EP0366735A1 - Lernendes regelungsverfahren für eine brennkraftmaschine und vorrichtung hierfür. - Google Patents

Lernendes regelungsverfahren für eine brennkraftmaschine und vorrichtung hierfür.

Info

Publication number
EP0366735A1
EP0366735A1 EP19890902933 EP89902933A EP0366735A1 EP 0366735 A1 EP0366735 A1 EP 0366735A1 EP 19890902933 EP19890902933 EP 19890902933 EP 89902933 A EP89902933 A EP 89902933A EP 0366735 A1 EP0366735 A1 EP 0366735A1
Authority
EP
European Patent Office
Prior art keywords
value
learning
values
variable
counter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP19890902933
Other languages
English (en)
French (fr)
Other versions
EP0366735B1 (de
Inventor
Martin Klenk
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0366735A1 publication Critical patent/EP0366735A1/de
Application granted granted Critical
Publication of EP0366735B1 publication Critical patent/EP0366735B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2441Methods of calibrating or learning characterised by the learning conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2454Learning of the air-fuel ratio control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2477Methods of calibrating or learning characterised by the method used for learning

Definitions

  • the invention relates to a learning control method with feedforward control for an operating variable to be set for an internal combustion engine.
  • the invention also relates to a device for performing such a method.
  • the device has a pilot control means, a setpoint generator means, a control means, a weakening S 'means, a learning condition detection means and a learning map.
  • the pilot control device outputs a pilot control value for the company variable to be set, depending on values of operating variables other than the one to be set.
  • the setpoint generator provides a controlled variable setpoint, which is compared with a respective controlled variable actual value.
  • the control means forms one depending on the difference between the two values mentioned Control value with which the respective pilot control value is corrected in a regulating manner.
  • the feedforward control value is, however, also corrected in a controlling manner, with the aid of an adaptation value read out from the learning map.
  • the learning map stores adaptation values in an addressable manner via values of addressing operating variables.
  • To correct the feedforward control value it reads out the adaptation value that belongs to the set of values of the addressing operating variables that is present at the time.
  • the adaptation values are determined again and again, specifically whenever the learning condition detection means outputs a learning signal for a respective adaptation value when a predefined learning condition is fulfilled.
  • the correction is carried out with the aid of the manipulated variable provided by the control means, which, however, is not used directly for correction, but only after multiplication by a learning intensity factor supplied by the attenuation means.
  • a learning map whose interpolation point values are changed with the help of weakened values of a variable when a learning condition occurs, is also from SAE paper no. 860594, 1986, for a device for adjusting the injection time.
  • the attenuation means does not continuously output the same learning intensity value, but this depends on how often one has already learned at a support point and how large the respective manipulated variable is.
  • the attenuating means has a counting memory and a learning intensity table. A counter reading is stored in the counter reading memory for each interpolation point of this characteristic diagram, the interpolation points being identical to those of the learning characteristic diagram.
  • the status is up to a 16-bit value with each new learning cycle for each relevant support point increased by 1. However, if the control value for this interpolation point is greater than a threshold value in three consecutive learning cycles, the counter reading for this interpolation point is reset to 0. Depending on the respective meter reading and the respective value of the manipulated variable, a learning intensity factor which is fixed for these addressing values is read out from the learning intensity table. The manipulated variable is multiplied by this and the result is added to the previous reference point value.
  • the invention has for its object to provide a device for learning control with feedforward control for an operating variable to be set for an internal combustion engine, which achieves rapid learning progress in a learning map without the controlled system tending to vibrate.
  • the invention is also based on the object of specifying a device for executing such a method.
  • the inventive method is characterized in that the counter reading in the counter reading memory is no longer is incremented by the value 1 with each learning process and is reset to 0 after three unsatisfactory learning cycles, but that a counter difference table is available that depends on the control variable, i.e. the control deviation, and the learning progress already achieved, i.e. the counter reading in the counter memory, counter differences stores with which the counter reading is incremented or decremented for a given operating point in the counter reading memory.
  • the device according to claim 2 has the means already described, that is to say a pilot control means, a setpoint generator means, a control means, a weakening means, which contains a counter reading map and a learning intensity table, a learning condition detection means and a learning map.
  • the device according to the invention has a counter difference table as part of the attenuation means. This counter difference table stores counter difference values in an addressable manner using values of the counter reading and a variable dependent on the manipulated variable. For each set of available values of the meter reading and the manipulated variable-dependent size, it outputs the associated meter difference value to the meter reading map to change the meter reading at the respective reference point by the meter difference value.
  • the counter difference table means that the counter reading for the relevant one is no longer used for a particular learning cycle
  • This advantageous effect can also be supported by a delay step which, according to an advantageous development, can also be used.
  • This delay step delays the change of a counter reading in the counter reading map until, after the appearance of a learning signal, a learning intensity value based on the counter reading applicable before the learning signal has occurred has been read out from the learning intensity table. So if there is a large value of the variable dependent on the size, which leads to a relatively large decrease in the counter reading and thus a relatively large increase in the learning intensity value, the will not existing large value of the manipulated variable is weakened with the new learning intensity value, which would lead to high learning intensity, but the large value of the manipulated variable is only weakened with the old learning intensity value, which leads to lower learning intensity.
  • the method according to the invention can be used to set a wide variety of operating variables of an internal combustion engine.
  • the application for setting the fuel metering time, in particular the injection time is particularly advantageous. This is because, in systems for setting this variable, the lambda value that is measured in the exhaust gas of the internal combustion engine is used as the controlled variable, which is considerably dead time between making a change and measuring it. Such systems tend to vibrate because of the dead time mentioned and therefore the vibration-damping measure according to the invention is particularly useful.
  • FIG. 1 shows a block diagram of a functional diagram of a learning pilot control method for setting the injection time
  • FIG. 2 shows a functional diagram of a weakening means, shown as a block diagram, within the functional diagram of FIG. 1.
  • Figures 1 and 2 relate to a single embodiment. This relates to the setting of the injection time for an injection valve of an internal combustion engine 10.
  • the setting of the injection time was chosen as an example, since the invention can be illustrated particularly well in it.
  • the presentation in the form of block diagrams has also been chosen for reasons of clarity alone.
  • the function, which is explained on the basis of the block diagrams, will generally be carried out in practice by a microcomputer, as is customary in motor vehicle electronics.
  • An injection valve 12 is arranged in the intake manifold 11 of the internal combustion engine 10 and is actuated with a signal for the injection time TI.
  • a lambda value is set, which is measured by a lambda probe 14 arranged in the exhaust duct 13 of the internal combustion engine 10.
  • the measured actual lambda value is compared with a lambda solI value supplied by a setpoint generator 15 in a comparison step 16, and the control deviation value formed is transmitted to a control means 17.
  • integrating behavior supplied that outputs a manipulated variable that has the character of a control factor FR in the case of the injection timing.
