EP0368037B1 - Procédé de commande de la distribution du taux d'évaporation produite par un faisceau d'électrons - Google Patents

Procédé de commande de la distribution du taux d'évaporation produite par un faisceau d'électrons Download PDF

Info

Publication number
EP0368037B1
EP0368037B1 EP89119229A EP89119229A EP0368037B1 EP 0368037 B1 EP0368037 B1 EP 0368037B1 EP 89119229 A EP89119229 A EP 89119229A EP 89119229 A EP89119229 A EP 89119229A EP 0368037 B1 EP0368037 B1 EP 0368037B1
Authority
EP
European Patent Office
Prior art keywords
control
correction
grid
area
memory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89119229A
Other languages
German (de)
English (en)
Other versions
EP0368037A1 (fr
Inventor
Urs Dipl. Ing. Eth Wegmann
Hans Signer
Albert El. Ing. Eth Koller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OC Oerlikon Balzers AG
Original Assignee
Balzers AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Balzers AG filed Critical Balzers AG
Publication of EP0368037A1 publication Critical patent/EP0368037A1/fr
Application granted granted Critical
Publication of EP0368037B1 publication Critical patent/EP0368037B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/302Controlling tubes by external information, e.g. programme control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/305Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating, or etching

Definitions

  • the present invention relates to a method for controlling the time-averaged evaporation rate generated by means of at least one electron beam over a predefined evaporation surface, to a predefined evaporation rate distribution over the surface, in which a control variable grid for at least one operating parameter of the electron beam is assigned to the surface and with the electron beam, controlled with the control parameters of the grid, the surface being processed, and an electron beam control.
  • EP-A-0 104 922 it is known to image a computer-stored pattern onto the surface of an IC as part of a lithographic process using a low-power, fine electron beam.
  • coarser pattern areas are distinguished from finer ones and the area of the beam is kept constant over the areas in accordance with the respective requirements, so that the beam area does not have to be changed in every beam position.
  • an IC surface represents a small, flat, time-constant processing surface for the fine beam that can only be deflected by small angles and the beam effect is clearly defined in the context of the lithographic process
  • an evaporated surface forms a large, irregularly profiled, time-varying Processing area for the powerful electron beam to be deflected by a relatively large angle, and the respective beam effect on the processing area cannot be estimated from the outset.
  • DE-A-34 28 802 has now disclosed a method of the type mentioned initially, according to which a position grid for the electron beam is initially assigned to a given evaporation surface and the electron beam is guided in steps from one grid element to the other over the surface.
  • Each element of the position grid which is controlled by the electron beam when processing the evaporation surface, is assigned its own control variable, thus the same number of control variables as are provided on the position grid position elements.
  • the individual control variables assigned to the elements of the position grid thus jointly form a control variable grid for the electron beam that is assigned to the surface to be evaporated.
  • the control variables are used to control operating parameters of the electron beam, such as its dwell time at a position determined by the position grid, its focusing there or its power.
  • the exhaust steam system is retracted and these control variables are adjusted until a desired evaporation rate distribution over the surface is realized. It is necessary to achieve such a desired evaporation rate distribution in order to, for example, uniformly vaporization in a vacuum vaporization chamber of the system.
  • control variable to be newly set must at least be queried and, if need be, set, queried in any case, even if it does so shows that there is no need to change the tax size when moving from one position to another.
  • the aim of the present invention is to remedy the disadvantages mentioned, starting from a method of the type mentioned above.
  • the amount of memory for the correction quantities of the correction quantity grid is significantly reduced, and the control process becomes faster, because as long as the beam position does not jump from one field of constant correction quantity to the correction quantity, the correction quantity can be kept constant without a query. Accordingly, it only has to be detected when the beam position exceeds the field boundary mentioned.
  • the invention is based on the knowledge that it is not necessary to specify operating parameter control variables or correction variables for the electron beam, corresponding to a position grid distributed uniformly over the surface, separately for each position element or increment.
  • the physical conditions which lead to the electron beam causing an evaporation rate distribution with locally constant operating parameters, such as focusing or dwell time, which is not a desired one, in particular one uniform distribution, namely they are not different on each position grid element.
  • the heat distribution over the surface to be evaporated can be represented by self-contained lines, actual isotherms, on which lines the same thermal conditions are present and therefore the same correction parameters have to be brought into effect.
