EP0362770A2 - Additif de résistance à sec pour papier - Google Patents
Additif de résistance à sec pour papier Download PDFInfo
- Publication number
- EP0362770A2 EP0362770A2 EP89118245A EP89118245A EP0362770A2 EP 0362770 A2 EP0362770 A2 EP 0362770A2 EP 89118245 A EP89118245 A EP 89118245A EP 89118245 A EP89118245 A EP 89118245A EP 0362770 A2 EP0362770 A2 EP 0362770A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- cationic
- anionic
- polymer
- mixture
- anionic polymers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000654 additive Substances 0.000 title claims abstract description 27
- 230000000996 additive effect Effects 0.000 title claims abstract description 17
- 229920006317 cationic polymer Polymers 0.000 claims abstract description 101
- 229920006318 anionic polymer Polymers 0.000 claims abstract description 87
- 125000002091 cationic group Chemical group 0.000 claims abstract description 61
- 229920000867 polyelectrolyte Polymers 0.000 claims abstract description 52
- 238000000034 method Methods 0.000 claims abstract description 48
- 239000000203 mixture Substances 0.000 claims abstract description 40
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 15
- 238000005728 strengthening Methods 0.000 claims abstract description 8
- 125000000129 anionic group Chemical group 0.000 claims description 57
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 claims description 30
- 229920001577 copolymer Polymers 0.000 claims description 23
- 239000000835 fiber Substances 0.000 claims description 22
- NJSSICCENMLTKO-HRCBOCMUSA-N [(1r,2s,4r,5r)-3-hydroxy-4-(4-methylphenyl)sulfonyloxy-6,8-dioxabicyclo[3.2.1]octan-2-yl] 4-methylbenzenesulfonate Chemical compound C1=CC(C)=CC=C1S(=O)(=O)O[C@H]1C(O)[C@@H](OS(=O)(=O)C=2C=CC(C)=CC=2)[C@@H]2OC[C@H]1O2 NJSSICCENMLTKO-HRCBOCMUSA-N 0.000 claims description 12
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 10
- 239000007900 aqueous suspension Substances 0.000 claims description 7
- 239000011734 sodium Substances 0.000 claims description 7
- 229910052708 sodium Inorganic materials 0.000 claims description 7
- RRHXZLALVWBDKH-UHFFFAOYSA-M trimethyl-[2-(2-methylprop-2-enoyloxy)ethyl]azanium;chloride Chemical compound [Cl-].CC(=C)C(=O)OCC[N+](C)(C)C RRHXZLALVWBDKH-UHFFFAOYSA-M 0.000 claims description 7
- 244000007835 Cyamopsis tetragonoloba Species 0.000 claims description 6
- PQUXFUBNSYCQAL-UHFFFAOYSA-N 1-(2,3-difluorophenyl)ethanone Chemical compound CC(=O)C1=CC=CC(F)=C1F PQUXFUBNSYCQAL-UHFFFAOYSA-N 0.000 claims description 5
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 5
- 229940047670 sodium acrylate Drugs 0.000 claims description 5
- 239000011780 sodium chloride Substances 0.000 claims description 5
- 229920005615 natural polymer Polymers 0.000 claims description 4
- 239000000725 suspension Substances 0.000 claims description 4
- UZNHKBFIBYXPDV-UHFFFAOYSA-N trimethyl-[3-(2-methylprop-2-enoylamino)propyl]azanium;chloride Chemical compound [Cl-].CC(=C)C(=O)NCCC[N+](C)(C)C UZNHKBFIBYXPDV-UHFFFAOYSA-N 0.000 claims description 4
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 claims description 3
- 239000001768 carboxy methyl cellulose Substances 0.000 claims description 3
- FZGFBJMPSHGTRQ-UHFFFAOYSA-M trimethyl(2-prop-2-enoyloxyethyl)azanium;chloride Chemical compound [Cl-].C[N+](C)(C)CCOC(=O)C=C FZGFBJMPSHGTRQ-UHFFFAOYSA-M 0.000 claims description 3
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 claims description 2
- 239000010346 polypectate Substances 0.000 claims description 2
- 239000000661 sodium alginate Substances 0.000 claims description 2
- 235000010413 sodium alginate Nutrition 0.000 claims description 2
- 229940005550 sodium alginate Drugs 0.000 claims description 2
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 claims description 2
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 claims description 2
