EP0369235A1 - Matériau d'enregistrement photographique - Google Patents

Matériau d'enregistrement photographique Download PDF

Info

Publication number
EP0369235A1
EP0369235A1 EP89120154A EP89120154A EP0369235A1 EP 0369235 A1 EP0369235 A1 EP 0369235A1 EP 89120154 A EP89120154 A EP 89120154A EP 89120154 A EP89120154 A EP 89120154A EP 0369235 A1 EP0369235 A1 EP 0369235A1
Authority
EP
European Patent Office
Prior art keywords
compounds
silver halide
color
layer
photographic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP89120154A
Other languages
German (de)
English (en)
Other versions
EP0369235B1 (fr
Inventor
Hans Dr. Vetter
Hans Dr. Öhlschläger
Heinrich Dr. Odenwälder
Bernhard Dr. Morcher
Friedhelm Dipl.-Chem. Sommer
Lothar Dr. Rosenhahn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Agfa Gevaert AG
Original Assignee
Agfa Gevaert AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agfa Gevaert AG filed Critical Agfa Gevaert AG
Publication of EP0369235A1 publication Critical patent/EP0369235A1/fr
Application granted granted Critical
Publication of EP0369235B1 publication Critical patent/EP0369235B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/005Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
    • G03C1/06Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein with non-macromolecular additives
    • G03C1/34Fog-inhibitors; Stabilisers; Agents inhibiting latent image regression
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/005Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
    • G03C1/06Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein with non-macromolecular additives
    • G03C1/34Fog-inhibitors; Stabilisers; Agents inhibiting latent image regression
    • G03C1/346Organic derivatives of bivalent sulfur, selenium or tellurium