  • local changes in the jet evaporation effect caused by the beam deflection or changes in focus along the evaporated profile can be represented in a map-like manner by connecting beam positions in which the same changes occur.
  • At least one correction size grid is created, which, similar to a map or a relief, has fields assigned to areas of the evaporation surface, each corresponding to a plurality of beam positions and with constant correction values, which achieve the advantages mentioned.
  • correction variable grids are provided, each with associated field divisions, for example, one of the physical influences mentioned correcting.
  • the control variable grid which ultimately influences a jet operating parameter, such as and preferably its dwell time at a position and / or its focusing or power, is determined by linking the respective correction variables assigned to a beam position, that is, by linking the entire control variable grid over the area to be evaporated of the intended correction size grid.
  • correction variable grids can optionally be used to form the control variable grid if several correction variable grids are provided, as has just been explained.
  • the electron beam can, as has been customary up to now, be guided independently of one another in a position grid from position element to position element, wherein, with a corresponding reduction in the size of the position elements, the beam guidance finally changes into a continuous beam guidance.
  • the electron beam automatically follows the minimum gradient of the control variables. It is proposed that, for example in the case of ambiguous field distribution, for example in the case of non-contiguous fields with the same control parameters, the beam jumps back and forth from one surface area belonging to one field to the other, according to the wording of claim 6 the electron beam is the minimum gradient of the control parameter following the beam positions adjacent to the current position, over the surface.
  • An electron beam control for an evaporation system with a steering control for the beam, which controls the beam position for processing an evaporation surface via the latter, and with a control unit for controlling beam operating parameters, is distinguished by the wording of claim 8.
  • the linkage control system emits position identification signals that identify beam positions that are still to be processed. For a given beam path, the articulation control identifies the next beam position to be processed. If, however, in the sense of the aforementioned automatic search for an optimum beam guide path, the principle of minimal control variable gradients is used, the mentioned beam position identified by the articulation control does not also need that to be processed next, because for this, as will be specified further, the one that determines the minimum control variable gradient mentioned must first be determined from the plurality or at least the adjacent beam positions still to be processed.
  • Storage means are also provided for storing correction variables for beam operating parameters and assignment means which assign several beam positions to the same storage location of the storage means with the same correction variable, which, as explained in the procedure in the introduction, together for several beam positions, be it a predetermined beam path or an independently searched one , Correction size fields of constant correction size are defined.
  • the correction variables output now act as a control variable on at least one control input of the control unit for beam operating parameters, in particular for its beam dwell time and / or focusing and / or power etc.
  • the deflection control finally leads the beam to a next position after the control variable has been found. This in turn corresponds to either a predefined position (in the case of beam guidance along a predefined path) or a predefined position.
  • a selection unit which, starting from an ACTUAL position of the beam given by the identification signals and from this position assigned memory location of the correction variable memory and therefore from the current control variable, searches for a position for the beam whose assigned control variable which is dependent on the correction variable in the correction variable memory deviates minimally from the control variable which corresponds to the current position.
  • the selection unit therefore searches for a next beam position, so that the necessary change in the control variable is minimal.
  • the selection unit then emits a position control signal to the deflection control in order to steer the beam into the found position as the next position.
  • the deflection control controls the beam in a predetermined position grid over the surface and that the selection unit selects a position as the next position which is adjacent to the instantaneous position of the beam .
  • a plurality of storage means are provided for correction quantities, the allocation means assigning a plurality of beam positions per storage location with the same contents to each storage means.
  • Words contain actual fields in each storage medium, following the method according to the invention.
  • Each of the correction variables from the storage means is routed to a logic unit, the output of which acts on the control unit with at least one control variable.
  • the linking unit is preferably an additive or multiplicative unit, wherein at most factors associated with storage means can also be set for an additive linking on the linking unit.