  • a predetermined injection time is modified by multiplication in a control multiplication step 18.
  • a pilot control value TIV is available at its input for the injection time, which is supplied by a pilot control means, which in the exemplary embodiment shown is implemented by a pilot control memory 19 which can be addressed via values of Speed n and the position of an accelerator pedal FP saves pilot values TIV.
  • the pilot control values TIV are defined for certain operating conditions and certain system properties. Now, however, the operating conditions change when operating the internal combustion engine, for. B. the air pressure or the system properties, e.g. B. leakage air properties or the closing time of the injection valve 12.
  • the pilot control value read from the pilot control memory 19 is modified with an adaptation factor FA in an adaptation multiplication step 20.
  • the adaptation factor FA is read out from an adaptation factor memory 21 which has a corresponding number of support points as the pilot control memory 19 and, like this, can be addressed via sets of values of the speed n and the accelerator pedal position FP. It is e.g. B. 64 support points each with 8 addresses for K leave speed values and 8 addresses for classes of accelerator pedal positions.
  • the adaptation factors at the 64 support points are all set to the value "1" during commissioning.
  • An area is defined around each base. If this area is left and the internal combustion engine 10 was previously in stationary operation, a learning condition detection means 22 outputs a learning signal LS. This leads to a subsequent change in the adaptation factor of the support point, which is given by the coordinates nv, FPv, which are the values of the addressing operating variables at the time of leaving the area.
  • Averaging means 23 and a weakening means 24 are provided for carrying out the learning step.
  • the system is identical to an exemplary embodiment which is described in DE 35 05 965 A1 already mentioned with reference to FIG. 11 there.
  • the decisive difference is that in the known method, the attenuation means 24 continuously specifies the same learning intensity factor, while the attenuation means of the present method, as will be explained in more detail below with reference to FIG. 2, outputs a variable learning intensity factor.
  • the setpoint generator means 15 and the comparison step 16 are missing, and there is also no integration step 25 between the lambda probe 14 and the comparison step 16.
  • these function groups are also contained in the control means 17, since a permanently fixed lambda sol value of 1 was assumed there.
  • the function groups are drawn separately to show that the lambda setpoint can also be variable, which is the case when applied to lean lambda control.
  • Another difference to the known exemplary embodiment is that there are still functional groups for setting a global adaptation factor. These function groups can also be used in the present system if a global factor is to be incorporated. For the invention discussed here, namely the type of variable Ge design of the learning intensity factor M, these details are irrelevant.
  • the attenuation means 24 has three main function groups, namely a learning intensity table 26, a counter reading memory 27 and a counter difference table 28. All three function groups represent maps from which values, which are assigned sets of values of addressing quantities, are read out can be. However, the addressing sizes are different, which is why different terms have been used for the function groups.
  • the counter status memory 27, like the pilot control memory 29 and the adaptation factor memory 21, can be addressed via values of the rotational speed n and the accelerator pedal position FP, with the same class division, eg. B. is available in 8 x 8 support points.
  • the characteristic diagrams of the two tables that is to say the learning intensity table 26 and the counter difference table 28, are instead addressed via values for the percentage manipulated variable deviation and the counter reading output by the counter reading memory 27 for a respective support point.
  • the classification of these sizes is absolutely independent of the classification of the other sizes, which are used to address the above-mentioned memories.
  • Table I for the learning intensity table and Table II for the counter difference table are also divided into 8 x 8 reference points, because this is possible due to the usual addressing methods. However, this division has nothing to do with the 8 x 8 division of the memories, so it could also be any other division.
  • an addressing variable for the learning intensity table 26 and the counter difference table 28 is the percentage manipulated variable deviation. This is formed from the averaged control factor FR by subtracting the value "1" from this mean value and calculating the difference as a percentage value based on the value "1". If an averaged manipulated variable now occurs, ie an averaged control factor of again "1.1”, as in the example above, and this applies to a support point for which a learning cycle has never been carried out, for which the counter reading "0" in Is stored, the learning intensity table outputs the learning intensity factor "1", as can be seen from Table I.
  • This learning intensity factor M is multiplied in an attenuation multiplication step 29 by the absolute manipulated variable deviation, that is to say the difference between the averaged manipulated variable FR and the setpoint "1", and the setpoint "1" is added in an addition step 30 to obtain a provisional adaptation factor FAv. so that the value "1.1” is finally obtained.
  • the old adaptation factor FA that is to say "1” is multiplied by this, whereby the new adaptation factor "1.1” is obtained.
  • the counter reading for the relevant reference point is lowered by "4", as can be seen from the value "-4" in Table II for a 15% manipulated variable deviation and the counter reading "28".
  • the counter reading for the continuously considered support point is then "24".
  • the fact that the reading from the learning intensity table 26 is still based on the old meter reading and only then is the meter reading in the meter reading memory 27 corrected for the corresponding support point is shown in the function diagram according to FIG. 2 by a delay step 31 between the meter difference table 28 and the meter reading memory 27 indicated.
  • the above-mentioned delay has the advantage that a large deviation from the manipulated variable is initially only multiplied by a learning intensity factor, which passes on the deviation in a greatly weakened manner.
  • the pilot control means need not be implemented by a pilot control memory 19, but a pilot control value can be obtained in any other way, e.g. B. by forming the quotient from the air mass and the speed, as described in the SAEpaper already mentioned.
  • a pilot control value can be obtained in any other way, e.g. B. by forming the quotient from the air mass and the speed, as described in the SAEpaper already mentioned.
  • B. in DE 34 08 215 (US Ser. No. 696 536/1985). It does not have to have a separate adaptation factor memory, but it is also possible to read values from a pilot control ROM into a RAM and then immediately modify the pilot control values, such as. B. in BG 2 034 930 B.
  • a global factor can also be determined.
  • all links are multiplicative. This is appropriate in devices for regulating the injection time.
  • corrections are usually carried out additively.
  • Such a device is characterized in that the operating variable to be set the ignition timing, the controlled variable z.
  • B. a torque-indicating variable
  • the manipulated variable is a control summand
  • the adaptation value is an adaptation summand
  • the learning intensity value is a learning summand, where all summands can also take negative values
  • the attenuation linking means has an adding step that additively corrects the adaptation values by means of the correction values.
  • the condition under which the learning signal LS is output is also irrelevant.
  • the above condition corresponds to that as described in the two German patent applications mentioned.
  • the learning signal can also be output with every program cycle without additional conditions.
  • control factor FR as it is output by the control means 17, is used to obtain a new adaptation factor FA.
  • This control actuator FR typically contains a proportional and an integral component. The integral part is the direct measure of the effort to eliminate a control deviation. If this integral component can be tapped separately from the control means 17, it is therefore advantageous to use only this integral component of the rule factor FR and not the entire control factor to calculate a new adaptation factor FA.
  • the learning intensity value is obtained for changing the adaptation values, namely by looking up in a learning intensity table with the counter reading of a reference point as an addressing variable, this counter reading depending on positive or negative values which are read from a counter difference table. is changeable up to a maximum value.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Feedback Control In General (AREA)