- SONHXMAHPHADTF-UHFFFAOYSA-M sodium;2-methylprop-2-enoate Chemical compound [Na+].CC(=C)C([O-])=O SONHXMAHPHADTF-UHFFFAOYSA-M 0.000 claims description 2
- USFMMZYROHDWPJ-UHFFFAOYSA-N trimethyl-[2-(2-methylprop-2-enoyloxy)ethyl]azanium Chemical compound CC(=C)C(=O)OCC[N+](C)(C)C USFMMZYROHDWPJ-UHFFFAOYSA-N 0.000 claims description 2
- JZMJDSHXVKJFKW-UHFFFAOYSA-M methyl sulfate(1-) Chemical compound COS([O-])(=O)=O JZMJDSHXVKJFKW-UHFFFAOYSA-M 0.000 claims 1
- 229920002959 polymer blend Polymers 0.000 claims 1
- 229920000642 polymer Polymers 0.000 description 47
- 239000000306 component Substances 0.000 description 28
- 239000000123 paper Substances 0.000 description 23
- 229920005610 lignin Polymers 0.000 description 22
- 239000000523 sample Substances 0.000 description 22
- YDEXUEFDPVHGHE-GGMCWBHBSA-L disodium;(2r)-3-(2-hydroxy-3-methoxyphenyl)-2-[2-methoxy-4-(3-sulfonatopropyl)phenoxy]propane-1-sulfonate Chemical compound [Na+].[Na+].COC1=CC=CC(C[C@H](CS([O-])(=O)=O)OC=2C(=CC(CCCS([O-])(=O)=O)=CC=2)OC)=C1O YDEXUEFDPVHGHE-GGMCWBHBSA-L 0.000 description 16
- 239000000243 solution Substances 0.000 description 16
- -1 cationic guar (e.g. Chemical class 0.000 description 15
- 230000000694 effects Effects 0.000 description 10
- 239000007787 solid Substances 0.000 description 9
- 229920002488 Hemicellulose Polymers 0.000 description 8
- 230000006835 compression Effects 0.000 description 8
- 238000007906 compression Methods 0.000 description 8
- 235000014676 Phragmites communis Nutrition 0.000 description 7
- 239000003792 electrolyte Substances 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 238000001816 cooling Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 238000004537 pulping Methods 0.000 description 6
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 5
- 229920006322 acrylamide copolymer Polymers 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 239000002655 kraft paper Substances 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 229920003118 cationic copolymer Polymers 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 239000008233 hard water Substances 0.000 description 4
- 230000007062 hydrolysis Effects 0.000 description 4
- 238000006460 hydrolysis reaction Methods 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 239000002023 wood Substances 0.000 description 4
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- 229920001131 Pulp (paper) Polymers 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 239000013068 control sample Substances 0.000 description 3
- 239000013530 defoamer Substances 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- HGINCPLSRVDWNT-UHFFFAOYSA-N Acrolein Chemical compound C=CC=O HGINCPLSRVDWNT-UHFFFAOYSA-N 0.000 description 2
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical compound CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 2
- 229920001732 Lignosulfonate Polymers 0.000 description 2
- 229920002873 Polyethylenimine Polymers 0.000 description 2
- 101100364301 Schizosaccharomyces pombe (strain 972 / ATCC 24843) rsv1 gene Proteins 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 229940048053 acrylate Drugs 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- GQOKIYDTHHZSCJ-UHFFFAOYSA-M dimethyl-bis(prop-2-enyl)azanium;chloride Chemical compound [Cl-].C=CC[N+](C)(C)CC=C GQOKIYDTHHZSCJ-UHFFFAOYSA-M 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000011087 paperboard Substances 0.000 description 2
- 229920002401 polyacrylamide Polymers 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- SKMHHHHLLBKNKR-UHFFFAOYSA-M sodium;prop-2-enamide;prop-2-enoate Chemical compound [Na+].NC(=O)C=C.[O-]C(=O)C=C SKMHHHHLLBKNKR-UHFFFAOYSA-M 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 238000006277 sulfonation reaction Methods 0.000 description 2
- 235000011149 sulphuric acid Nutrition 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- 238000004448 titration Methods 0.000 description 2