Definitions

  • the invention relates to a photographic recording material with a layer support and at least one photosensitive silver halide emulsion layer arranged thereon.
  • the material contains special triazoles as antifoggants.
  • antifoggants or stabilizers to photographic silver halide emulsions to reduce fog formation, e.g. B. heterocyclic compounds containing sulfur, for example in the form of a mercapto group.
  • German interpretation documents 1 183 371 (GB 1 067 066), 1 189 380 (US 3 364 028 and 3 365 294), 1 597 503 (US 3 615 617), DE 1 979 027, to the German published documents 1 522 363 (GB 1 186 441), 2 042 533 (US 3 761 278), 2 130 031 and 2 308 530.
  • these compounds are used to adapt the sensitivity of the emulsions to the specified standard in the event of production fluctuations.
  • the object of the invention was now to develop a photographic recording material in which the sensitivity of the silver halide emulsions in the event of production fluctuations can be regulated in accordance with the specified standard without a gradation flattening occurring at the same time.
  • the invention relates to a photographic recording material with a support and at least one photosensitive silver halide emulsion layer arranged thereon, characterized thereby records that the at least one silver halide emulsion layer is an antifoggant of formula I.
  • R1 H optionally substituted C1-C9 alkyl, C2-C8 alkenyl, C6-C10 aryl, SR3 R2 H, optionally substituted C1-C9 alkyl, C2-C8 alkenyl, C6-C10 aryl, C5-C10 heteroaryl, Cl, Br, -COOR3, -COR3, -OCOR3, R3 optionally substituted C1-C9 alkyl, C2-C8 alkenyl, C6-C10 aryl, C5-C10 heteroaryl, mean and wherein the sum of the carbon atoms contained in the radicals R1, R2 and R3 is equal to or greater than 5 if R2 represents a carboxylic ester group.
  • Examples of cations of a metal atom according to group A are Na ⁇ , K ⁇ , Mg 2 ⁇ and Zn 2 ⁇ ; a cation of a non-metal radical represents, for example, NH4 ⁇ .
  • Suitable heteroaryl residues include: thiophene, furan, 1,2,4-triazole and pyridine.
  • Suitable substituents of the radicals R1, R2 and R3 are common substituents in the field of photographic antifoggants, such as halogen, in particular chlorine or bromine, C1-C4-alkoxy groups, C1-C4-alkoxycarbonyl, C6-C10-aryloxycarbonyl and C1-C4-alkylcarbonyloxy.
  • Aryl and heteroaryl can also be substituted with C1-C8 alkyl.
  • Suitable examples are the following compounds according to the invention, in which group A each represents hydrogen.
  • the antifoggants according to the invention are used in an amount of 10 ⁇ 5 to 10 ⁇ 2, preferably 1 to 5 x 10 x3 mol per mol of silver halide.
  • the compounds are prepared by known methods, as described, for example, in the literature:
  • the alcohol component of the ester can be exchanged by transesterification with sodium alcoholate catalysis at 60 to 100 ° C.
  • 1,2,4-Triazole-substituted 1,2,3-triazoles can be prepared in a conventional manner by ring-closing reaction of a 1,2,3-triazolecarboxylic acid ester with thiosemicarbazide.
  • photographic materials are black and white films, color negative films, color reversal films, color positive films, color photographic paper, color reversal photographic paper, color-sensitive materials for the color diffusion transfer process or the silver color bleaching process.
  • Color photographic recording materials with a transparent layer support and at least three light-sensitive silver halide emulsion layers of different spectral sensitivity arranged thereon, to which a yellow coupler, a magenta coupler and a cyan coupler are each spectrally assigned, are preferred.
  • Suitable supports for the production of color photographic materials are, for example, films and foils of semisynthetic and synthetic polymers, such as cellulose nitrate, cellulose acetate, cellulose butyrate, polystyrene, polyvinyl chloride, polyethylene terephthalate and polycarbonate, and paper laminated with a barite layer or ⁇ -olefin polymer layer (eg polyethylene).
  • These carriers can be colored with dyes and pigments, for example titanium dioxide. They can also be colored black for the purpose of shielding light.
  • the surface of the support is generally subjected to a treatment in order to improve the adhesion of the photographic emulsion layer, for example a corona discharge with subsequent application of a substrate layer.
  • the color photographic materials usually contain at least one red-sensitive, green-sensitive and blue-sensitive silver halide emulsion layer and, if appropriate, intermediate layers and protective layers.
  • Binding agents, silver halide grains and color couplers are essential components of the photographic emulsion layers.
  • Gelatin is preferably used as the binder. However, this can be replaced in whole or in part by other synthetic, semi-synthetic or naturally occurring polymers.
  • Synthetic gelatin substitutes are, for example, polyvinyl alcohol, poly-N-vinylpyrrolidone, polyacrylamides, polyacrylic acid and their derivatives, in particular their copolymers.
  • Naturally occurring gelatin substitutes are, for example, other proteins such as albumin or casein, cellulose, starch or alginates.
  • Semi-synthetic gelatin substitutes are usually modified natural products.
  • Cellulose derivatives such as hydroxyalkyl cellulose, carboxymethyl cellulose and phthalyl cellulose as well as gelatin derivatives which have been obtained by reaction with alkylating or acylating agents or by grafting on polymerizable monomers are examples of this.
  • the binders should have a sufficient amount of functional groups so that enough resistant layers can be produced by reaction with suitable hardening agents.
  • Such function Light groups are in particular amino groups, but also carboxyl groups, hydroxyl groups and active methylene groups.