Description

Lernendes Regelungsverfahren für eine Brennkraftmaschine und Vorrichtung hierfür
Die Erfindung betrifft ein lernendes Regelungsverfahren mit Vorsteuerung für eine einzustellende Betriebsgröße einer Brennkraftmaschine. Die einzustellende Betriebsgröße kann z. B. die Kraftstoffzumeßzeit, der Zündzeitpunkt, der Ladedruck, die Abgasrückführungsrate oder auch die Leerlaufdrehzahl sein. Die Erfindung betrifft außerdem eine Vorrichtung zum Durchführen eines solchen Verfahrens.
Stand der Technik
Ein derartiges Verfahren und eine zugehörige Vorrichtung sind aus der DE 35 05 965 A1 (US-Ser. No. 831 476/1986) bekannt. Die Vorrichtung weist ein Vorsteuerungsmittel, ein Sollwertgebermittel, ein Regelungsmittel, ein AbschwächungS' mittel, ein Lernbedingungs-Erkennungsmittel und ein Lernkennfeld auf. Das Vorsteuerungsmittel gibt abhängig von Werten von anderen Betriebsgrößen als der einzustellenden einen Vorsteuerungswert für die einzustellende Betriebsgröße aus. Das Sollwertgebermittel liefert einen Regelgrössen-Sollwert, der mit einem jeweiligen Regelgrößen-Istwert verglichen wird. Das Regelungsmittel bildet abhängig von der Differenz zwischen den genannten beiden Werten einen Stellwert, mit dem der jeweilige Vorsteuerungswert regelnd korrigiert wird. Der Vorsteuerungswert wird jedoch auch steuernd korrigiert, und zwar mit Hilfe eines aus dem Lernkennfeld jeweils ausgelesenen Adaptionswertes. Das Lernkennfeld speichert Adaptionswerte adressierbar über Werte von Adressierbetriebsgrößen. Es liest zum Korrigieren des Vorsteuerungswertes jeweils denjenigen Adaptionswert aus, der zum jeweils vorliegenden Satz von Werten der Adressierbetriebsgrößen gehört. Die Adaptionswerte werden immer wieder neu bestimmt und zwar immer dann, wenn das Lernbedingungs-Erkennungsmittel für einen jeweiligen Adaptionswert ein Lernsignal ausgibt, wenn eine vorgegebene Lernbedingung erfüllt ist. Das Korrigieren erfolgt mit Hilfe des von dem Regelungsmittel gelieferten Stellwertes, der allerdings nicht unmittelbar zur Korrektur herangezogen wird, sondern erst nach Multiplikation mit einem vom Abschwächungsmittel gelieferten Lernintensitatsfaktor.
Ein Lernkennfeld, dessen Stützstellenwerte mit Hilfe abgeschwächter Werte einer Ste l l größe bei Eintritt einer Lernbedingung verändert werden, ist auch aus dem SAE-paper No. 860594, 1986, für eine Vorrichtung zum Einstellen der Einspritzzeit bekannt. Bei dieser Vorrichtung gibt das Abschwächungsmittel nicht dauernd denselben Lernintensitätswert aus, sondern dieser hängt davon ab, wie oft an einer Stützstelle bereits gelernt wurde und wie groß die jeweilige Stellgröße ist. Um die variablen Lernintensitätswerte, die Faktoren sind, liefern zu können, weist das Abschwächungsmittel einen Zähleirstandsspeicher und eine Lernintensitätstabelle auf. Im Zählerstandsspeicher ist für jede Stützstelle dieses Kennfeldes, wobei die Stützstellen mit denen des Lernkennfeldes identisch sind, ein Zählerstand gespeichert. Der Stand wird bis zu einem 16-Bit-Wert mit jedem neuen Lernzyklus für jede betreffende Stützstelle um 1 erhöht. Ist jedoch der Stellwert für diese Stützstelle in drei aufeinanderfolgenden Lernzyklen größer als ein Schwellwert, wird der Zählerstand für diese Stützstelle auf 0 zurückgesetzt. Abhängig vom jeweiligen Zählerstand und vom jeweiligen Wert der Stellgröße wird aus der Lernintensitätstaelle ein für diese Adressierwerte fest vorgegebener Lernintensitätsfaktor ausgelesen. Mit diesem wird die Stellgröße multipliziert und das Ergebnis wird zum vorher vorhandenen Stützstellenwert addiert.
Es hat sich herausgestellt, daß das System dann, wenn mit einem einzigen Lernintensitätswert gearbeitet wird, relativ wenig zu Schwingungen neigt, vorausgesetzt der Wert wird nicht zu hoch angesetzt. Andererseits besteht das Problem, daß dann, wenn große Werte der Stellgröße vorliegen, nicht ausreichend schnell gelernt werden kann.
Der Erfindung liegt die Aufgabe zugrunde, eine Vorrichtung zum lernenden Regeln mit Vorsteuerung für eine einzustellende Betriebsgröße einer Brennkraftmaschine anzugeben, das schnelle Lernfortschritte in einem Lernkennfeld erzielt, ohne daß das geregelte System zu Schwingungen neigt. Der Erfindung liegt weiterhin die Aufgabe zugrunde, eine Vorrichtung zum Ausführen eines solchen Verfahrens anzugeben.
Vorteile der Erfindung
Die Erfindung ist für das Verfahren durch die Merkmale von Anspruch 1 und für die Verrichtung durch die Merkmale von Anspruch 2 gegeben. Vorteilhafte Weiterbildungen und Ausgestaltungen sind Gegenstand der Unteransprüche.
Das erfindungsgemäße Verfahren zeichnet sich dadurch aus, daß der Zählerstand im Zählerstandsspeicher nicht mehr grundsätzlich um den Wert 1 mit jedem Lernvorgang inkrementiert wird und nach drei unzufriedenstellenden Lernzyklen auf 0 zurückgesetzt wird, sondern daß eine Zählerdifferenztabelle vorhanden ist, die abhängig von der Regelstellgröße, also der Regelabweichung, und dem bereits erzielten Lernfortschritt, also dem Zählerstand im Zählerstandsspeicher, Zählerdifferenzen speichert, mit denen der Zählerstand für einen jeweils vorliegenden Betriebspunkt im Zählerstandsspeicher inkrementiert oder dekrementiert wird.
Die Vorrichtung gemäß Anspruch 2 weist die bereits beschriebenen Mittel auf, also ein Vorsteuerungsmittel, ein Sollwertgebermittel, ein Regelungsmittel, ein Abschwächungsmittel, das ein Zählerstand-Kennfeld und eine Lernintensitätstabelle beinhaltet, ein Lernbedingungs-Erkennungsmittel und ein Lernkennfeld. Dazuhin weist die erfindungsgemäße Vorrichtung eine Zählerdifferenztabelle als Teil des Abschwächungsmittels auf. Diese Zählerdifferenztabelle speichert Zählerdifferenzwerte adressierbar über Werte von Zählerstand und einer stellgrößenabhängigen Größe. Für jeden Satz jeweils vorliegender Werte von Zählerstand und stellgrößenabhängiger Größe gibt sie den zugehörigen Zählerdifferenzwert an das Zählerstand-Kennfeld aus, zum Ändern des Zählerstandes an der jeweiligen Stützstelle um den Zählerdifferenzwert.
Die Zählerdifferenztabelle bewirkt, daß nicht mehr bei einem jeweiligen Lernzyklus der Zählerstand für die betreffende
Stützstelle um den festen Wert 1 erhöht wird wie beim System gemäß dem genannten SAE-paper, sondern daß die Zählerdifferenz variabel gestaltet ist. So beträgt der Zählerdifferenzwert nur für kleine Werte der Stellgröße und kleine Zählerstandswerte "+ 1". Für größere Abweichungen wird die Differenz kleiner, geht also über den Wert "0" bis zu negativen Werten. Außerdem sind die Zählerstandswerte im Zäh lerstand-Kennfeld auf einen Maximalwert begrenzt. Die Wirkung dieser Maßnahme ist die folgende.
