble silver salts and soluble halides.
  • the silver halide is preferably precipitated in the presence of the binder, for example the gelatin, and can be carried out in the acidic, neutral or alkaline pH range, silver halide complexing agents preferably being additionally used.
  • the latter include, for example, ammonia, thioether, imidazole, ammonium thiocyanate or excess halide.
  • the water-soluble silver salts and the halides are combined either in succession by the single-jet process or simultaneously by the double-jet process or by any combination of the two processes. Dosing with increasing inflow rates is preferred, the "critical" feed rate, at which no new germs are being produced, should not be exceeded.
  • the pAg range can vary within wide limits during the precipitation, preferably the so-called pAg-controlled method is used, in which a certain pAg value is kept constant or a defined pAg profile is traversed during the precipitation.
  • so-called inverse precipitation with an excess of silver ions is also possible.
  • the silver halide crystals can also grow by physical ripening (Ostwald ripening) in the presence of excess halide and / or silver halide complexing agent. The growth of the emulsion grains can even predominantly through Ostwald ripening take place, preferably a fine-grained, so-called Lippmann emulsion, mixed with a sparingly soluble emulsion and redissolved on the latter.
  • Salts or complexes of metals such as Cd, Zn, Pb, Tl, Bi, Ir, Rh, Fe may also be present during the precipitation and / or physical ripening of the silver halide grains.
  • the precipitation can also be carried out in the presence of sensitizing dyes.
  • Complexing agents and / or dyes can be rendered ineffective at any time, e.g. by changing the pH or by an oxidative treatment.
  • the soluble salts are removed from the emulsion, e.g. by pasta and washing, by flakes and washing, by ultrafiltration or by ion exchangers.
  • the silver halide emulsion is generally subjected to chemical sensitization under defined conditions - pH, pAg, temperature, gelatin, silver halide and sensitizer concentration - until the optimum sensitivity and fog are reached.
  • the procedure is e.g. described by H. Frieser "The basics of photographic processes with silver halides" page 675-734, Akademische Verlagsgesellschaft (1968).
  • a reduction sensitization can be carried out with the addition of reducing agents (tin-II salts, amines, hydrazine derivatives, aminoboranes, silanes, formamidine sulfinic acid) using hydrogen, by means of low pAg (eg less than 5) and / or high pH (eg above 8) .
  • reducing agents titanium-II salts, amines, hydrazine derivatives, aminoboranes, silanes, formamidine sulfinic acid
  • the photographic emulsions may contain compounds to prevent fogging or to stabilize the photographic function during production, storage or photographic processing.
  • azaindenes preferably tetra- and penta-azaindenes
  • azaindenes are suitable, in particular those which are substituted by hydroxyl or amino groups.
  • Such connections are for example from Birr, Z. Wiss. Phot. 47 (1952), pp. 2-58.
  • salts of metals such as mercury or cadmium, aromatic sulfonic or sulfinic acids such as benzenesulfinic acid, or nitrogen-containing heterocycles such as nitrobenzimidazole, Nitroindazole, optionally substituted benzotriazoles or benzthiazolium salts can be used.
  • Heterocycles containing mercapto groups for example mercaptobenzthiazoles, mercaptobenzimidazoles, mercaptotetrazoles, mercaptothiadiazoles, mercaptopyrimidines, are particularly suitable, these mercaptoazoles also being able to contain a water-solubilizing group, for example a carboxyl group or sulfo group.
  • mercaptobenzthiazoles for example mercaptobenzthiazoles, mercaptobenzimidazoles, mercaptotetrazoles, mercaptothiadiazoles, mercaptopyrimidines
  • these mercaptoazoles also being able to contain a water-solubilizing group, for example a carboxyl group or sulfo group.
  • a water-solubilizing group for example a carboxyl group or sulfo group.
  • the stabilizers can be added to the silver halide emulsions before, during or after their ripening.
  • the compounds can also be added to other photographic layers which are assigned to a halogen silver layer.