- PUVAFTRIIUSGLK-UHFFFAOYSA-M trimethyl(oxiran-2-ylmethyl)azanium;chloride Chemical compound [Cl-].C[N+](C)(C)CC1CO1 PUVAFTRIIUSGLK-UHFFFAOYSA-M 0.000 description 2
- 125000006698 (C1-C3) dialkylamino group Chemical group 0.000 description 1
- GXVUZYLYWKWJIM-UHFFFAOYSA-N 2-(2-aminoethoxy)ethanamine Chemical class NCCOCCN GXVUZYLYWKWJIM-UHFFFAOYSA-N 0.000 description 1
- DPBJAVGHACCNRL-UHFFFAOYSA-N 2-(dimethylamino)ethyl prop-2-enoate Chemical compound CN(C)CCOC(=O)C=C DPBJAVGHACCNRL-UHFFFAOYSA-N 0.000 description 1
- 125000000022 2-aminoethyl group Chemical group [H]C([*])([H])C([H])([H])N([H])[H] 0.000 description 1
- ZMWAXVAETNTVAT-UHFFFAOYSA-N 7-n,8-n,5-triphenylphenazin-5-ium-2,3,7,8-tetramine;chloride Chemical compound [Cl-].C=1C=CC=CC=1NC=1C=C2[N+](C=3C=CC=CC=3)=C3C=C(N)C(N)=CC3=NC2=CC=1NC1=CC=CC=C1 ZMWAXVAETNTVAT-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- 244000303965 Cyamopsis psoralioides Species 0.000 description 1
- XZMCDFZZKTWFGF-UHFFFAOYSA-N Cyanamide Chemical compound NC#N XZMCDFZZKTWFGF-UHFFFAOYSA-N 0.000 description 1
- 235000019759 Maize starch Nutrition 0.000 description 1
- 238000006683 Mannich reaction Methods 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 1
- RVATZXVFGUBCTC-UHFFFAOYSA-N NC(=O)C=C.OC(=O)C=CC=CC1=CC=CC=C1 Chemical compound NC(=O)C=C.OC(=O)C=CC=CC1=CC=CC=C1 RVATZXVFGUBCTC-UHFFFAOYSA-N 0.000 description 1
- 235000005018 Pinus echinata Nutrition 0.000 description 1
- 241001236219 Pinus echinata Species 0.000 description 1
- 235000017339 Pinus palustris Nutrition 0.000 description 1
- 101100364302 Schizosaccharomyces pombe (strain 972 / ATCC 24843) rsv2 gene Proteins 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 1
- 230000002730 additional effect Effects 0.000 description 1
- 229940037003 alum Drugs 0.000 description 1
- 150000001412 amines Chemical group 0.000 description 1
- 238000001479 atomic absorption spectroscopy Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000009172 bursting Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 235000011148 calcium chloride Nutrition 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920006184 cellulose methylcellulose Polymers 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229940000425 combination drug Drugs 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000008394 flocculating agent Substances 0.000 description 1
- 230000003311 flocculating effect Effects 0.000 description 1
- 239000000727 fraction Substances 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 229920005611 kraft lignin Polymers 0.000 description 1
- 235000019357 lignosulphonate Nutrition 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- IHBKAGRPNRKYAO-UHFFFAOYSA-M methyl sulfate;trimethyl-[2-(2-methylprop-2-enoyloxy)ethyl]azanium Chemical compound COS([O-])(=O)=O.CC(=C)C(=O)OCC[N+](C)(C)C IHBKAGRPNRKYAO-UHFFFAOYSA-M 0.000 description 1
- 229940102838 methylmethacrylate Drugs 0.000 description 1
- 229920001206 natural gum Polymers 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229920001495 poly(sodium acrylate) polymer Polymers 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920000447 polyanionic polymer Polymers 0.000 description 1
- 229920002851 polycationic polymer Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- 238000000870 ultraviolet spectroscopy Methods 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 229920003176 water-insoluble polymer Polymers 0.000 description 1
- 229920003169 water-soluble polymer Polymers 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
Classifications
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H17/00—Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
- D21H17/20—Macromolecular organic compounds
- D21H17/33—Synthetic macromolecular compounds
- D21H17/34—Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- D21H17/41—Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing ionic groups
- D21H17/44—Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing ionic groups cationic