Wird an einer Stützstelle aufgrund relativ kleiner Werte der stellgrößenabhängigen Größe immer wieder gelernt, wird schließlich der Maximalwert für den Zählerstand erreicht. Dies führt zu einem relativ niedrigen Lernintensitätswert, wodurch die Tatsache berücksichtigt ist, daß an einer Stelle, an der bereits viel gelernt wurde, die Wahrscheinlichkeit für weitere größere Änderungen gering ist. Tritt nun doch ein großer Wert der stellgrößenabhängigen Größe für diese Stützstelle auf, bedeutet dies, daß wohl doch noch ein größerer Lernfortschritt erforderlich ist. Der Zählerstand wird daher um einige Punkte erniedrigt, was zu einem Vergrößern des Lernintens itätswertes führt. Die Vergrös- serung ist jedoch nicht so stark, wie sie wäre, wenn der Zählerstand auf 0 zurückgesetzt werden würde. Dies macht ersichtlich, das das Verfahren in Bezug auf die Lerngeschwindigkeit variabel ist, aber dennoch nicht zu Schwingungen neigt, da keine zu großen sprunghaften Änderungen in Lernintensitätswerten auftreten.
Dieser vorteilhafte Effekt ist noch durch einen Verzögerungsschritt unterstützbar, der gemäß einer vorteilhaften Weiterbildung zusätzlich einsetzbar ist. Dieser Verzögerungsschritt verzögert die Änderung eines Zählerstandes im Zählerstand-Kennfeld so lange, bis, nach dem Auftreten eines Lernsignales, zunächst ein Lernintensitätswert aufgrund des vordem Auftretein des Lernsignales geltenden Zählerstandes aus der Lernintensitätstabelle ausgelesen worden ist. Tritt also ein großer Wert der stel Igrößenabhängigen Größe auf, der zu einem verhältnismäßie starken Erniedrigen des Zählerstandes und damit einem verhältnismäßig starken Erhöhen des Lernintensitätswertes führt, wird nicht der vorliegende große Wert der Stellgröße mit dem neuen Lernintensitätswert abgeschwächt, der zu hoher Lernintensität führen würde, sondern der große Wert der Stellgröße wird nur mit dem alten Lernintensitätswert abgeschwächt, der zu geringerer Lernintensität führt. Wenn dann keine großen Werte der Stellgröße mehr für diese Stützstelle auftreten, sich also herausstellt, daß ein einmaliger starker Abweichungsfall vorlag, führen diese kleinen Werte trotz des erhöhten Lernintensitätswertes nicht zu zu großen Änderungen durch den Lernschritt. Tritt dagegen der große Wert der Stellgröße nochmals oder noch mehrmals auf, ist dies ein Zeichen dafür, daß nun doch, obwohl an dieser Stelle schon häufig gelernt wurde, weitere große Lernschritte erforderlich sind. Diese werden dann auch ausgeführt, da der erneute große Wert der Stellgröße nun jeweils mit dem nach dem vorigen Lernschritt erhöhten Lernintensitätswert abgeschwächt wird, der zu größerer Lernintensität führt. So sorgt der Verzögerungsschritt dafür, daß große Lernwerte nur dann ausgegeben werden, wenn große Werte von Stellgrössen mehrfach hintereinander auftreten. Es wird darauf hingewiesen, daß im vorigen wie auch im folgenden die Aussage "großer Lernintensitätswert" jeweils bedeutet, daß dieser Wert zu einem großen Lernfortschritt führt, also den Wert der Stellgröße nur weniger abschwächt als ein "kleiner Lernintensitätswert".
Wie bereits eingangs erläutert, läßt sich das erfindungsgemäße Verfahren zum Einstellen unterschiedlichster Betriebsgrößen einer Brennkraftmaschlne verwenden. Besonders vorteilhaft ist die Anwendung jedoch zum Einstellen der Kraftstoffzumeßzeit, insbesondere der Einspritzzeit. Dies, weil bei Systemen zum Einstellen dieser Größe als Regelgröße der Lambdawert verwendet wird, der im Abgas der Brennkraftmaschine gemessen wird, was mit einer beträcht lichen Totzeit zwischen dem Vornehmen einer Änderung und deren Messen verbunden ist. Solche Systeme neigen wegen der genannten Totzeit besonders zum Schwingen und daher ist die erfindungsgemäße schwingungsdämpfende Maßnahme besonders nützlich.
Zeichnung
Die Erfindung wird im folgenden anhand von durch Figuren veranschaulichten Ausführungsbeispielen näher erläutert. Es zeigen:
Fig. 1 ein als Blockschaltbild dargestelltes Funktionsdiagramm eines lernenden Vorsteuerungs/Regelungsverfahrens zum Einstellen der Einspritzzeit; und
Fig. 2 ein als Blockschaltbild dargestelltes Funktionsdiagramm eines Abschwächungsmittels innerhalb dem Funktionsdiagramm von Fig. 1.
Beschreibung von Ausführungsbeispielen
Die Figuren 1 und 2 betreffen ein einzelnes Ausführungsbeispiel. Dieses betrifft das Einstellen der Einspritzzeit für ein Einspritzventil einer Brennkraftmaschine 10. Das Einstellen der Einspritzzeit wurde als Beispiel gewählt, da sich an ihm die Erfindung besonders gut veranschaulichen läßt. Ebenfalls allein aus Gründen der Anschaulichkeit ist die Darstellung in Form von Blockschaltbildern gewählt. Die Funktion, die anhand der Blockschaltbilder erläutert wird, wird in der Praxis in aller Regel durch einen Mikrorechner ausgeführt werden, wie er in der Kraftfahrzeugelektronik üblich ist. Im Saugrohr 11 der Brennkraftmaschine 10 ist ein Einspritzventil 12 angeordnet, das mit einem Signal für die Einspritzzeit TI angesteuert wird. Abhängig von der eingespritzten Kraftstoffmenge und der angesaugten Luftmenge stellt sich ein Lambdawert ein, der von einer im Abgaskanal 13 der Brennkraftmaschine 10 angeordneten LambdaSonde 14 gemessen wird. Der gemessene Lambda-Istwert wird mit einem von einem Sollwertgebermittel 15 gelieferten Lambda-SolIwert in einem Vergleichsschritt 16 verglichen und der gebildete Regelabweichungswert wird einem RegeLungsmittel 17 mit. integrierendem Verhalten zugeführt, das eine Stellgröße ausgibt, die im Fall der Einspritzzeitregelung den Charakter eines Regelfaktors FR hat. Mit diesem Regelfaktor wird eine vorgegebene Einspritzzeit durch Multiplikation in einem Regelungs-Multipl izierschritt 18 modifiziert. Damit das System ohne zu große Regelabweichungen bei Änderungen im Betriebszustand arbeiten kann, steht an seinem Eingang ein Vorsteuerwert TIV für die Einspritzzeit zur Verfügung, der von einem Vorsteuerungsmittel geliefert wird, das beim dargestellten Ausführungsbeispiel durch einen Vorsteuerspeicher 19 realisert ist, der adressierbar über Werte der Drehzahl n und der Stellung eines Fahrpedales FP Vorsteuerwerte TIV speichert.