  • the photographic emulsion layers or other hydrophilic colloid layers of the light-sensitive material produced according to the invention can contain surface-active agents for various purposes, such as coating aids, to prevent electrical charging, to improve the sliding properties, to emulsify the dispersion, to prevent adhesion and to improve the photographic characteristics (eg acceleration of development, high contrast, sensitization etc.).
  • surface-active agents for various purposes, such as coating aids, to prevent electrical charging, to improve the sliding properties, to emulsify the dispersion, to prevent adhesion and to improve the photographic characteristics (eg acceleration of development, high contrast, sensitization etc.).
  • surface-active compounds e.g. saponin
  • non-ionic surfactants e.g. alkylene oxide compounds, glycerol compounds or glycidol compounds
  • cationic surfactants e.g.
  • Acid group for example carboxylic acid, sulfonic acid, a phosphoric acid, sulfuric acid ester or phosphoric acid ester group, ampholytic surfactants, for example amino acid and aminosulfonic acid compounds as well as sulfuric or phosphoric acid esters of an amino alcohol.
  • the photographic emulsions can be spectrally sensitized using methine dyes or other dyes.
  • Particularly suitable dyes are cyanine dyes, merocyanine dyes and complex merocyanine dyes.
  • the differently sensitized emulsion layers are assigned non-diffusing monomeric or polymeric color couplers, which can be located in the same layer or in a layer adjacent to it.
  • the red-sensitive layers become cyan couplers, assigned to the green-sensitive layers of purple couplers and the blue-sensitive layers of yellow couplers.
  • white couplers are:
  • mask couplers are DIR couplers which release development inhibitors of the azole type, for example triazoles and benzotriazoles, are described in DE-A-24 14 006, 26 10 546, 26 59 417, 27 54 281, 27 26 180, 36 26 219, 36 30 564, 36 36 824, 36 44 416 and 28 42 063.
  • DIR couplers which release a development inhibitor which is decomposed into essentially photographically ineffective products in the developer bath are described, for example, in DE-A-32 09 486 and in EP-A-167 168 and 219 713. This measure ensures trouble-free development and processing consistency.
  • the DIR couplers can be added to a wide variety of layers in a multilayer photographic material, for example also light-insensitive or intermediate layers. However, they are preferably added to the light-sensitive silver halide emulsion layers, the characteristic properties of the silver halide emulsion, for example its iodide content, the structure of the silver halide grains or their grain size distribution having an influence on the photographic properties achieved.
  • the influence of the inhibitors released can be limited, for example, by incorporating an inhibitor scavenger layer in accordance with DE-A-24 31 223. For reasons of reactivity or stability, it may be advantageous to use a DIR coupler which forms in the respective layer in which it is introduced a color which is different from the color to be produced in this layer in the coupling.
  • DAR or FAR couplers can be used, which release a development accelerator or an fogger.
  • Compounds of this type are, for example, in DE-A-25 34 466, 32 09 110, 33 33 355, 34 10 616, 34 29 545, 34 41 823, in EP-A-89 834, 110 511, 118 087, 147 765 and described in US-A-4,618,572 and 4,656,123.
  • DIR couplers are: Examples of DAR couplers Since with DIR, DAR or FAR couplers mainly the effectiveness of the residue released during coupling is desired and the color-forming properties of these couplers are less important, such DIR, DAR or FAR couplers are also suitable, which give essentially colorless products on coupling (DE-A-15 47 640).
  • the cleavable residue can also be a ballast residue, so that upon reaction with color developer oxidation products coupling products are obtained which are diffusible or at least have a weak or restricted mobility (US Pat. No. 4,420,556).
  • the material may further contain compounds other than couplers, which can, for example, release a development inhibitor, a development accelerator, a bleaching accelerator, a developer, a silver halide solvent, a fogging agent or an antifoggant, for example so-called DIR-hydroquinones and other compounds, as described for example in US-A-4 636 546, 4 345 024, 4 684 604 and in DE-A-31 45 640, 25 15 213, 24 47 079 and in EP-A-198 438. These compounds perform the same function as the DIR, DAR or FAR couplers, except that they do not form coupling products.