  • FIG. 1 shows a combined signal flow function block diagram of a first embodiment variant of a control according to the invention for executing the method according to the invention.
  • a deflection control unit 1 comprises a position clock 1a and a position memory 1b.
  • an evaporation surface 14 to be evaporated for example on a crucible 15
  • Electron gun are to be processed.
  • the x, y values of these beam positions to be controlled are stored in the position memory 1b and their number, 1 to n, can be output at an output A 1.
  • the position clock generator 1a cyclically activates the position memory 1b via its output cl, so that the latter outputs at its output A1 the respective x, y values to be controlled, which are supplied to the position controller 3a of the electron gun 3.
  • the clock generator 1a and the position memory 1b therefore form a fixedly adjustable beam path generator.
  • a switching unit T 1 is initially opened.
  • the position signal x, y then output at the output A 1 is fed to a field assignment memory 5.
  • each of the n intended beam positions x, y field identifications A, B ... are assigned, a plurality of positions x, y each belonging together to the same field identifications.
  • the field assignment memory 5 comprises significantly fewer field identifications A, B ... than beam positions can be controlled by the deflection control unit 1.
  • the output A 1 to the field assignment memory 5 outputs the respective field identification at its output A 1.
  • the field identification which is now output at the output A5 of the field assignment memory 5, is fed to a correction variable memory 7, in which a correction value for each field identification A, B ... K A , K B ... is stored and which, in accordance with the field identification present at output A5, outputs the corresponding correction value K A , K B etc. at output A7.
  • the correction quantity value K corresponding to this position is output, which corresponds to the field A or B ..., in which said position is located .
  • the switching unit T 1 By outputting the correction quantity K at the output A7 of the correction quantity memory 7, the switching unit T 1 is closed via a pulse shaper 9, so that the position signal x, y still present at the output A 1 via a hold circuit 11, which is also triggered by the pulse shaper 9, the position control 3a of the electron gun 3 is supplied.
  • the output correction value K in turn is fed via a scaling unit 13 as a control variable signal to an operating parameter actuator unit 3b and there sets an operating parameter for the electron gun 3, such as the dwell time of the electron beam 12 at the point on the evaporation surface 14 which is now controlled according to the pending x, y value its focus at that point or its performance at that point.
  • the electron beam 12 works from the point now controlled, while the switching unit T1 in turn is opened and the setting for the next item to be processed is prepared by the process described above, first by selecting the next item number, then the new item, the new field identification and finally the new correction variable.
  • the position clock generator 1 a as shown, cyclically switches on the position numbers 1 to n, so that the surface 14 to be evaporated is repeatedly processed.
  • the correction quantity values K on the correction quantity memory 7 can be individually set or preselected, preferably adjusted, namely by a previously stored “working point” in the correction quantity memory 7.
  • the dwell time of the beam 12 is preferably set as the operating parameter on the operating parameter actuator unit 3b.
  • the electron gun used is e.g. an electron gun of a known type, such as an electron gun ESQ 200 from Balzers AG.
  • item number 14 denotes the given evaporation surface to be processed, for example in the evaporation crucible 15.
  • a position grid 21 for the electron beam 12 is assigned to the evaporation surface 14.
  • This position grid is divided into a plurality of identical position increments 23 which the electron beam 12 can control.
  • the position grid 23 merges into a continuous grid with increasing grid fineness, ie in this case the beam can be continuously controlled in any position with respect to the surface 14.
  • a correction variable K is assigned to each position of the beam 12 relative to the surface 14, corresponding to x, y, it being emphasized that a large number of Beam positions x, y are each assigned the same correction variable K, since a large number of positions belong to the same field A, B ... It can be seen, for example according to FIG. 2, that the correction variable K A is assigned to all beam positions which lie on an outer, peripheral ring field A. The correction variable K B is assigned to all beam positions which lie on a subsequent concentric ring array B and finally the correction variable K C etc. is also assigned to further concentric ring fields on the inside.
  • correction value values K according to FIG. 1 are preferably adjustable, it is preferred the position / field assignment specified.
  • a first variant of a beam path is shown with respect to the surface 14 at B1. If such a path B 1 is controlled by the deflection control 1 according to FIG. 1, the electron beam 12 follows a path which processes the surface 14 in a meandering pattern. If this path B 1 is placed on the correction size grid 25, it can be seen that with such a grid 25 formed from concentric circular fields, the control size S 1 3 of FIG. 1 resulting from the respective correction sizes K is changed at most undesirably frequently. This can now be remedied when the correction size grid 25 is known in a simple manner in that not a meandering path B 1 is selected, but rather a path which processes the surface 14 from inside to outside or from outside to inside in circular paths.