- D21H17/45—Nitrogen-containing groups
- D21H17/455—Nitrogen-containing groups comprising tertiary amine or being at least partially quaternised
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H17/00—Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
- D21H17/20—Macromolecular organic compounds
- D21H17/21—Macromolecular organic compounds of natural origin; Derivatives thereof
- D21H17/24—Polysaccharides
- D21H17/31—Gums
- D21H17/32—Guar or other polygalactomannan gum
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H17/00—Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
- D21H17/20—Macromolecular organic compounds
- D21H17/33—Synthetic macromolecular compounds
- D21H17/34—Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- D21H17/41—Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing ionic groups
- D21H17/42—Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing ionic groups anionic
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H17/00—Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
- D21H17/20—Macromolecular organic compounds
- D21H17/33—Synthetic macromolecular compounds
- D21H17/34—Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- D21H17/41—Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing ionic groups
- D21H17/42—Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing ionic groups anionic
- D21H17/43—Carboxyl groups or derivatives thereof
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H21/00—Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
- D21H21/14—Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
- D21H21/18—Reinforcing agents
Definitions
- This invention relates to a mixture of cationic and anionic polymers useful as a strengthening additive in papermaking processes, and to the use of the mixture in a conventional aqueous suspension of cellulosic fibers in a process for making paper.
- Polyacrylamides are disclosed in a number of patents to improve dry strength, and acrylamide copolymers have been developed in attempting to provide increased dry strength to papers made from unbleached pulps, and, more particularly, those containing black liquor.
- U. S. Patent 3,819,555 discloses autodispersible, nonionic, anionic, cationic and amphoteric vinyl polymers containing at least 60 weight percent acrylamide linkages and at least 5 weight percent of acrolein linkages, including anionic and cationic polymers that are said to provide improved dry and wet strength when added to unbleached pulps, and pulps containing black liquor.
- Patent 3,840,489 discloses substantially autodispersible vinylamide polymers comprising at least 60 weight percent of unsubstituted vinylamide linkages as dry strengthening components and at least 5 weight percent of hydrophobic linkages as components for improving absorptivity to cellulose.
- the latter polymers may also carry a small amount of anionic or cationic substituents.
- U.S. Patent 4,167,439 discloses that a nonionic copolymer composed of 5 to 30 weight % N-vinyl pyrrolidone, 15 to 60 weight % acrylamide, and 30 to 70 weight % methyl methacrylate is useful as dry strength additive when used in the presence of black liquor.
- acrylamide copolymers disclosed to be water-insoluble or dispersible, are stated to be useful as dry strength additives for use with unbleached pulps containing black liquors.
- U.S. Patents 3,874,994, 3,875,097, and 3,875,098 disclose use of a water-insoluble polymer containing at least about 60 weight percent of unsubstituted acrylamide linkages, at least about 5 weight percent of hydrophobic linkages, and at least about 2 weight percent of N-[di-(C1 ⁇ 3alkyl)amino methyl]acrylamide.
- U.S. Patent 3,049,469 discloses that a water soluble, carboxyl containing polymer can be impregnated to a fibrous cellulosic material when a cationic thermosetting polyamide-epichlorohydrin resin is added to the papermaking system.