  • couplers can, for example, release a development inhibitor, a development accelerator, a bleaching accelerator, a developer, a silver halide solvent, a fogging agent or an antifoggant, for example so-called DIR-hydroquinones and other compounds, as described for example in US-A-4 636 546, 4 345 024, 4 684 604 and in DE
  • High molecular weight color couplers are described, for example, in DE-C-1 297 417, DE-A-24 07 569, DE-A-31 48 125, DE-A-32 17 200, DE-A-33 20 079, DE-A-33 24 932, DE-A-33 31 743, DE-A-33 40 376, EP-A-27 284, US-A-4 080 211.
  • the high molecular weight color couplers are usually produced by polymerizing ethylenically unsaturated monomeric color couplers. However, they can also be obtained by polyaddition or polycondensation.
  • the couplers or other compounds can be incorporated into silver halide emulsion layers by first preparing a solution, a dispersion or an emulsion of the compound in question and then adding it to the casting solution for the layer in question. Choosing the right one Solvents or dispersants depend on the solubility of the compound.
  • Hydrophobic compounds can also be introduced into the casting solution using high-boiling solvents, so-called oil formers. Corresponding methods are described for example in US-A-2 322 027, US-A-2 801 170, US-A-2 801 171 and EP-A-0 043 037.
  • oligomers or polymers instead of the high-boiling solvents, oligomers or polymers, so-called polymeric oil formers, can be used.
  • the compounds can also be introduced into the casting solution in the form of loaded latices.
  • anionic water-soluble compounds for example of dyes
  • pickling polymers for example of cationic polymers
  • Suitable oil formers are e.g. Alkyl phthalates, phosphonic acid esters, phosphoric acid esters, citric acid esters, benzoic acid esters, amides, fatty acid esters, trimesic acid esters, alcohols, phenols, aniline derivatives and hydrocarbons.
  • oil formers are dibutylphthalate, dicyclohexylphthalate, di-2-ethylhexylphthalate, decylphthalate, triphenylphosphate, tricresylphosphate, 2-ethylhexyldiphenylphosphate, tricyclohexylphosphate, tri-2-ethylhexylphosphate, tridecoxyphosphate, 2-ethylhexylphosphate, tridecoxyphosphate, 2-ethylhexylphosphate, , 2-ethylhexyl p-hydroxybenzoate, diethyldodecanamide, N-tetradecylpyrrolidone, isostearyl alcohol, 2,4-di-tert.-amylphenol, dioctylacelate, glycerol tributyrate, isostearyl lactate, trioctyl citrate, N, N-doxy-5-butyl-2-butyl
  • Each of the differently sensitized, light-sensitive layers can consist of a single layer or can also comprise two or more silver halide emulsion partial layers (DE-C-1 121 470).
  • red-sensitive silver halide emulsion layers are often arranged closer to the support than green-sensitive silver halide emulsion layers and these are in turn closer than blue-sensitive layers, a non-light-sensitive yellow filter layer generally being located between green-sensitive layers and blue-sensitive layers.
  • green or red-sensitive layers are suitably low in their own sensitivity, other layer arrangements can be selected without the yellow filter layer, in which e.g. the blue-sensitive, then the red-sensitive and finally the green-sensitive layers follow.
  • the non-light-sensitive intermediate layers which are generally arranged between layers of different spectral sensitivity, can contain agents which prevent undesired diffusion of developer oxidation products from one light-sensitive layer into another light-sensitive layer with different spectral sensitization.
  • Suitable agents which are also called scavengers or EOP-catchers, are described in Research Disclosure 17 643 (Dec. 1978), Chapter VII, 17 842/1979, pages 94-97 and 18.716 / 1979, page 650 and in EP-A- 69,070, 98,072, 124,877, 125,522 and in US-A-463,226.
  • the photographic material can also contain UV light-absorbing compounds, whiteners, spacers, filter dyes, formalin scavengers, light stabilizers, antioxidants, D min dyes, additives to improve dye, coupler and white stabilization and to reduce the color fog, plasticizers (latices), Contain biocides and others.