Die Vorsteuerwerte TIV sind für bestimmte Betriebsbedingungen und bestimmte Systemeigenschaften festgelegt. Nun ändern sich jedoch beim Betrieb der Brennkraftmaschine die Betriebsbedingungen, z. B. der Luftdruck oder die Systemeigenschaften, z. B. Lecklufteigenschaften oder die Schließzeit des Einspritzventiles 12. Um trotz dieser Änderungen dauernd einen möglichst guten Vorsteuerwert zu erzielen, wird der aus dem Vorsteuerspeicher 19 ausgelesene Vorsteuerwert noch mit einem Adaptionsfaktor FA in einem AdaptionsMultiplizierschritt 20 modifiziert. Der Adaptionsfaktor FA wird aus einem Adaptionsfaktorenspeicher 21 ausgelesen, der entsprechend viele Stützstellen aufweist wie der Vorsteuerspeicher 19 und, wie dieser, über Sätze von Werten der Drehzahl n und der Fahrpedalstellung FP adressierbar ist. Es handelt sich z. B. um jeweils 64 Stützstellen mit 8 Adressen für K l a s s e n von Drehzahlwerten und 8 Adressen für Klassen von Fahrpedalstellungen.
Die Adaptionsfaktoren an den 64 Stützstellen werden bei der Inbetriebnahme alle auf den Wert "1" gesetzt. Um jede Stützstelle herum ist ein Bereich festgelegt. Wird dieser Bereich verlassen und befand sich die Brennkraftmaschine 10 zuvor in stationärem Betrieb, gibt ein Lernbedingungs-Erkennungsmittel 22 ein Lernsignal LS aus. Dies führt zu anschließendem Verändern des Adaptionsfaktors der Stützstelle, die durch die Koordinaten nv, FPv gegeben ist, wobei es sich hierbei um die Werte der Adressier-Betriebsgrößen zum Zeitpunkt des Verlassens des Bereiches handelt.
Zum Ausführen des Lernschrittes sind ein Mittelungsmittel 23 und ein Abschwächungsmittel 24 vorhanden. Das Mittelungsmittel 23 ist insbesondere in Verbindung mit einer Regelung auf Lambda = 1 von Sinn, da in diesem Fall der Regelungsfaktor FR systembedingte Schwingungen ausführt. Bei korrekter Vorsteuerung muß dieser Mittelwert "1" sein. Weicht er von diesem Mittelwert ab, beträgt er z. B. "1,1", muß die Vorsteuerung durch Bestimmen eines neuen Adaptionsfaktors FA für die betreffende Stützstelle verbessert werden. Es würde also naheliegen, den ermittelten Mittelwert des Regelfaktors, also "1,1" im Beispielsfall, als neuen Adaptionsfaktor für die soeben verlassene Stützstelle beim Auftreten des Lernsignales LS für diese Stützstelle in den Adaptionsfaktorenspeicher 21 einzuschreiben. Es hat sich jedoch herausgestellt, daß es vorteilhafter ist, den gemittelten Wert des Regelfaktors nicht in voller Höhe, sondern nur abgeschwächt zu übernehmen, was durch Multiplikation mit einem Lernintensltätsfaktor < 1 im Abschwächungsmittel 24 erfolgt.
In der bis jetzt beschriebenen Funktionsweise ist das System identisch mit einem Ausführungsbeispiel, das in der bereits genannten DE 35 05 965 A1 anhand der dortigen Figur 11 beschrieben ist. Der entscheidende Unterschied ist der, daß beim bekannten Verfahren das Abschwächungsmittel 24 dauernd denselben Lernintensitätsfaktor vorgibt, während das Abschwächungsmittel des vorliegenden Verfahrens, wie weiter unten anhand von Figur 2 im Detail erläutert wird, einen variablen Lernintensitätsfaktor ausgibt.
Bevor jedoch auf diesen entscheidenen Unterschied eingegangen wird, sei noch auf weitere Unterschiede zur genannten Figur in der genannten Anmeldung verwiesen. Beim bekannten Ausführungsbeispiel fehlen das Sollwertgebermittel 15 und der Vergleichsschritt 16 und es fehlt auch ein Integrationsschritt 25 zwischen der Lambdasonde 14 und dem Vergleichsschritt 16. Diese Funktionsgruppen sind beim bekannten System im Regelungsmittel 17 mitenthalten, da dort von einem dauernd festen LambdasolIwert von 1 ausgegangen ist. Die Funktionsgruppen sind im vorliegenden Fall gesondert gezeichnet, um darzustellen, daß der Lambda-Sollwert auch variabel sein kann, was bei Anwendung auf magere Lambdaregelung der Fall ist. Ein weiterer Unterschied zum bekannten Ausführungsbeikpiel geht dahin, daß dort noch Funktionsgruppen zum Einstellen eines globalen Adaptionsfaktors dargestellt sind. Diese Funktionsgruppen k önnen auch beim vorliegenden System eingesetzt werden, wenn ein globaler Faktor eingearbeitet werden soll. Für die hier diskutierte Erfindung, nämlich die Art der variablen Ge staltung des Lernintensitätsfaktors M, sind diese Details jedoch unerheblich.
Das Abschwächungsmittel 24 weist, wie in Fig. 2 dargestellt, drei Hauptfunktionsgruppen auf, nämlich eine Lernintensitätstabelle 26, einen Zählerstandsspeicher 27 und eine Zählerdifferenztabelle 28. Alle drei Funktionsgruppen stellen Kennfelder dar, aus denen Werte, die Sätzen von Werten von Adressiergrößen zugeordnet sind, ausgelesen werden können. Die Adressiergrößen sind jedoch unterschiedlich, weswegen auch unterschiedliche Begriffe für die Funktionsgruppen verwendet wurden. Der Zählerstandsspeicher 27 ist wie auch der Vorsteuerspeicher 29 und der Adaptionsfaktorenspeicher 21 über Werte der Drehzahl n und der Fahrpedalstellung FP adressierbar, wobei in allen drei Speichern dieselbe Klassenauftei l u n g , z. B. in 8 x 8 Stützstellen vorhanden ist. Die Kennfelder der beiden Tabellen, also der Lernintensitätstabelle 26 und der Zählerdifferenztabelle 28, werden stattdessen über Werte der prozentualen Stellgrößenabweichung und des vom Zählerstandsspeicher 27 ausgegebenen Zählerstandes für eine jeweilige Stützstelle adressiert. Die Klasseneinteilung dieser Größen ist absolut unabhängig von der Klasseneinteilung der anderen Größen, die zum Adressieren der genannten Speicher dienen. Gemäß Tabelle I für die Lernintensitätstabelle und Tabelle II für die Zählerdifferenztabelle (s. Ende der Beschreibung) sind bei einem praktischen Ausführungsbeispiel jedoch ebenfalls in 8 x 8 Stützstellen unterteilt, weil sich dies aufgrund der üblichen Adressierverfahren anbietet. Diese Aufteilung hat jedoch nichts mit der 8 x 8-Aufteilung der Speicher zu tun, könnte also auch jede andere Aufteilung sein. Wie bereits erwähnt und wie auch aus den genannten Tabellen ersichtlich, ist eine Adressiergröße für die Lernintensitätstabelle 26 und die Zählerdifferenztabelle 28 die prozentuale Stellgrößenabweichung. Diese wird aus dem gemittelten Regelungsfaktor FR dadurch gebildet, daß von diesem Mittelwert der Wert "1" abgezogen wird und die Differenz als prozentualer Wert bezogen auf den Wert "1" berechnet wird. Tritt nun eine gemittelte Stellgröße, d. h. ein gemittelter Regelungsfaktor von wiederum "1,1", wie in obigem Beispiel, auf, und gilt dies für eine Stützstelle, für die noch nie ein Lernzyklus ausgeführt wurde, für die also der Zählerstand "0" im Zählerstandsspeicher 27 abgelegt ist, gibt die Lernintensitätstabelle den Lernintensitätsfaktor "1" aus, wie aus Tabelle I ersichtlich. Dieser Lernintensitätsfaktor M wird in einem Abschwächungs-Multiplizierschritt 29 mit der absoluten Stellgrößenabweichung, also der Differenz aus der gemittelten Stellgröße FR und dem Sollwert "1", multipliziert und zum Gewinnen eines vorläufigen Adaptlonsfaktors FAv wird der Sollwert "1" in einem Additionsschritt 30 addiert, so daß schließlich der Wert "1,1" erhalten wird. Mit diesem wird der alte Adaptionsfaktor FA, also "1", multipliziert, wodurch der neue Adaptionsfaktor "1,1" erhalten wird.