  • the gelatin which is preferably used can be obtained by acidic or alkaline digestion. Oxidized gelatin can also be used. The production of such gelatins is described, for example, in The Science and Technology of Gelatine, published by A.G. Ward and A. Courts, Academic Press 1977, page 295 ff.
  • the gelatin used in each case should contain the lowest possible level of photographically active impurities (inert gelatin). High viscosity, low swelling gelatins are particularly advantageous.
  • the silver halide present as a light-sensitive component in the photographic material can contain chloride, bromide or iodide or mixtures thereof as the halide.
  • the halide content of at least one layer can consist of 0 to 15 mol% of iodide, 0 to 100 mol% of chloride and 0 to 100 mol% of bromide.
  • silver bromide iodide emulsions are usually used; in the case of color negative and color reversal paper, silver chloride bromide emulsions are usually used.
  • the crystals can be predominantly compact, which are, for example, regularly cubic or octahedral or can have transitional forms.
  • platelet-shaped crystals can preferably also be present, whose average ratio of diameter to thickness is preferably at least 5: 1, the diameter of a grain being defined as the diameter of a circle with a circle content corresponding to the projected area of the grain.
  • the layers can also have tabular silver halide crystals in which the ratio of diameter to thickness is substantially greater than 5: 1, for example 12: 1 to 30: 1.
  • the silver halide grains can also have a multi-layered grain structure, in the simplest case with an inner and an outer grain area (core / shell), the halide composition and / or other modifications, such as e.g. Doping of the individual grain areas are different.
  • the average grain size of the emulsions is preferably between 0.2 ⁇ m and 2.0 ⁇ m, the grain size distribution can be both homo- and heterodisperse. Homodisperse grain size distribution means that 95% of the grains do not deviate from the mean grain size by more than ⁇ 30%.
  • the emulsions can also contain organic silver salts, e.g. Silver benzotriazolate or silver behenate.
  • Two or more kinds of silver halide emulsions, which are prepared separately, can be used as a mixture.
  • the photographic emulsions can be prepared by various methods (e.g. P. Glafkides, Chimie et Physique Photographique, Paul Montel, Paris (1967), GF Duffin, Photographic Emulsion Chemistry, The Focal Press, London (1966), VL Zelikman et al, Making and Coating Photographic Emulsions, The Focal Press, London (1966) from soluble silver salts and soluble halides.
  • the silver halide is preferably precipitated in the presence of the binder, for example the gelatin, and can be carried out in the acidic, neutral or alkaline pH range, silver halide complexing agents preferably being additionally used.
  • the latter include, for example, ammonia, thioether, imidazole, ammonium thiocyanate or excess halide.
  • the water-soluble silver salts and the halides are combined either in succession by the single-jet process or simultaneously by the double-jet process or by any combination of the two processes. Dosing with increasing feed rates is preferred, the "critical" feed rate, at which no new germs are being formed, should not be exceeded.
  • the pAg range can vary within wide limits during the precipitation, preferably the so-called pAg-controlled method is used, in which a certain pAg value is kept constant or a defined pAg profile is traversed during the precipitation.
  • so-called inverse precipitation with an excess of silver ions is also possible.
  • the silver halide crystals can also grow through physical ripening (Ostwald ripening), in the presence of excess halide and / or silver halide complexing agent. The growth of the emulsion grains can even predominantly through Ostwald ripening take place, preferably a fine-grained, so-called Lippmann emulsion, mixed with a sparingly soluble emulsion and redissolved on the latter.
  • Salts or complexes of metals such as Cd, Zn, Pb, Tl, Bi, Ir, Rh, Fe can also be present during the precipitation and / or physical ripening of the silver halide grains.
  • the precipitation can also be carried out in the presence of sensitizing dyes.
  • Complexing agents and / or dyes can be rendered ineffective at any time, e.g. by changing the pH or by an oxidative treatment.
  • the soluble salts are removed from the emulsion, e.g. by pasta and washing, by flakes and washing, by ultrafiltration or by ion exchangers.
  • the silver halide emulsion is generally subjected to chemical sensitization under defined conditions - pH, pAg, temperature, gelatin, silver halide and sensitizer concentration - until the optimum sensitivity and fog are reached.
  • the procedure is e.g. described by H. Frieser "The basics of photographic processes with silver halides" page 675-734, Akademische Verlagsgesellschaft (1968).
  • a reduction sensitization with the addition of reducing agents can be carried out by hydrogen, by low pAg (eg less than 5) and / or high pH (eg above 8) .
  • the photographic emulsions may contain compounds to prevent fogging or to stabilize the photographic function during production, storage or photographic processing.
  • azaindenes preferably tetra- and penta-azaindenes
  • azaindenes are suitable, in particular those which are substituted by hydroxyl or amino groups.
  • Such connections are for example from Birr, Z. Wiss. Phot. 47 (1952), pp. 2-58.
  • Salts of metals such as mercury or cadmium, aromatic sulfonic or sulfinic acids such as benzenesulfinic acid, or nitrogen-containing heterocycles such as nitrobenzimi can also be used as antifoggants dazol, nitroindazole, optionally substituted benzotriazoles or benzthiazolium salts can be used.