  • Examples are aryl-substituted benzotriazole compounds (US-A-3 533 794), 4-thiazolidone compounds (US-A-3 314 794 and 3 352 681), benzophenone compounds (JP-A-2784/71), cinnamic acid ester compounds (US-A-3 705 805 and 3,707,375), butadiene compounds (US-A-4,045,229) or benzoxazole compounds (US-A-3,700,455).
  • Filter dyes suitable for visible light include oxonol dyes, hemioxonol dyes, styryl dyes, merocyanine dyes, cyanine dyes and azo dyes. Of these dyes, oxonol dyes, hemioxonol dyes and merocyanine dyes are used particularly advantageously.
  • Suitable whiteners are described, for example, in Research Disclosure 17,643 (Dec. 1978), Chapter V, in US-A-2,632,701, 3,269,840 and in GB-A-852,075 and 1,319,763.
  • binder layers in particular the most distant layer from the support, but also occasionally intermediate layers, especially if they are the most distant layer from the support during manufacture, may contain photographically inert particles of inorganic or organic nature, e.g. as a matting agent or as a spacer (DE-A-33 31 542, DE-A-34 24 893, Research Disclosure 17 643, (Dec. 1978), Chapter XVI).
  • photographically inert particles of inorganic or organic nature e.g. as a matting agent or as a spacer (DE-A-33 31 542, DE-A-34 24 893, Research Disclosure 17 643, (Dec. 1978), Chapter XVI).
  • the average particle diameter of the spacers is in particular in the range from 0.2 to 10 ⁇ m.
  • the spacers are water-insoluble and can be alkali-insoluble or alkali-soluble, the alkali-soluble ones generally being removed from the photographic material in the alkaline development bath.
  • suitable polymers are polymethyl methacrylate, copolymers of acrylic acid and methyl methacrylate and hydroxypropyl methyl cellulose hexahydrophthalate.
  • Suitable formalin scavengers include H2N-CONH- (CH2) 2-NH-CONH2, Additives to improve dye, coupler and whiteness stability and to reduce the color fog (Research Disclosure 17 643/1978, Chapter VII) can belong to the following chemical substance classes: hydroquinones, 6-hydroxychromanes, 5-hydroxycoumarans, spirochromanes, spiroindanes, p- Alkoxyphenols, steric hindered phenols; Gallic acid derivatives, methylenedioxybenzenes, aminophenols, sterically hindered amines, derivatives with esterified or etherified phenolic hydroxyl groups, metal complexes.
  • the layers of the photographic material can be hardened with the usual hardening agents.
  • Suitable curing agents include formaldehyde, glutaraldehyde and similar aldehyde compounds, diacetyl, cyclopentadione and similar ketone compounds, bis (2-chloroethylurea), 2-hydroxy-4,6-dichloro-1,3,5-triazine and other compounds, the reactive halogen contain (US-A-3 288 775, US-A-2 732 303, GB-A-974 723 and GB-A-1 167 207) divinyl sulfone compounds, 5-acetyl-1,3-diacryloylhexahydro-1,3,5 triazine and other compounds containing a reactive olefin bond (US-A-3 635 718, US-A-3 232 763 and GB-A-994 869); N-hydroxymethylphthalimide and other N-methylol compounds (US-A-2 732 316 and US
  • the hardening can be effected in a known manner by adding the hardening agent to the casting solution for the layer to be hardened, or by overlaying the layer to be hardened with a layer which contains a diffusible hardening agent.
  • Immediate hardeners are understood to mean compounds which crosslink suitable binders in such a way that the hardening is completed to such an extent immediately after casting, at the latest after 24 hours, preferably at the latest after 8 hours, that no further change in the sensitometry and the swelling of the layer structure occurs as a result of the crosslinking reaction .
  • Swelling is understood to mean the difference between the wet film thickness and the dry film thickness during the aqueous processing of the film (Photogr. Sci., Eng. 8 (1964), 275; Photogr. Sci. Eng. (1972), 449).
  • hardening agents which react very quickly with gelatin are, for example, carbamoylpyridinium salts which are able to react with free carboxyl groups of the gelatin, so that the latter react with free amino groups of the gelatin with the formation of peptide bonds and crosslinking of the gelatin.