Wird der Bereich um dieselbe Stützstelle noch drei weitere Male angefahren und wieder verlassen, wobei zuvor stationärer Betrieb herrschte, befindet sich der Zählerstand für diese Stützstelle schließlich auf dem Wert "4" und der Adaptionsfaktor FA angenommenerweise auf dem Wert "1,2". Tritt beim vierten Verlassen wieder eine mittlere Stellgröße von "1,1", also von 10 % auf, führt dies zu einem Lernintensitätsfaktor von 0,9, wie aus der Lenrintensitätstabelle gemäß Tabelle I ersichtlich. Mit diesem Wert wird der bereits oben genannte absolute Stellgrößendifferenz wert "0,1" multipliziert, wodurch sich der Wert 0,09 ergibt, zu dem im Additionsschritt 30 wiederum der Sollwert "1" addiert wird, wodurch nun der vorläufige Adaptionsfaktor FAv "1,09" erhalten wird. Dieser, multipliziert mit dem alten Adaptionsfaktor von "1,2", ergibt den nunmehr für die zuvor gerade verlassene Stützstelle neuen Adaptionsfaktor 1,2 x 1,09, also "1,308".
Wird dieselbe Stützstelle noch 24 weitere Male angefahren, wobei die Stellgrößenabweichung jedoch jeweils nur etwa 2 % beträgt, wird der Zählerstand für diese Stützstelle jeweils um "1" erhöht, wie sich aus der Zählerdifferenztabelle gemäß Tabelle II ergibt, also bis auf den Wert "28". Wird nun diese Stützstelle noch ein weiteres Mal angefahren und wieder verlassen, nun jedoch mit einer Stellgrößenabweichung von 15 % , wird der Lernintensitätsfaktor "0,4" ausgelesen, wie Tabelle I entnehmbar. Für die Multiplikation mit dem alten Adaptionsfaktor FA im Adaptionsfaktorenspeicher 21 für diese Stützstelle ergibt sich dann 1 + 0,4 x (1,1 - 1). Nachdem dieser Wert ausgelesen worden ist, wird der Zählerstand für die betreffende Stützstelle um "4" erniedrigt, wie sich aus dem Wert "-4" aus Tabelle II für 15 % Stellgrößenabweichung und den Zählerstand "28" ergibt. Der Zählerstand für die dauernd betrachtete Stützstelle beträgt dann "24". Die Tatsache, daß das Auslesen aus der Lernintensitätstabelle 26 zunächst noch nach dem alten Zählerstand erfolgt und erst dann der Zählerstand dem Zählerstandsspeicher 27 für die entsprechende Stützstelle korrigiert wird, ist im Funktionsbild gemäß Fig. 2 durch einen Verzögerungsschritt 31 zwischen der Zählerdifferenztabelle 28 und dem Zählerstandsspeicher 27 angedeutet. Die genannte Verzögerung hat den Vorteil, daß eine große Stellgrößenabweichung zunächst nur mit einem Lernintensitätsfaktor multipliziert wird, der die Abweichung stark abgeschwächt weitergibt. Treten danach wieder nur kleinere Stellgrößenabweichungen auf, wird der Zählerstand bis auf "28" erhöht, so daß schließlich wieder der kleine Lernintensitätsfaktor gilt. Damit hat sich eine einmalige größere Abweichung kaum ausgewirkt. Tritt eine solche jedoch nochmals auf, wird sie stärker weitergegeben als beim ersten Mal, da nun der Zählerstand erniedrigt ist und damit der Lernintensitätsfaktor erhöht ist. Diese Tatsache, daß einmalige größere Abweichungen kaum berücksichtigt werden, führt zu stark erniedrigter Schwingungsneigung des Systems.
Das Verfahren bzw. die Vorrichtung des Ausführungsbeispieles können in vielfältiger Art und Weise abgewandelt werden. Zum Beispiel muß das Vorsteuerungsmittel nicht durch einen Vorsteuerspeicher 19 realisiert sein, sondern ein Vorsteuerwert kann auf beliebige andere Art und Weise gewonnen werden, z. B. durch Quotientenbildung aus der Luftmasse und der Drehzahl, wie im bereits genannten SAEpaper beschrieben. Beim Ändern eines Adaptionsfaktors für eine Stützstelle können zugleich die Adaptionsfaktoren benachbarter Stützstellen geändert werden, wie ausführlich z. B. in DE 34 08 215 (US-Ser. No. 696 536/1985) beschrieben. Es muß kein gesonderter Adaptionsfaktorenspeicher vorleigen, sondern es ist auch möglich, Werte aus einem Vorsteuer-ROM in einen RAM einzulesen und dann unmittelbar die Vorsteuerwέrte zu modifizieren, wie z. B. in BG 2 034 930 B beschrieben. Weiterhin kann, wie bereits oben erwähnt, noch ein globaler Faktor bestimmt werden. Beim beschriebenen Ausführungsbeispiel ist davon ausgegangen, daß alle Verknüpfungen multiplikativ erfolgen. Dies ist in Vorrichtungen zum Regeln der Einspritzzeit angebracht. In Vorrichtungen zum Einstellen des Zündzeitpunktes werden dagegen Korrekturen üblicherweise additiv ausgeführt. Eine solche Vorrichtung ist dadurch gekennzeichnet, daß die einzustellende Betriebsgröße der Zündzeitpunkt, die Regelgröße z. B. eine drehmomentanzeigende Größe, die Stellgröße ein Regel summand , der Adaptionswert ein Adaptionssummand und der Lernintensitätswert ein Lernsummand ist, wobei alle Summanden auch negative Werte einnehmen können, und das Abschwächungs-Verknüpfungsmittel einen Addierschritt aufweist, der die Adaptionswerte durch die Korrekturwerte additiv korrigiert.
Unerheblich ist auch, unter welcher Bedingung das Lernsignal LS ausgegeben wird. Die oben genannte Bedingung entspricht derjenigen, wie sie in den beiden genannten deutschen Patentanmeldungen beschrieben ist. Das ebenfalls bereits genannte SAE-paper nennt als Bedingung diejenige, daß bei einer Regelung auf Lambda = 1 mit einem Zweipunktregler mindestens zweimal eine Umkehr der Regelrichtung stattgefunden hat. Das Lernsignal kann auch mit jedem Programmzyklus ohne zusätzliche Bedingung ausgegeben werden.
Im Ausführungsbeispiel wurde davon ausgegangen, daß zum Gewinnen eines neuen Adaptionsfaktors FA der Regelfaktor FR verwendet wird, wie er vom Regelungsmittel 17 ausgegeben wird. Dieser Regelf aktor FR enthält typischerweise einen Proportional- und einen Integral-Anteil. Dabei ist der Integral-Anteil das direkte Maß für den Aufwand zum Beseitigen einer Regelabweichung. Wenn dieser Integral-Anteil gesondert vom Regelungsmittel 17 abgreifbar ist, ist es daher von Vorteil, nur diesen Integral-Anteil des Regel faktors FR und nicht den gesamten Regelfaktor zum Berechnen eines neuen Adaptionsfaktors FA heranzuziehen.
Wesentlich ist alleine die Art und Weise, wie der Lernintensitätswert zum Verändern der Adaptionswerte gewonnen wird, nämlich durch Nachschlagen in einer Lernintensitätstabelle mit dem Zählerstand eines Stützpunktes als einer Adressiergröße, wobei dieser Zählerstand abhängig von positiven oder negativen Werten, die aus einer Zählerdifferenztabelle ausgelesen werden, bis zu einem Maximalwert veränderbar ist.