  • a starting position number specification unit 30 is entered at which beam position the path determination process is to begin.
  • the position number appearing at output A30 is fed via an OR logic unit 32 to a position memory 1c.
  • the position memory 1c the x, y values of all points to be processed by the beam 12 on the evaporation surface 14 are stored and can be output by entering the assigned position numbers at the input E1, at the output A1.
  • a signal at the control input S 1 of the position memory 1 c deletes the memory content in accordance with the x, y value whose position number is present at the input E 1.
  • the position memory 1c is actuated by a further control signal U for the cyclical, single output of all position values x, y remaining in it.
  • the position value x, y corresponding to the start number now appears at the output A 1 and is fed via an OR combination unit 34 to the input E 1 of the field assignment memory 5, whereupon the latter receives the field identification A, B corresponding to the position. outputs at output A5.
  • the field identification is now fed from the output A5 to the input E7 of the correction variable memory 7, whereupon the latter outputs the correction variable K A or K B ... corresponding to the identified field at the output A7 in the manner described above.
  • a changeover unit T2 is switched to the position shown in solid lines in FIG. 3, and the correction value appearing at the output A7 is an instantaneous value memory 42 entered.
  • the bistable unit 40 reset, whereupon the switch unit T2 falls back into the position shown in dashed lines.
  • the output pulse of the pulse shaper 44 is fed to the reset input S 1, whereby the memory content of the position memory 1 c is deleted, which is defined by the position number pending at the input E 1. Accordingly, when the correction value just stored in the instantaneous value memory 42 appears at the position memory 1c, the memory content corresponding to the starting position is deleted. This position value is not lost, however, because it was entered during the current storage of the associated correction variable, by closing a switching unit T3 and switching unit T4 switched in dashed position, an optimal path position memory 48. This was done by closing the switching unit T3 with the switching unit T2 to the memory 42 switching output signal of the bistable unit 40th
  • the memory content corresponding to the start position number in the position memory 1c is thus deleted, but is stored in the optimal path position memory 48.
  • the control input U to the position memory 1c is driven, whereupon the position memory 1c in a cycle all remaining x, y position values at its output A1 issues.
  • the OR combination unit 34, the field assignment memory 5 and the correction variable memory 7, a switchover unit T5 switched in the extended position all correction variable values K corresponding to the positions remaining in the position memory 1c are thus cyclically fed to a difference unit 50, together with the correction variable value stored in the instantaneous value memory 42.
  • the difference ⁇ of the correction quantities K of all the positions remaining in the position memory 1c is fed to a difference storage unit 52, namely simultaneously with the respective position number m extracted from the position memory 1c, a correction quantity difference ⁇ K with the number of the position m, the one of which is stored in the memory 52 Correction quantity was related to the correction quantity stored in the memory 42.
  • the following function is thus stored in the difference memory 52: correction value difference of all correction values which correspond to the positions remaining in the position memory 1 c to the correction value corresponding to the starting position as a function of the position number m.
  • This function ⁇ K m which lies in the differential memory 52 after the position memory 1c has been circulated once, is fed to a minimum determination unit 54 which detects at which position number m min the difference ⁇ K m in the differential memory 52 is minimal.
  • Position number m min is fed to the OR unit 32, then the input E1 of the position memory 1c.
  • a counter 56 counts the number of times the instantaneous value memory 42 has been loaded and, as soon as its count corresponds to the number of beam positions n to be controlled, controls a bistable unit 58. This indicates that the optimal path mentioned is stored in the optimal path memory 48.
  • the search process for this optimal path is now complete, and the positioning process for the beam 12 of the electron gun 3 is started, starting from this optimal path memory 48, which now takes the place of the position memory 1c: the output signal of the bistable unit 58 opens the switching unit T glazed for this purpose and closes a further switching unit T6 on the output side of the optimal path position memory 48, whereby its output A48 is switched to the OR logic unit 34.
  • the output A48 is led to the position control input on the electron gun 3 by closing the switching unit T6. Also by the output signal A58 of the bistable unit 58, the switch unit T5 is placed in the position shown in dashed lines, whereby the output A7 of the correction quantity memory 7 is fed to the electron gun 3 via the scaling unit 9 of the operating parameter setting unit 3b.