  • Color photographic negative materials are usually processed by developing, bleaching, fixing and washing or by developing, bleaching, fixing and stabilizing without subsequent washing, whereby bleaching and fixing can be combined into one processing step.
  • All developer compounds which have the ability to react in the form of their oxidation product with color couplers to form azomethine or indophenol dyes can be used as the color developer compound.
  • Suitable color developer compounds are aromatic compounds of the p-phenylenediamine type containing at least one primary amino group, for example N, N-dialkyl-p-phenylenediamines such as N, N-diethyl-p-phenylenediamine, 1- (N-ethyl-N-methanesulfonamidoethyl) -3 -methyl-p-phenylenediamine, 1- (N-ethyl-N-hydroxyethyl) -3-methyl-p-phenylenediamine and 1- (N-ethyl-N-methoxyethyl) -3-methyl-p-phenylenediamine.
  • Further useful color developers are described, for example, in J. Amer Chem. Soc. 73 , 3106 (1951) and G. Haist, Modern Photographic Processing, 1979, John Wiley and Sons, New York, page 545 ff.
  • bleaching agents e.g. Fe (III) salts and Fe (III) complex salts such as ferricyanides, dichromates, water-soluble cobalt complexes can be used.
  • Iron (III) complexes of aminopolycarboxylic acids are particularly preferred, especially e.g. of ethylenediaminetetraacetic acid, propylenediaminetetraacetic acid, diethylenetriaminepentaacetic acid, nitrilotriacetic acid, iminodiacetic acid, N-hydroxyethylethylenediaminetriacetic acid, alkyliminodicarboxylic acids and corresponding phosphonic acids.
  • Persulfates and peroxides e.g. Hydrogen peroxide.
  • the bleach-fixing bath or fixing bath is usually followed by washing, which is designed as countercurrent washing or consists of several tanks with their own water supply.
  • the washing can be completely replaced by a stabilizing bath, which is usually carried out in countercurrent.
  • this stabilizing bath also acts as a final bath.
  • This example shows the advantages of the antifoggants according to the invention when used in color reversal materials.
  • Color photographic recording materials for reverse processing are produced by successively applying the layers listed below to a cellulose triacetate support provided with an adhesive layer.
  • the emulsion batch was divided into several parts and the following substances were added per kg of emulsion: 4-Hydroxy-6-methyl-1,3,3a, 7-tetrazainden 1% by weight, aqueous alkaline solution 1.5 g Saponin 10 wt .-%, dissolved in water 3.5 g and the substances according to the invention shown in Table 2 below (1% by weight dissolved in methanol) in the stated amounts.
  • the emulsions were then poured onto a cellulose acetate support and dried (application 6.7 to 7.0 g, calculated as silver nitrate per m2).
  • a protective layer which is a hardening agent of the formula, was applied to the emulsion layer and containing a wetting agent, applied at a coating thickness of 2 g gelatin / m2 and 340 mg hardening agent / m2.
  • the emulsion was added per kg: 75g of a 5% by weight gelatin solution; 109 g of a 11.1% by weight coupler dispersion of the PP 13 coupler as well as wetting agents in aqueous solution and 1,180 ml of water.
  • the dye of the formula was used as a sensitizer added in amounts of 2.4 ⁇ 10 ⁇ 4 mol / mol Ag.
  • the emulsions were poured onto the antihalation layer of a cellulose acetate support consisting of a silver dispersion with a silver coating corresponding to 2.2 to 2.3 g AgNO3 / m2.
  • a hardening layer was applied to each of the emulsion layers as in Example 2.
  • the samples were subjected to a fresh and an oven test for 3 days at 60 ° C and 34% rel. Humidity and a tropical cabinet test of 3 days at 35 ° C and 90% rel. Humidity subjected.
  • the further processing includes the following baths: Stop bath 1 minute at 38 ° C; Bleach bath 3 1/4 minutes at 38 ° C; Water 3 1/2 minutes at 38 ° C; Fixer 3 1/4 minutes at 38 ° C; Water 5 minutes at 38 ° C.
  • the stop, bleaching and fixing baths used correspond to those commonly used (British Journal of Photography, 1974 , pages 597 and 598).
  • the substances according to the invention reduce the high fog without significantly reducing the sensitivity and the gradation and improve the storage stability of the photographic material.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Silver Salt Photography Or Processing Solution Therefor (AREA)