  • Heterocycles containing mercapto groups for example mercaptobenzthiazoles, mercaptobenzimidazoles, mercaptotetrazoles, mercaptothiadiazoles, mercaptopyrimidines, are particularly suitable, these mercaptoazoles also being able to contain a water-solubilizing group, for example a carboxyl group or sulfo group.
  • mercaptobenzthiazoles for example mercaptobenzthiazoles, mercaptobenzimidazoles, mercaptotetrazoles, mercaptothiadiazoles, mercaptopyrimidines
  • these mercaptoazoles also being able to contain a water-solubilizing group, for example a carboxyl group or sulfo group.
  • a water-solubilizing group for example a carboxyl group or sulfo group.
  • the stabilizers can be added to the silver halide emulsions before, during or after their ripening.
  • the compounds can also be added to other photographic layers which are assigned to a halogen silver layer.
  • the photographic emulsion layers or other hydrophilic colloid layers of the light-sensitive material produced according to the invention can contain surface-active agents for various purposes, such as coating aids, to prevent electrical charging, to improve the sliding properties, to emulsify the dispersion, to prevent adhesion and to improve the photographic characteristics (eg acceleration of development, high contrast, sensitization etc.).
  • non-ionic surfactants for example alkylene oxide compounds, glycerol compounds or glycidol compounds
  • cationic surfactants for example higher alkylamines, quaternary ammonium salts, pyridine compounds and other heterocyclic compounds
  • sulfonium compounds or phosphonium compounds anionic surfactants, containing an acid group, for example carboxylic acid, sulfonic acid, a phosphoric acid, sulfuric acid ester or phosphoric acid ester group
  • ampholytic surfactants for example amino acid and aminosulfonic acid compounds and sulfur or phosphoric acid esters of an amino alcohol.
  • the photographic emulsions can be spectrally sensitized using methine dyes or other dyes.
  • Particularly suitable dyes are cyanine dyes, merocyanine dyes and complex merocyanine dyes.
  • 9-ethylcarbocyanines with benzthiazole, benzselenazole or naphthothiazole as basic end groups the in the 5- and / or 6-position can be substituted by halogen, methyl, methoxy, carbalkoxy, aryl and 9-ethyl-naphthoxathia or -selenecarbocyanine and 9-ethyl-naphthothiaoxa or -benzimidazocarbocyanine, provided that the dyes at least carry a sulfoalkyl group on the heterocyclic nitrogen.
  • red sensitizers RS examples include, in particular for negative and reversal film, the red sensitizers RS, green sensitizers GS and blue sensitizers BS listed below, which can be used individually or in combination with one another, for example RS 1 and RS 2, and GS 1 and GS 2.
  • Sensitizers can be dispensed with if the intrinsic sensitivity of the silver halide is sufficient for a certain spectral range, for example the blue sensitivity of silver bromides.
  • the differently sensitized emulsion layers are assigned non-diffusing monomeric or polymeric color couplers, which can be located in the same layer or in a layer adjacent to it.
  • the red-sensitive layers usually turn blue green couplers, the green-sensitive layers of purple couplers and the blue-sensitive layers of yellow couplers.
  • Color couplers for producing the purple partial color image are generally couplers of the 5-pyrazolone, indazolone or pyrazoloazole type; suitable examples are
  • Color couplers for producing the yellow partial color image are generally couplers with an open-chain ketomethylene group, in particular couplers of the ⁇ -acylacetamide type; suitable examples of this are ⁇ -benzoylacetanilide couplers and ⁇ -pivaloylacetanilide couplers of the formulas
  • the color couplers can be 4-equivalent couplers, but also 2-equivalent couplers.
  • the latter are derived from the 4-equivalent couplers in that they contain a substituent in the coupling site which is split off during the coupling.
  • the 2-equivalent couplers include those that are colorless, as well as those that have an intense intrinsic color that disappears when the color is coupled or is replaced by the color of the image dye produced (mask coupler), and the white couplers that react with color developer oxidation products yield essentially colorless products.
  • the 2-equivalent couplers also include those couplers that contain a cleavable residue in the coupling point, which is released upon reaction with color developer oxidation products and thereby either directly or after one or more further groups have been cleaved from the primarily cleaved residue (eg DE-A-27 03-145, DE-A-28 55 697, DE-A-31 05 026, DE-A-33 19 428), a certain desired photographic activity unfolds, for example as a development inhibitor or accelerator.
  • Examples of such 2-equivalent couplers are the known DIR couplers as well as DAR and FAR couplers.
  • DIR couplers which release development inhibitors of the azole type, for example triazoles and benzotriazoles, are described in DE-A-24 14 006, 26 10 546, 26 59 417, 27 54 281, 27 26 180, 36 26 219, 36 30 564, 36 36 824, 36 44 416 and 28 42 063. Further advantages for color reproduction, that is, color separation and color purity, and for detail reproduction, that is, sharpness and granularity, can be achieved with those DIR couplers which, for example, do not split off the development inhibitor directly as a result of coupling with an oxidized color developer, but only after a further follow-up reaction, which is achieved, for example, with a timing group.
  • DIR couplers which release a development inhibitor which is decomposed into essentially photographically ineffective products in the developer bath are described, for example, in DE-A-32 09 486 and in EP-A-167 168 and 219 713. This measure ensures trouble-free development and processing consistency.