  • a clock 60 is triggered further by the output signal A58 of the bistable unit 58, whose output signal A60 is now in order, and thus the Corresponding to the optimal path, the position signals from the optimal path position memory 48 are clocked out, with which, on the one hand, the electron gun 12 follows this optimal path via the position controller 3a, and on the other hand, via the OR combination unit 34, the field assignment memory 5 and the correction variable memory 7, the selected operating parameters, such as the beam dwell time, its focus or power, is set on the operating parameter setting unit 3b.
  • the position memory 1c is then not activated with the control signal U to circulate all the memory contents remaining in it, but rather only the positions numbered next in x and y are activated to form the difference.
  • FIG. 4 shows a further embodiment variant of the system according to the invention, based on its configuration 1, shown, ie with a given beam path. As will be seen, it may be indicated with such a further development to expand the system with the arrangements searching for the optimum beam path, as they were shown with reference to FIG. 3, this expansion taking place in analogy to the illustration in FIG. 3.
  • the deflection control 1 operated like that shown in FIG. 1, outputs the respective position signal x, y at its output A 1 and clocked by the position clock 1a.
  • a plurality of mutually associated sets of a field assignment memory and a correction variable memory 5a / 7a, 5b / 7b etc. are now provided. All of the n beam positions x, y to be controlled are assigned a field distribution in each of these sets, for example fields A a , B a ..., D a in set "a” and fields A b , B b in set "b". .., C b , which do not match in the general case.
  • the corresponding correction variables K are added to these record-specific fields in the assigned correction quantity memories 7 a and 7 b .
  • connection arrangements 70 are provided, by means of which on the one hand the output A 1 can be connected in analogy to the explanations of FIG. 1, but now selectively, one or more of the field assignment memories 5.
  • the outputs A7 of one or more of the provided sets 5/7 are switched to a logic unit 72.
  • all of the correction variables output at the respectively activated outputs A7 are linked to one another, preferably weighted added or multiplied, so that a signal occurs at the output A72 of the linking unit 72, converted via the scaling unit 13 into the actuating signal S13, which is a function of Correction quantity (s) of one or more of the applied field assignment / correction quantity memory sets 5/7.
  • a correction size grid preferably corresponding to the influence of a physical quantity on the effect of the electron beam 12 with respect to the surface 14 to be evaporated, is stored in analogy to the correction size grid 25 from FIG. 2.
  • the fields and correction variables of an annulus field correction variable grid are stored in the field assignment / correction variable memory set "a".
  • a correction size grid with this profile takes into account, on an axially symmetrical evaporation crucible, the thermal diffusion conditions to the cooled outer wall of the crucible circular isotherms can be represented.
  • the second field assignment / correction quantity memory set "b" for example, field and correction quantity relationships are stored, which define a correction quantity grid, as shown in FIG. 5a, which takes into account the influence of the changing focusing when deflecting an electron beam which undergoes a 270 ° deflection between the electron beam source and the evaporation surface 14, in a plane perpendicular to the evaporation surface, for example through the y axis.
  • a further set of field assignment / correction variables defines, for example, a correction variable grid with the profile according to FIG. 5 b, which, with sickle-shaped fields, influences the lateral deflection in the x direction, for example the electron beam gun mentioned. Takes into account, in which the beam is deflected only by 270 ° in a plane perpendicular to the evaporation plane 14 and through the drawn y-axis from the electron beam source.
  • connection arrangement 70 determines which of the correction size grids are to be used in an intended evaporation process. It should be emphasized again that a beam position x, y in each set can belong to a different field and therefore retrieves a different correction quantity at each set, and that all correction quantities - one or more - finally form the actuating signal S13 are preferably linked multiplicatively or additively to one another at the linking unit 72.
  • the control quantity signal S13 is shown when two field assignment / correction quantity memory sets 5/7 are used, with one set a correction quantity grid as shown at 74 being defined, with the other set a correction quantity grid as shown at 76 .
  • the combination unit 72 of FIG. 4 is designed as a multiplication unit, by means of which the correction variable values K assigned to the fields are multiplied with one another, there is a profile of the control variable signal S 13 over the x, y plane, i.e. actually the evaporation surface 14, as shown at 78 in FIG. 6.
  • the control variable signal pattern 80 and 82 shown in FIG. 7 results in a control variable signal curve over the evaporation surface 14, as shown at 84.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Electron Beam Exposure (AREA)
  • Physical Vapour Deposition (AREA)