Claims (3)

  1. Matériau d'enregistrement photographique comprenant un support de couches et au moins une couche d'émulsion photosensible à l'halogénure d'argent disposée sur ce dernier, caractérisé en ce que la ou les couches d'émulsion à l'halogénure d'argent contiennent un agent anti-voile répondant à la formule (I)
    Figure imgb0121
    dans laquelle
    A   représente H, un cation d'un atome métallique ou d'un radical non métallique, un groupe lié de manière covalente à l'atome d'azote du triazole, qui ne se sépare que lors du traitement du matériau avec libération du triazole, choisi parmi le groupe constitué par
    Figure imgb0122
    -CO-N(CH₃)₂, -CO-CH₃, -SO₂-N(CH₃)₂ et SO₂-CH₃,
    R₁   représente un groupe alkyle en C₁-C₉ éventuellement substitué, un groupe alcényle en C₂-C₈, un groupe aryle en C₆-C₁₀, SR₃,
    R₂   représente H, un groupe alkyle en C₁-C₉ éventuellement substitué, un groupe alcényle en C₂-C₈, un groupe aryle en C₆-C₁₀, un groupe hétéroaryle en C₅-C₁₀, Cl, Br, -COOR₃, -COR₃, -OCOR₃,
    R₃   représente un groupe alkyle en C₁-C₉ éventuellement substitué, un groupe alcényle en C₂-C₈, un groupe aryle en C₆-C₁₀, un groupe hétéroaryle en C₅-C₁₀,
    et dans lequel la somme des atomes de carbone contenus dans les radicaux R₁, R₂ et R₃ est égale ou supérieure à 5 au cas où R₂ représente un groupe d'ester carboxylique.
  2. Matériau d'enregistrement photographique selon la revendication 1, caractérisé en ce que la ou les couches d'émulsion à l'halogénure d'argent contiennent un agent antivoile de formule (I) en une quantité de 10⁻⁵ à 10⁻² mole par mole d'halogénure d'argent.
  3. Matériau d'enregistrement photographique selon la revendication 1, caractérisé en ce qu'il s'agit d'un matériau d'enregistrement pour photographie en couleurs, comprenant un support de couches et au moins trois couches photosensibles à l'halogénure d'argent de sensibilité spectrale différente disposées sur ce dernier, auxquelles est attribué par voie spectrale, respectivement un copulant pour le jaune, un copulant pour le magenta et un copulant pour le bleu-vert.
EP89120154A 1988-11-12 1989-10-31 Matériau d'enregistrement photographique Expired - Lifetime EP0369235B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3838493 1988-11-12
DE3838493 1988-11-12