  • improvements in color rendering can be achieved by suitable measures in the optical sensitization, such as, for example, in EP-A-115 304, 167 173 , GB-A-2 165 058, DE-A-37 00 419 and US-A-4 707 436.
  • the DIR couplers can be added to a wide variety of layers in a multilayer photographic material, for example also light-insensitive or intermediate layers. However, they are preferably added to the light-sensitive silver halide emulsion layers, the characteristic properties of the silver halide emulsion, for example its iodide content, the structure of the silver halide grains or their grain size distribution having an influence on the photographic properties achieved.
  • the influence of the inhibitors released can be limited, for example, by incorporating an inhibitor scavenger layer in accordance with DE-A-24 31 223. For reasons of reactivity or stability, it may be advantageous to insert a DIR coupler set, which forms in the respective layer in which it is introduced, a color different from the color to be generated in this layer in the coupling.
  • DAR or FAR couplers can be used, which release a development accelerator or an fogger.
  • Compounds of this type are, for example, in DE-A-25 34 466, 32 09 110, 33 33 355, 34 10 616, 34 29 545, 34 41 823, in EP-A-89 834, 110 511, 118 087, 147 765 and described in US-A-4,618,572 and 4,656,123.
  • DIR, DAR or FAR couplers Since with DIR, DAR or FAR couplers the effectiveness of the residue released during coupling is mainly desired and the color-forming properties of these couplers are less important, such DIR, DAR or FAR couplers are also suitable, which give essentially colorless products on coupling (DE-A-15 47 640).
  • the cleavable residue can also be a ballast residue, so that upon reaction with color developer oxidation products coupling products are obtained which are diffusible or at least have a weak or restricted mobility (US Pat. No. 4,420,556).
  • the material may further contain compounds other than couplers, which can, for example, release a development inhibitor, a development accelerator, a bleaching accelerator, a developer, a silver halide solvent, a fogging agent or an antifoggant, for example so-called DIR-hydroquinones and other compounds, as described for example in US-A-4 636 546, 4 345 024, 4 684 604 and in DE-A-31 45 640, 25 15 213, 24 47 079 and in EP-A-198 438. These compounds perform the same function as the DIR, DAR or FAR couplers, except that they do not form coupling products.
  • couplers can, for example, release a development inhibitor, a development accelerator, a bleaching accelerator, a developer, a silver halide solvent, a fogging agent or an antifoggant, for example so-called DIR-hydroquinones and other compounds, as described for example in US-A-4 636 546, 4 345 024, 4 684 604 and in DE
  • High molecular weight color couplers are described, for example, in DE-C-1 297 417, DE-A-24 07 569, DE-A-31 48 125, DE-A-32 17 200, DE-A-33 20 079, DE-A-33 24 932, DE-A-33 31 743, DE-A-33 40 376, EP-A-27 284, US-A-4 080 211.
  • the high molecular weight color couplers are usually produced by polymerizing ethylenically unsaturated monomeric color couplers. However, they can also be obtained by polyaddition or polycondensation.
  • the couplers or other compounds can be incorporated into silver halide emulsion layers by first preparing a solution, a dispersion or an emulsion of the compound in question and then adding it to the casting solution for the layer in question. Choosing the right one Solvents or dispersants depend on the solubility of the compound.
  • Hydrophobic compounds can also be introduced into the casting solution using high-boiling solvents, so-called oil formers. Corresponding methods are described for example in US-A-2 322 027, US-A-2 801 170, US-A-2 801 171 and EP-A-0 043 037.
  • oligomers or polymers instead of the high-boiling solvents, oligomers or polymers, so-called polymeric oil formers, can be used.
  • the compounds can also be introduced into the casting solution in the form of loaded latices.
  • anionic water-soluble compounds for example of dyes
  • pickling polymers for example of cationic polymers
  • Suitable oil formers are e.g. Alkyl phthalates, phosphonic acid esters, phosphoric acid esters, citric acid esters, benzoic acid esters, amides, fatty acid esters, trimesic acid esters, alcohols, phenols, aniline derivatives and hydrocarbons.
  • oil formers examples include dibutyl phthalate, dicyclohexyl phthalate, di-2-ethylhexyl phthalate, decyl phthalate, triphenyl phosphate, tricresyl phosphate, 2-ethylhexyl diphenyl phosphate, tricyclohexyl phosphate, tri-2-ethylhexyl phosphate, tridecoxy phosphate, 2-ethylhexyl phosphate, tridecoxy phosphate, 2-ethylhexyl phylate, , 2-ethylhexyl p-hydroxybenzoate, diethyldodecanamide, N-tetradecylpyrrolidone, isostearyl alcohol, 2,4-di-tert.amylphenol, dioctyl acylate, glycerol tributyrate, isostearyl lactate, trioctyl citrate, N,
  • Each of the differently sensitized, light-sensitive layers can consist of a single layer or can also comprise two or more silver halide emulsion partial layers (DE-C-1 121 470).
  • Red-sensitive silver halide emulsion layers are often arranged closer to the support than green-sensitive silver halide emulsion layers and these are in turn closer than blue-sensitive layers, with a non-light-sensitive yellow filter layer generally being located between green-sensitive layers and blue-sensitive layers.
  • green or red-sensitive layers are suitably low in their own sensitivity, other layer arrangements can be selected without the yellow filter layer, in which e.g. the blue-sensitive, then the red-sensitive and finally the green-sensitive layers follow.