Claims (14)

  1. Procédé pour la commande du taux d'évaporation qui est produit à l'aide d'au moins un rayon électronique (12) sur une surface d'évaporation (14) prédéfinie et dont la moyenne est calculée dans le temps, en vue d'une distribution de taux d'évaporation prédéfinie sur la surface (14), selon lequel on affecte à la surface (14) une grille de grandeurs de commande pour au moins un paramètre de fonctionnement du rayon électronique, et la surface (14) est soumise à un enlèvement de matière à l'aide du rayon électronique (12) commandé par les grandeurs de commande de la grille, caractérisé en ce que la grille de grandeurs de commande est définie par au moins une grille de grandeurs de correction (25) affectée à la surface (14) et divisée en champs (A, B, C...) qui sont affectés à des zones partielles de la surface et dans lesquels la grandeur de correction correspondante (KA, KB, KC...) est constante, étant précisé que les zones partielles de la surface comprennent des zones partielles qui sont supérieures à celles qui pourraient être usinées par le rayon électronique maintenu stationnaire dans lesdites zones.
  2. Procédé selon la revendication 1, caractérisé en ce qu'il est prévu plusieurs grilles de grandeurs de correction (74, 76) comportant chacune des divisions en champs (Aa, Ba, Ab, Bb), et la grille de grandeurs de commande (78, 84) est établie grâce à une combinaison de grandeurs de correction (KAa, KAb...) correspondant à des positions (x,y) identiques.
  3. Procédé selon l'une des revendications 1 ou 2, caractérisé en ce que la grille de grandeurs de commande (78, 84) est établie à partir d'une ou plusieurs grilles de grandeurs de correction (74, 76), de préférence grâce au choix sélectif d'une combinaison d'une multiplicité de grilles de grandeurs de correction prévues.
  4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que le rayon électronique (12) est guidé sur la surface de creuset (14) suivant le gradient (Δ) minimal des grandeurs de commande, éventuellement automatiquement.
  5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce que la division en champs (A, B...) de la ou des grilles de grandeurs de correction (74, 76) est prédéfinie et le réglage de grandeurs de correction (K) est réalisé individuellement à l'aide d'une unité de présélection (17), éventuellement suivant un réglage de base également prédéfini.
  6. Procédé selon la revendication 4, caractérisé en ce que le rayon électronique (12) est guidé sur la surface (14) suivant les gradients de grandeurs de correction (Δ) minimaux de positions de rayon voisines.
  7. Procédé selon l'une des revendications 1 à 6, caractérisé en ce que le rayon est guidé sur la surface de creuset (14) sur une trajectoire (B₁, B₂, B'₂) apte à être choisie.
  8. Commande de rayon électronique pour une installation d'évaporation, comportant une commande de déviation (1) pour le rayon (12), qui commande la position de rayon (x, y) sur une surface d'évaporation (14) en vue de l'usinage de celle-ci, et une unité de commande (3b) pour la commande de paramètres de fonctionnement de rayon, caractérisée
    - en ce que la commande de déviation (1) émet un signal d'identification de position (Nr) qui identifie une position de rayon (x, y) correspondant à une position sur la surface (14) qui est encore moins usinée que d'autres positions de la surface du creuset,
    - en ce qu'il est prévu des moyens de mémorisation (7) pour la mise en mémoire de grandeurs de correction (K) pour des paramètres de fonctionnement de rayon,
    - en ce qu'il est prévu des moyens d'affectation (5) qui affectent et sortent les emplacements de mémoire des moyens de mémorisation (7) avec la même grandeur de correction (K),
    - en ce que les grandeurs de correction (K) sorties sont transmises sous la forme d'une grandeur de commande (S₁₃) à au moins une entrée de commande de l'unité de commande (3b),
    - en ce que la commande de déviation (1) commande le rayon (12) dans une position suivante.
  9. Commande selon la revendication 8, caractérisée en ce qu'il est prévu une unité de sélection (52, 54) qui cherche pour le rayon (12), à partir d'une position réelle du rayon (12) définie par un signal d'identification (Nr), de l'emplacement de la mémoire de grandeurs de correction (7) affecté à cette position et de la grandeur de commande momentanée, une position dont la grandeur de commande affectée dépendante de la grandeur de correction dans la mémoire de grandeurs de correction (7) s'écarte de façon minimale de la grandeur de commande dépendante de la grandeur de correction suivant la position momentanée, et en ce que l'unité de sélection (54) émet un signal de commande de position (mmin) pour le rayon (12) afin de guider celui-ci dans la position trouvée comme position suivante.
  10. Commande selon l'une des revendications 8 ou 9, caractérisée en ce que la commande de déviation (1) guide le rayon (12) sur la surface (14) suivant une grille de positions prédéfinie, et l'unité de sélection (52, 54) sélectionne comme position suivante une position qui est voisine de la position momentanée sur cette grille.
  11. Commande selon l'une des revendications 8 à 10, caractérisée en ce qu'il est prévu plusieurs moyens de mémorisation (7a, 7b...) pour des grandeurs de correction respectives (KXa, KXb...), en ce que les moyens d'affectation (5a, 5b...) affectent à plusieurs positions de rayon des emplacements de mémoire ayant les mêmes contenus (K), dans chaque moyen de mémorisation (7a, 7b...), et en ce que les sorties des moyens de mémorisation (7a, 7b...) agissent sur une unité logique (72) dont la sortie (S₁₃) agit elle-même sur l'unité de commande (3b) avec au moins une grandeur de commande.
  12. Commande selon la revendication 11, caractérisée en ce que l'un au moins des moyens de mémorisation (7a, 7b...) est apte à être mis en oeuvre à l'aide d'un dispositif additionnel (70).
  13. Commande selon l'une des revendications 8 à 12, caractérisée en ce que les grandeurs de correction (K) prévues au niveau des moyens de mémorisation (7) sont aptes à être ajustées extérieurement, au niveau d'une unité de présélection (17).
  14. Commande selon l'une des revendications 8, 11 à 13, caractérisée en ce que la commande de déviation (1) comprend un générateur de trajectoire de rayon (1a, 1b) apte à être réglé de façon fixe.
EP89119229A 1988-11-10 1989-10-17 Procédé de commande de la distribution du taux d'évaporation produite par un faisceau d'électrons Expired - Lifetime EP0368037B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH4172/88 1988-11-10
CH417288 1988-11-10