Claims

Ansprüche
1. Verfahren zum lernenden Regeln mit Vorsteuerung für eine einzustellende Betriebsgröße einer Brennkraftmaschine, bei dem ein Vorsteuerwert bestimmt und durch einen Adaptionswert und einen Stellwert korrigiert wird, wobei die Adaptionswerte aus den Sollwerten durch Verknüpfen mit Korrekturwerten gebildet werden, dadurch gekennze i chnet , daß
- in einem Zählerstandsspeicher für eine vorgegebene Anzahl von Betriebspunkten Zählerwerte gespeichert werden, die ein Maß für den Lernfortschritt an diesem Betriebspunkt sind, wobei der Zählwert auf einen Maximalwert begrenzt ist,
- einer Zählerdifferenztabelle der jeweilige Zählerstand aus dem genannten Zählerstandsspeicher und ein jeweiliger stellgrößenabhängiger Wert zugeführt wird und für diese Werte eine zugehörige Zählerdlfferenz ausgelesen wird, mit der der Zählerstand im Zählerstandsspeicher für den betreffenden Betriebspunkt verändert wird,
- ein jeweiliger Zählerstandswert und ein jeweiliger stellgrößenabhängiger Wert einer Lernintensitätstabelle zugeführt wird und abhängig von den zugeführten Werten aus der Tabelle ein zugehöriger Lernintensitätswert ausgelesen wird, und der stellgrößenabhängige Wert mit dem Lernintensitätswert zum Bilden des Korrekturwertes verknüpft wird.
2. Vorrichtung zum lernenden Regeln mit Vorsteuerung für eine einzustellende Betriebsgröße einer Brennkraftmaschine, mit
- einem Vorsteuerungsmittel (19), das abhängig von Werten anderer Betriebsgrößen als der einzustellenden einen Vorsteuerungwert für die einzustellende Betriebsgröße ausgibt,
- einem Sollwertgebermittel (15) zum Ausgeben eines Regelgrößen-Sollwertes,
- einem Regelungsmittel (17), das abhängig von der Differenz zwischen dem Regelgrößen-Sollwert und dem jeweils gemessenen Regelgrößen-Istwert einen Stellwert einer Stellgröße bildet, mit dem der jeweilige Vorsteuerwert regelnd korrigiert wird,
- einem Abschwächungsmittel (24), dem die Stellgröße zugeführt wird und das einen Korrekturwert ausgibt,
- ein Lernbedingungs-Erkennungsmittel (22), das ein Lernsignal ausgibt, wenn eine vorgegebene Lernbedingung erfüllt ist, und
- einem Adaptionswertspeicher (21), der Adaptionswerte adressierbar über Werte von Adressierbetriebsgrößen speichert und jeweils denjenigen Adaptionswert zum steuernden Korrigieren des Vorsteuerwertes ausgibt, der zum jeweils vorliegenden Satz von Werten άer Adressierbetriebsgrößen gehört, wobei mindestens ein Adaptionswert dann durch den Korrekturwert korrigient wird, wenn das LernbedingungsErkennungsmittel das Lernsignal ausgibt, d adurch gekennze i chnet , daß
- das Abschwächungsmittel (24) folgende Mittel umfaßt:
- - einen Zählerstandsspeicher (27), der wie der Adaptionswertspeicher adressierbar ist und für jede Stützstelle einen Zählerstand speichert, der ein Maß für den Lern fortschritt an dieser Stützstelle ist, und der auf einen Maximalwert begrenzt ist,
- - eine Lernintensitätstabelle (26), die adressierbar über Werte von Zählerstand und einer stellgrößenabhängigen Größe Lernintensitätswerte speichert und für jeden jeweils vorliegenden Satz von Werten von Zählerstand und genannter Größe den zugehörigen Lernintensitätswert ausgibt,
- - ein Verknüpfungsmittel (29, 30), das den stellgrößenabhängigen Wert mit dem Lernintensitätswert zum Bilden des Korrekturwertes abschwächt, und
- - eine Zählerdifferenztabelle (28), die adressierbar über Werte von Zählerstand und stellgrößenabhängiger Größe Zählerdifferenzwerte speichert und für einen jeweils vorliegenden Satz von Werten von Zählerstand und genannter Größe den zugehörigen Zählerdifferenzwert an das Zählerstand-Kennfeld ausgibt, zum Ändern des Zählerstandes an der jeweiligen Stützstelle um den Zählerdifferenzwert.
3. Vorrichtung nach Anspruch 2, gekennzei chnet durch ein Verzögerungsmittel (31), das die Änderung eines Zählerstandes im Zählerstandsspeicher (27) so lange verzögert, bis, nach dem Auftreten eines Lernsignales, zunächst ein Lernintensitätswert aufgrund des vor dem Auftreten des Lernsignales geltenden Zählerstandes aus der Lernintensitätstabelle (26) ausgelesen worden ist.
4. Vorrichtung nach einem der Ansprüche 2 oder 3, dadurch gekennzei chnet, daß die einzustellende Betriebsgröße die Kraftstoffzumeßzeit, die Regelgröße der Lambdawert, die Stellgröße ein Regelfaktor, der Adaptionswert ein Adaptionsfaktor und der Lernintensitätswert ein Lernfaktor ist und das Verknüpfungsmittel einen Multipli zierschritt (29) aufweist, der die Adaptionsfaktoren durch die Korrekturwerte multiplikativ korrigiert.
5. Vorrichtung nach einem der Ansprüche 2 oder 3, dadurch gekennze i chnet , daß die einzustellende Betriebsgröße der Zündzeitpunkt, die Regelgröße eine drehmomentanzeigende Größe, die Stellgröße ein Regelsummand, der Adaptionswert ein Adaptionssummand und der Lernintensitätswert ein Lernsummand ist, wobei alle Summanden auch negative Werte einnehmen können, und das Verknüpfungsmittel einen Addierschritt aufweist, der Adaptionswerte durch die Korrekturwerte additiv korrigiert.
6. Vorrichtung nach einem der Ansprüche 2 - 5, dadurch gekennze i chnet , daß das LernbedingungsErkennungsmittel (22) ein Lernsignal ausgibt, wenn ein Stützstellenbereich des Adaptionswertspeichers (21) verlassen wird und zuvor stationärer Betrieb vorlag.
EP89902933A 1988-04-02 1989-03-04 Lernendes regelungsverfahren für eine brennkraftmaschine und vorrichtung hierfür Expired - Lifetime EP0366735B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3811263 1988-04-02
DE3811263A DE3811263A1 (de) 1988-04-02 1988-04-02 Lernendes regelungsverfahren fuer eine brennkraftmaschine und vorrichtung hierfuer