  • the non-light-sensitive intermediate layers which are generally arranged between layers of different spectral sensitivity, can contain agents which prevent undesired diffusion of developer oxidation products from one light-sensitive layer into another light-sensitive layer with different spectral sensitization.
  • Suitable agents which are also called scavengers or EOP-catchers, are described in Research Disclosure 17 643 (Dec. 1978), Chapter VII, 17 842/1979, pages 94-97 and 18.716 / 1979, page 650 and in EP-A- 69,070, 98,072, 124,877, 125,522 and in US-A-463,226.
  • sub-layers of the same spectral sensitization can differ with regard to their composition, in particular with regard to the type and amount of the silver halide grains.
  • the sublayer with higher sensitivity will be located further from the support than the sublayer with lower sensitivity.
  • Partial layers of the same spectral sensitization can be adjacent to one another or through other layers, for example through Separate layers of other spectral sensitization.
  • all highly sensitive and all low-sensitive layers can be combined to form a layer package (DE-A-19 58 709, DE-A-25 30 645, DE-A-26 22 922).
  • the photographic material can also contain UV light-absorbing compounds, whiteners, spacers, filter dyes, formalin scavengers, light stabilizers, antioxidants, D min dyes, additives to improve dye, coupler and white stabilization and to reduce the color fog, plasticizers (latices), Contain biocides and others.
  • Examples are aryl-substituted benzotriazole compounds (US-A-3 533 794), 4-thiazolidone compounds (US-A-3 314 794 and 3 352 681), benzophenone compounds (JP-A-2784/71), cinnamic acid ester compounds (US-A-3 705 805 and 3,707,375), butadiene compounds (US-A-4,045,229) or benzoxazole compounds (US-A-3,700,455).
  • Ultraviolet absorbing couplers such as ⁇ -naphthol type cyan couplers
  • ultraviolet absorbing polymers can also be used. These ultraviolet absorbents can be fixed in a special layer by pickling.
  • Filter dyes suitable for visible light include oxonol dyes, hemioxonol dyes, styryl dyes, merocyanine dyes, cyanine dyes and azo dyes. Of these dyes, oxonol dyes, hemioxonol dyes and merocyanine dyes are used particularly advantageously.
  • Suitable whiteners are described, for example, in Research Disclosure 17,643 (Dec. 1978), Chapter V, in US-A-2,632,701, 3,269,840 and in GB-A-852,075 and 1,319,763.
  • binder layers in particular the most distant layer from the support, but also occasionally intermediate layers, especially if they are the most distant layer from the support during manufacture, may contain photographically inert particles of inorganic or organic nature, e.g. as a matting agent or as a spacer (DE-A-33 31 542, DE-A-34 24 893, Research Disclosure 17 643, (Dec. 1978), Chapter XVI).
  • photographically inert particles of inorganic or organic nature e.g. as a matting agent or as a spacer (DE-A-33 31 542, DE-A-34 24 893, Research Disclosure 17 643, (Dec. 1978), Chapter XVI).
  • the average particle diameter of the spacers is in particular in the range from 0.2 to 10 ⁇ m.
  • the spacers are water-insoluble and can be alkali-insoluble or alkali-soluble, the alkali-soluble ones generally being removed from the photographic material in the alkaline development bath.
  • suitable polymers are polymethyl methacrylate, copolymers of acrylic acid and methyl methacrylate and hydroxypropyl methyl cellulose hexahydrophthalate.
  • Suitable formalin scavengers include
  • Additives to improve dye, coupler and whiteness stability and to reduce the color haze can belong to the following chemical substance classes: hydroquinones, 6-hydroxychromanes, 5-hydroxycoumarans, spirochromans, spiroindanes, p- Alkoxyphenols, steric hindered phenols; Gallic acid derivatives, methylenedioxybenzenes, aminophenols, sterically hindered amines, derivatives with esterified or etherified phenolic hydroxyl groups, metal complexes.
  • the layers of the photographic material can be hardened with the usual hardening agents.
  • Suitable curing agents are, for example, formaldehyde, glutaraldehyde and similar aldehyde compounds, diacetyl, cyclopentadione and similar ketone compounds, bis (2-chloroethyl urea), 2-hydroxy-4,6-dichloro-1,3,5-triazine and other compounds, the reactive halogen included (US-A-3 288 775, US-A-2 732 303, GB-A-974 723 and GB-A-1 167 207) divinyl sulfone compounds, 5-acetyl-1,3-diacryloylhexahydro-1,3,5 triazine and other compounds containing a reactive olefin bond (US-A-3 635 718, US-A-3 232 763 and GB-A-994 869); N-hydroxymethylphthalimide and other N-methylol compounds (US-A-2 7
  • the hardening can be effected in a known manner by adding the hardening agent to the casting solution for the layer to be hardened or by overlaying the layer to be hardened with a layer which contains a diffusible hardening agent.
  • Immediate hardeners are understood to mean compounds which crosslink suitable binders in such a way that the hardening is completed to such an extent immediately after casting, at the latest after 24 hours, preferably at the latest after 8 hours, that no further change in the sensitometry caused by the crosslinking reaction and the swelling of the layer structure occurs .
  • Swelling is understood to mean the difference between the wet film thickness and the dry film thickness during the aqueous processing of the film (Photogr. Sci., Eng. 8 (1964), 275; Photogr. Sci. Eng. (1972), 449).
  • hardening agents which react very quickly with gelatin are, for example, carbamoylpyridinium salts which are able to react with free carboxyl groups of the gelatin, so that the latter react with free amino groups of the gelatin with the formation of peptide bonds and crosslinking of the gelatin.