Publications (2)

Publication Number Publication Date
EP0369235A1 EP0369235A1 (fr) 1990-05-23
EP0369235B1 true EP0369235B1 (fr) 1994-10-12

Family

ID=6367105

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89120154A Expired - Lifetime EP0369235B1 (fr) 1988-11-12 1989-10-31 Matériau d'enregistrement photographique

Country Status (4)

Country Link
US (1) US5006457A (fr)
EP (1) EP0369235B1 (fr)
JP (1) JPH02181743A (fr)
DE (1) DE58908497D1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4007731A1 (de) * 1990-03-10 1991-09-12 Agfa Gevaert Ag Fotografisches aufzeichnungsmaterial
DE19933258A1 (de) * 1999-07-15 2001-01-18 Agfa Gevaert Ag Herstellung von Silberhalogenidemulsionen
KR20120119845A (ko) * 2011-04-22 2012-10-31 삼성전기주식회사 관성센서 및 그의 제조방법

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2353754A (en) * 1942-11-07 1944-07-18 Eastman Kodak Co Color photography using metallic salt coupler compounds
US3157509A (en) * 1962-03-20 1964-11-17 Eastman Kodak Co Photographic emulsions containing novel fog-inhibiting addenda
US4049458A (en) * 1974-06-05 1977-09-20 Agfa-Gevaert, A.G. Photographic silver halide material containing 2-equivalent yellow couplers

Also Published As

Publication number Publication date
DE58908497D1 (de) 1994-11-17
JPH02181743A (ja) 1990-07-16
US5006457A (en) 1991-04-09
EP0369235A1 (fr) 1990-05-23

Similar Documents

Publication Publication Date Title
EP0320776B1 (fr) Matériau photographique couleur à l'halogénure d'argent
EP0358071B1 (fr) Matériau de reproduction photographique
EP0464409B1 (fr) Matériau de reproduction photographique pour la couleur
DE3830522A1 (de) Fotografisches aufzeichnungsmaterial
EP0351588B1 (fr) Matériau de reproduction photographique couleur
EP0370226B1 (fr) Matériel photographique à l'halogénure d'argent et sa méthode de traitement
EP0607801A1 (fr) Matériau photographique couleur d'enregistrement
EP0515873B1 (fr) Matériau de reproduction photographique couleur
EP0369235B1 (fr) Matériau d'enregistrement photographique
EP0377889B1 (fr) Matériel d'enregistrement à l'halogénure d'argent
EP0413204A2 (fr) Matériau photographique couleur à l'halogénure d'argent
EP0447656A1 (fr) Matériau photographique couleur à l'halogénure d'argent et son développement
EP0373339B1 (fr) Matériau d'enregistrement photosensible à l'halogénure d'argent
EP0607800A1 (fr) Matériau photographique couleur d'enregistrement
EP0377181A2 (fr) Matériau photographique couleur
EP0363820A2 (fr) Matériau photographique couleur à l'halogénure d'argent
EP0550907B1 (fr) Matériau d'enregistrement photographique
EP0345514A2 (fr) Matériau photographique couleur à l'halogénure d'argent
EP0616256B1 (fr) Matériau photographique couleur d'enregistrement
EP0447657B1 (fr) Matériau d'enregistrement photographique
DE3838467C2 (de) Fotografisches Aufzeichnungsmaterial
EP0697624B1 (fr) Matériau d'enregistrement photographique couleur
EP0554756B1 (fr) Produit pour la reproduction photographique en couleur
EP0330948A2 (fr) Procédé de production d'images colorées
EP0709731A2 (fr) Produit photographique couleur à l'halogénure d'argent

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19891031

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE FR GB IT

17Q First examination report despatched

Effective date: 19930428

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT

ITTA It: last paid annual fee
REF Corresponds to:

Ref document number: 58908497

Country of ref document: DE

Date of ref document: 19941117

ITF It: translation for a ep patent filed

Owner name: SOCIETA' ITALIANA BREVETTI S.P.A.

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950106

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19960912

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19961016

Year of fee payment: 8

Ref country code: BE

Payment date: 19961016

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19961022

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971031

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19971031

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971031

BERE Be: lapsed

Owner name: AGFA-GEVAERT A.G.

Effective date: 19971031

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19971031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980701

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051031