Publications (2)

Publication Number Publication Date
EP0368037A1 EP0368037A1 (fr) 1990-05-16
EP0368037B1 true EP0368037B1 (fr) 1994-07-06

Family

ID=4271145

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89119229A Expired - Lifetime EP0368037B1 (fr) 1988-11-10 1989-10-17 Procédé de commande de la distribution du taux d'évaporation produite par un faisceau d'électrons

Country Status (5)

Country Link
US (1) US5003151A (fr)
EP (1) EP0368037B1 (fr)
JP (1) JP2878340B2 (fr)
AT (1) ATE108283T1 (fr)
DE (1) DE58908004D1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19745771B4 (de) 1997-10-16 2005-12-22 Unaxis Deutschland Holding Gmbh Verfahren für den Betrieb eines Hochleistungs-Elektronenstrahls
US6215127B1 (en) * 1999-03-08 2001-04-10 Advanced Micro Devices, Inc. Method of using critical dimension mapping to qualify a new integrated circuit fabrication tool set
EP1275750B1 (fr) * 2001-07-11 2009-07-01 Carl Zeiss Vision GmbH Appareil pour la métallisation sous vide
DE102016122671A1 (de) * 2016-11-24 2018-05-24 VON ARDENNE Asset GmbH & Co. KG Verfahren und Elektronenstrahlkanone
DE102018101821A1 (de) * 2018-01-26 2019-08-01 VON ARDENNE Asset GmbH & Co. KG Verfahren, Elektronenstrahlkanone und Steuervorrichtung
DE102018103079A1 (de) * 2018-02-12 2019-08-14 VON ARDENNE Asset GmbH & Co. KG Verfahren, Elektronenstrahlkanone und Steuervorrichtung

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3607222A (en) * 1968-11-26 1971-09-21 Air Reduction Method for evaporating alloy
US3875416A (en) * 1970-06-30 1975-04-01 Texas Instruments Inc Methods and apparatus for the production of semiconductor devices by electron-beam patterning and devices produced thereby
JPS5957431A (ja) * 1982-09-27 1984-04-03 Fujitsu Ltd 電子ビ−ム露光装置
DE3428802A1 (de) * 1984-08-04 1986-02-13 Leybold-Heraeus GmbH, 5000 Köln Verfahren und vorrichtung zur steuerung des fokussierungszustandes eines abgelenkten elektronenstrahls
CA1288733C (fr) * 1985-09-05 1991-09-10 The Black Clawson Company Dispositif tamiseur de pates papetieres de fibres
DE3538857A1 (de) * 1985-11-02 1987-05-07 Leybold Heraeus Gmbh & Co Kg Einrichtung fuer die eingabe eines sollwerts fuer den auftreffpunkt eines elektronenstrahls auf ein medium