Publications (2)

Publication Number Publication Date
EP0366735A1 true EP0366735A1 (de) 1990-05-09
EP0366735B1 EP0366735B1 (de) 1992-06-17

Family

ID=6351321

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89902933A Expired - Lifetime EP0366735B1 (de) 1988-04-02 1989-03-04 Lernendes regelungsverfahren für eine brennkraftmaschine und vorrichtung hierfür

Country Status (5)

Country Link
US (1) US5023794A (de)
EP (1) EP0366735B1 (de)
JP (1) JP2901677B2 (de)
DE (2) DE3811263A1 (de)
WO (1) WO1989009331A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5215536A (en) * 1991-11-13 1993-06-01 Merit Medical Systems, Inc. Self-locking control syringe
DE4418731A1 (de) * 1994-05-28 1995-11-30 Bosch Gmbh Robert Verfahren zur Steuerung/Regelung von Prozessen in einem Kraftfahrzeug
US7137386B1 (en) * 2005-09-02 2006-11-21 Gm Global Technology Operations, Inc. Closed loop A/F ratio control for diesel engines using an oxygen sensor
JP7059855B2 (ja) * 2018-07-30 2022-04-26 トヨタ自動車株式会社 内燃機関の点火時期制御装置
FR3085721B1 (fr) * 2018-09-11 2020-09-04 Psa Automobiles Sa Procede d’apprentissage d’adaptatifs dans un controle moteur
CN111255585B (zh) * 2018-11-30 2022-08-09 联合汽车电子有限公司 混合气多点自学习方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2847021A1 (de) * 1978-10-28 1980-05-14 Bosch Gmbh Robert Vorrichtung zur regelung von betriebskenngroessen einer brennkraftmaschine auf optimale werte
JPS59196942A (ja) * 1983-04-14 1984-11-08 Mazda Motor Corp エンジンの空燃比制御装置
US4715344A (en) * 1985-08-05 1987-12-29 Japan Electronic Control Systems, Co., Ltd. Learning and control apparatus for electronically controlled internal combustion engine
DE3628628C2 (de) * 1986-08-22 1994-12-08 Bosch Gmbh Robert Verfahren und Einrichtung zur Adaption der Gemischsteuerung bei Brennkraftmaschinen
US4879656A (en) * 1987-10-26 1989-11-07 Ford Motor Company Engine control system with adaptive air charge control
DE3802274A1 (de) * 1988-01-27 1989-08-03 Bosch Gmbh Robert Steuer-/regelsystem fuer instationaeren betrieb einer brennkraftmaschine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO8909331A1 *

Also Published As

Publication number Publication date
US5023794A (en) 1991-06-11
JP2901677B2 (ja) 1999-06-07
WO1989009331A1 (en) 1989-10-05
EP0366735B1 (de) 1992-06-17
DE58901688D1 (de) 1992-07-23
JPH02503816A (ja) 1990-11-08
DE3811263A1 (de) 1989-10-12

Similar Documents

Publication Publication Date Title
EP0428550B1 (de) Stereolambdaregelung
EP0364522B1 (de) Verfahren und einrichtung zum stellen eines tankentlüftungsventiles
DE3929746A1 (de) Verfahren und einrichtung zum steuern und regeln einer selbstzuendenden brennkraftmaschine
DE3221640A1 (de) Verfahren und vorrichtung zur optimalregelung von brennkraftmaschinen
DE2308562A1 (de) Interpolations-rechengeraet
DE3800176A1 (de) Steuereinrichtung fuer eine brennkraftmaschine und verfahren zum einstellen von parametern der einrichtung
DE3802274A1 (de) Steuer-/regelsystem fuer instationaeren betrieb einer brennkraftmaschine
DE4213425C2 (de) Regelverfahren für eine elektronische Motorregelung
DE10006341C2 (de) Regelsystem für eine Brennkraftmaschine
DE3714902A1 (de) Vorrichtung und verfahren zum messen der einlassluftmenge einer brennkraftmaschine
EP1802859A1 (de) Verfahren zum betreiben einer kraftstoffeinspritzanlage insbesondere eines kraftfahrzeugs
DE3725521C2 (de)
DE19547496A1 (de) Verfahren zur Regelung von Verbrennungsmotoren
DE3403260C2 (de)
DE3835766A1 (de) Elektronisches, sich anpassendes steuergeraet fuer einen verbrennungsmotor
EP0366735B1 (de) Lernendes regelungsverfahren für eine brennkraftmaschine und vorrichtung hierfür
DE102007050026A1 (de) Verfahren und Vorrichtung zum Überwachen von Steuer- und Regelkreisen in einem Motorsystem
DE4037772A1 (de) Verfahren und vorrichtung zur leerlaufregelung einer brennkraftmaschine
DE10221337B4 (de) Verfahren und Vorrichtung zur Korrektur einer Kraftstoffmenge, die einer Brennkraftmaschine zugeführt wird
EP0407406B1 (de) Lernendes regelungsverfahren für eine brennkraftmaschine und vorrichtung hierfür
EP0385969A1 (de) Einrichtung zum Steuern und Regeln einer Dieselbrennkraftmaschine
DE102018006312B4 (de) Verfahren zur modellbasierten Steuerung und Regelung einer Brennkraftmaschine
DE4040637A1 (de) Elektronisches steuersystem fuer die kraftstoffzumessung bei einer brennkraftmaschine
DE10353434A1 (de) Verfahren und Steuergerät zur Bildung einer Einspritzimpulsbreite
DE3034069A1 (de) Regel- und steuereinrichtung fuer die triebstoffzufuhr zu einem brennkraftmotor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19891102

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE IT

17Q First examination report despatched

Effective date: 19910220

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROBERT BOSCH GMBH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE IT

REF Corresponds to:

Ref document number: 58901688

Country of ref document: DE

Date of ref document: 19920723

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19990607

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050304