  • Suitable examples of instant hardeners are, for example, compounds of the general formulas wherein R1 denotes alkyl, aryl or aralkyl, R2 has the same meaning as R1 or means alkylene, arylene, aralkylene or alkaralkylene, the second bond having a group of the formula is linked, or R1 and R2 together represent the atoms required to complete an optionally substituted heterocyclic ring, for example a piperidine, piperazine or morpholine ring, which ring can be substituted, for example, by C1-C3alkyl or halogen, R3 for hydrogen, alkyl, aryl, alkoxy, -NR4-COR5, (CH2) m -NR8R9, - (CH2) n C0NR13R14 or a bridge link or a direct bond to a polymer chain, wherein R4, R6, R7, R9, R14, R15, R17, R18, and R19 are hydrogen or C1-
  • R1, R2, R3 and X ⁇ have the meaning given for formula (a).
  • Color photographic negative materials are usually processed by developing, bleaching, fixing and washing or by developing, bleaching, fixing and stabilizing without subsequent washing, whereby bleaching and fixing can be combined into one processing step.
  • All developer compounds which have the ability to react in the form of their oxidation product with color couplers to form azomethine or indophenol dyes can be used as the color developer compound.
  • Suitable color developer compounds are aromatic compounds of the p-phenylenediamine type containing at least one primary amino group, for example N, N-dialkyl-p-phenylenediamines such as N, N-diethyl-p-phenylenediamine, 1- (N-ethyl-N-methanesulfonamidoethyl) -3 -methyl-p-phenylenediamine, 1- (N-ethyl-N-hydroxyethyl) -3-methyl-p-phenylenediamine and 1- (N-ethyl-N-methoxyethyl) -3-methyl-p-phenylenediamine.
  • Further useful color developers are described, for example, in J. Amer Chem. Soc. 73 , 3106 (1951) and G. Haist, Modern Photographic Processing, 1979, John Wiley and Sons, New York, page 545 ff.
  • Fe (III) salts and Fe (III) complex salts such as ferricyanides, dichromates, water-soluble cobalt complexes can be used.
  • Iron (III) complexes of aminopolycarboxylic acids are particularly preferred, especially e.g. of ethylenediaminetetraacetic acid, propylenediaminetetraacetic acid, diethylenetriaminepentaacetic acid, nitrilotriacetic acid, iminodiacetic acid, N-hydroxyethylethylenediaminetriacetic acid, alkyliminodicarboxylic acids and corresponding phosphonic acids.
  • Persulphates and peroxides e.g. Hydrogen peroxide.
  • the bleach-fixing bath or fixing bath is usually followed by washing, which is designed as countercurrent washing or consists of several tanks with their own water supply.
  • the washing can be completely replaced by a stabilizing bath, which is usually carried out in countercurrent.
  • this stabilizing bath also functions as a final bath.
  • development is initially carried out using a black and white developer whose oxidation product is not capable of reacting with the color couplers. This is followed by a diffuse second exposure and then development with a color developer, bleaching and fixing.
  • This example shows the advantages of the antifoggants according to the invention when used in color reversal materials.
  • Color photographic recording materials for reverse processing are produced by successively applying the layers listed below to a cellulose triacetate support provided with an adhesive layer.
  • ⁇ 1 increase in the gradation curve between the points 0.2 via fog and the point of the gradation curve which results at 6.5 lg I ⁇ t less exposure
  • Sensitivity 1g I ⁇ t value at density 1.0 ⁇ 1 / D max : normalization of the gradation at different maximum densities
  • Table 1 Yellow layer Purple layer Blue-green layer sample Connection no. Conc. Mg / 100g Ag NO3 FA ⁇ 1 Recom. ⁇ 1 / D max FA ⁇ 1 Recom. ⁇ 1 / D max FA ⁇ 1 Recom.
  • the emulsion batch was divided into several parts and the following substances were added per kg of emulsion: 4-Hydroxy-6-methyl-1,3,3a, 7-tetrazainden 1% by weight, aqueous alkaline solution 1.5 g Saponin 10 wt .-%, dissolved in water 3.5 g and the substances according to the invention shown in Table 2 below (1% by weight dissolved in methanol) in the stated amounts.
  • a protective layer which is a hardening agent of the formula and containing a wetting agent, applied at a coating thickness of 2 g gelatin / m2 and 340 mg hardening agent / m2.
  • the emulsion was added per kg: 75g of a 5% by weight gelatin solution; 109 g of a 11.1% by weight coupler dispersion of the PP 13 coupler as well as wetting agents in aqueous solution and 1,180 ml of water.
  • the dye of the formula was used as a sensitizer added in amounts of 2.4 ⁇ 10 ⁇ 4 mol / mol Ag.
  • the emulsions were poured onto the antihalation layer of a cellulose acetate support consisting of a silver dispersion with a silver coating corresponding to 2.2 to 2.3 g AgNO3 / m2.
  • a hardening layer was applied to the emulsion layer as in Example 2.
  • the samples were subjected to a fresh and an oven test for 3 days at 60 ° C and 34% rel. Humidity and a tropical cabinet test of 3 days at 35 ° C and 90% rel. Humidity subjected.
  • Further processing includes the following baths: Stop bath 1 minute at 38 ° C; Bleach bath 3 1/4 minutes at 38 ° C; Soak 3 1/2 minutes at 38 ° C; Fixing bath 3 1/4 minutes at 38 ° C; Soak for 5 minutes at 38 ° C.
  • the stop, bleaching and fixing baths used correspond to those usually used (British Journal of Photography, 1974 , pages 597 and 598).
  • the substances according to the invention reduce the high haze without significantly reducing the sensitivity and the gradation and improve the storage stability of the photographic material.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Silver Salt Photography Or Processing Solution Therefor (AREA)
EP89120154A 1988-11-12 1989-10-31 Matériau d'enregistrement photographique Expired - Lifetime EP0369235B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3838493 1988-11-12
DE3838493 1988-11-12