Also Published As

Publication number Publication date
JP2878340B2 (ja) 1999-04-05
EP0368037A1 (fr) 1990-05-16
JPH03160713A (ja) 1991-07-10
DE58908004D1 (de) 1994-08-11
ATE108283T1 (de) 1994-07-15
US5003151A (en) 1991-03-26

Similar Documents

Publication Publication Date Title
DE3208435C2 (de) Steuerungsvorrichtung zum Führen eines Lichtbogenschweißautomaten
DE1053691B (de) Verfahren und Einrichtung zur Materialbearbeitung mittels Ladungstraegerstrahl
DE1185305B (de) Verfahren zum Loeten, Schweissen und Abtragen von Materialien mittels eines Ladungstraegerstrahls
EP0368037B1 (fr) Procédé de commande de la distribution du taux d'évaporation produite par un faisceau d'électrons
DE3444161C2 (fr)
EP0885348B1 (fr) Procede et dispositif de regulation rapide de la puissance d'une centrale
DE102007012370A1 (de) Bedampfungseinrichtung und Bedampfungsverfahren zur Molekularstrahlbedampfung und Molekularstrahlepitaxie
DE3546130C2 (de) Verfahren zur Steuerung der Bearbeitung in einer Elektroerosionsmaschine mit einer Drahtelektrode
WO2019025087A1 (fr) Dispositif et procédé de fabrication d'une pièce en mousse particulaire
EP0346505A1 (fr) Méthode de découpage de copeaux pendant le tournage des pièces à usiner
DE69416963T2 (de) Vorrichtung zur Bogenbeschichtung im Vakuum
DE3525177A1 (de) Verfahren und vorrichtung fuer das erschmelzen und fuer das aufdampfen von hochreinem silizium
EP0335122B1 (fr) Dispositif et procédé le commande et de contrôle d'un faisceau d'électrons pour le travail des métaux
DE69030243T2 (de) Verfahren und Gerät zur Steuerung von Ladungsträgerstrahlen in einem Belichtungssystem mittels Ladungsträgerstrahlen
DE2047138A1 (de) Steuersystem fur eine Elektronenstrahl Heizvorrichtung
DE10051508C2 (de) Verfahren und Einrichtung zur Reduzierung der Zündspannung von Leistungspulsen gepulst betriebener Plasmen
EP0222219B1 (fr) Dispositif de bombardement d'un milieu par un faisceau d'électrons
DE1565883B1 (de) Vorrichtung zum Erhitzen eines Materials mittels Elektronen
DE2739412A1 (de) Fadenzufuehr- und -wechselvorrichtung
DE2731250C2 (de) Verfahren zur Regelung des Stabquerschnittes beim tiegellosen Zonenschmelzen eines Halbleiterstabes
WO2000016373A1 (fr) Ensemble cible pour chambre d'evaporation par l'intermediaire d'un arc
DE102004041855B4 (de) Vorrichtung und Verfahren zur kontinuierlichen thermischen Vakuumbeschichtung
DE2841969C2 (de) Verdampfertiegel für das Verdampfen von Legierungen mit Komponenten mit unterschiedlichen Dampfdrücken
EP1348781A1 (fr) Method for epitaxial growth by energetic beam irradiation
DE102009059131A1 (de) Verfahren zum spanenden Bearbeiten einer Oberfläche

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19900531

17Q First examination report despatched

Effective date: 19921019

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19940706

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19940706

REF Corresponds to:

Ref document number: 108283

Country of ref document: AT

Date of ref document: 19940715

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940704

REF Corresponds to:

Ref document number: 58908004

Country of ref document: DE

Date of ref document: 19940811

ET Fr: translation filed
ITF It: translation for a ep patent filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19941006

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20011009

Year of fee payment: 13

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20021011

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021017

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20021031

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20021219

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031031

BERE Be: lapsed

Owner name: *BALZERS A.G.

Effective date: 20031031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040501

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20040501

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20041008

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20041013

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20041014

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20050124

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051017

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060503

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20051017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060630

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20060630