Publications (2)

Publication Number Publication Date
EP0369235A1 true EP0369235A1 (fr) 1990-05-23
EP0369235B1 EP0369235B1 (fr) 1994-10-12

Family

ID=6367105

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89120154A Expired - Lifetime EP0369235B1 (fr) 1988-11-12 1989-10-31 Matériau d'enregistrement photographique

Country Status (4)

Country Link
US (1) US5006457A (fr)
EP (1) EP0369235B1 (fr)
JP (1) JPH02181743A (fr)
DE (1) DE58908497D1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0447657A1 (fr) * 1990-03-10 1991-09-25 Agfa-Gevaert AG Matériau d'enregistrement photographique
EP1069466A1 (fr) * 1999-07-15 2001-01-17 Agfa-Gevaert N.V. Fabrication d'émulsions à l'halogénure d'argent

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120119845A (ko) * 2011-04-22 2012-10-31 삼성전기주식회사 관성센서 및 그의 제조방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2353754A (en) * 1942-11-07 1944-07-18 Eastman Kodak Co Color photography using metallic salt coupler compounds
US3157509A (en) * 1962-03-20 1964-11-17 Eastman Kodak Co Photographic emulsions containing novel fog-inhibiting addenda
US4049458A (en) * 1974-06-05 1977-09-20 Agfa-Gevaert, A.G. Photographic silver halide material containing 2-equivalent yellow couplers

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2353754A (en) * 1942-11-07 1944-07-18 Eastman Kodak Co Color photography using metallic salt coupler compounds
US3157509A (en) * 1962-03-20 1964-11-17 Eastman Kodak Co Photographic emulsions containing novel fog-inhibiting addenda
US4049458A (en) * 1974-06-05 1977-09-20 Agfa-Gevaert, A.G. Photographic silver halide material containing 2-equivalent yellow couplers

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS, Band 64, Nr. 8, August 1968, Seite 2937, Zusammenfassung Nr. 32024b, Columbus, Ohio, US; B.M. IVANOV et al.: "Silver halide photographic emulsions", & IZOBRET., PROM. OBRAZTSY, TOVARNYE ZNAKI 1968, 45 (9), 139 *
PATENT ABSTRACTS OF JAPAN, Band 13, Nr. 19 (P-814)[3367], 18. Januari 1989; & JP-A-63 223 635 (KONICA CORP) 19-09-1988 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0447657A1 (fr) * 1990-03-10 1991-09-25 Agfa-Gevaert AG Matériau d'enregistrement photographique
EP1069466A1 (fr) * 1999-07-15 2001-01-17 Agfa-Gevaert N.V. Fabrication d'émulsions à l'halogénure d'argent
US6261758B1 (en) 1999-07-15 2001-07-17 Agfa-Gevaert Production of silver halide emulsions

Also Published As

Publication number Publication date
JPH02181743A (ja) 1990-07-16
EP0369235B1 (fr) 1994-10-12
US5006457A (en) 1991-04-09
DE58908497D1 (de) 1994-11-17

Similar Documents

Publication Publication Date Title
EP0320776B1 (fr) Matériau photographique couleur à l'halogénure d'argent
EP0358071B1 (fr) Matériau de reproduction photographique
EP0313949A1 (fr) Matériau photographique couleur à l'halogénure d'argent
EP0464409B1 (fr) Matériau de reproduction photographique pour la couleur
EP0358073A2 (fr) Matériau de reproduction photographique
EP0351588B1 (fr) Matériau de reproduction photographique couleur
EP0370226B1 (fr) Matériel photographique à l'halogénure d'argent et sa méthode de traitement
EP0607801A1 (fr) Matériau photographique couleur d'enregistrement
EP0369235B1 (fr) Matériau d'enregistrement photographique
EP0377889B1 (fr) Matériel d'enregistrement à l'halogénure d'argent
EP0413204A2 (fr) Matériau photographique couleur à l'halogénure d'argent
EP0447656A1 (fr) Matériau photographique couleur à l'halogénure d'argent et son développement
EP0377181A2 (fr) Matériau photographique couleur
EP0607800A1 (fr) Matériau photographique couleur d'enregistrement
EP0373339B1 (fr) Matériau d'enregistrement photosensible à l'halogénure d'argent
EP0363820A2 (fr) Matériau photographique couleur à l'halogénure d'argent
EP0616256B1 (fr) Matériau photographique couleur d'enregistrement
EP0345514A2 (fr) Matériau photographique couleur à l'halogénure d'argent
EP0652474A1 (fr) Matériau photographique couleur d'enregistrement
DE3838467C2 (de) Fotografisches Aufzeichnungsmaterial
EP0697624B1 (fr) Matériau d'enregistrement photographique couleur
EP0447657B1 (fr) Matériau d'enregistrement photographique
EP0322648A2 (fr) Matériau de reproduction photographique couleur et procédé de préparation d'une émulsion photographique à l'halogénure d'argent
EP0330948A2 (fr) Procédé de production d'images colorées
EP0362604A2 (fr) Matériau photographique couleur à l'halogénure d'argent

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19891031

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE FR GB IT

17Q First examination report despatched

Effective date: 19930428

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT

ITTA It: last paid annual fee
REF Corresponds to:

Ref document number: 58908497

Country of ref document: DE

Date of ref document: 19941117

ITF It: translation for a ep patent filed
ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950106

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19960912

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19961016

Year of fee payment: 8

Ref country code: BE

Payment date: 19961016

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19961022

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971031

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19971031

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971031

BERE Be: lapsed

Owner name: AGFA-GEVAERT A.G.

Effective date: 19971031

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19971031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980701

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051031