- U.S. Patent 3,332,834 discloses a complex comprised of anionic polyacrylamide, water-soluble non-thermosetting resin and alum. And U.S.
- Patent 4,002,588 discloses a polysalt that consists essentially of an anionic acrylamide-styrene-acrylic acid interpolymer (molar ratio, respectively, of 94-65:5-15:1-20) and a water-soluble cationic polyamine having a molecular weight in excess of 1,000 is an efficient strengthening agent, even when used with unbleached pulps containing black liquor.
- U.S. Patents 3,660,338 and 3,677,888 disclose a strength additive consisting essentially of (a) an ionically self-crosslinked polysalt of a normally water-soluble polyanionic polymer with a normally water-soluble polycationic polymer, at least one polymer of which is a weak electrolyte having an ionization constant less than 10 ⁇ 3 and (b) a water-soluble ionization suppressor.
- South African Patent Application 78/2037 discloses water-soluble dry strength polymers, which are asserted to be suitivelyable for the manufacture of paper from unbleached fibers, both in the presence of and in the absence of black liquor, comprising acrylamide linkages and N-[di-(C1 ⁇ 3alkyl) aminomethyl]acrylamide linkages have the specified formulae in a mole ratio of 98:2 to 50:50, respectively.
- These polymers may have additional linkages, which are nonionic, anionic or cationic, including cationic dimethyl diallyl ammonium chloride and 2-dimethylaminoethyl acrylate linkages. They have a viscosity of 2 to 10 centipoises (cps), preferably 3 to 8 cps, in a 0.5% aqueous solution of pH 11 and 25 o C.
- U.S. Patent 4,347,100 discloses that addition of an anionic organic surface active agent into mechanical or thermomechanical pulp at elevated temperature and pressure is effective to cause dispersion of the lignin and to retard redeposition or coating of the lignin on the fibers during defibering of the wood and during subsequent cooling of the pulp.
- Useful water-soluble anionic agents are disclosed to be relatively high molecular weight anionic organic polyelectrolytes or polymers, such as sodium lignin sulfonates, or relatively lower molecular weight anionic detergents. The resultant pulp is disclosed to have improved strength.
- Yamashita in Japanese Kokai No. 191394-82, discloses the addition of low molecular weight cationic polymers having a charge density of at least (or more than) 3.0 meq/g, preferably at least 5.0 meq/g, to unbleached pulp containing at least 3 percent, based on the weight of the pulp, of lignin to improve the dry strength of the resultant paper.
- This lignin is generally present in the black liquor. However, where sufficient lignin is not present in the pulp, additional amounts may be added.
- Yamashita also describes that the prior art includes use of an anionic or weakly cationic water-soluble polymeric substance, or greater molecular weight than his cationic polymers, in combination within lignin to improve dry strength, but that the prior art processes do not provide improved dry strength.
- Canadian Patent Application No. 1,110,019 discloses a process for manufacturing paper having improved dry strength using, first, a water-soluble cationic polymer having a viscosity greater than about 5 cps in a 10% aqueous solution at 23°C and, subsequently, a cation content of greater than about 1.0 gram ion/kg polymer in combination with a water soluble anionic polymer.
- Exemplary cationic components include a copolymer of acrylamide and methacryloyloxyethyltrimethyl ammonium chloride having a viscosity of 9800 cps (10% solution) and a cationic content of 2.68 gram ion/kg polymer, a copolymer of acrylamide and methacryloyloxyethyltrimethyl ammonium chloride having a viscosity of 9700 cps (10% solution) and a cationic content of 1.64 gram ion/kg polymer, and a copolymer of acrylamide and dimethyldiallyl ammonium chloride having a viscosity of 33 cps and a cationic content of 2.21 gram ion/kg polymer.
- Guar and its derivatives are also known as dry strength additives.
- U.S. Patent 3,303,184 discloses use of aminoethyl gums, such as aminoethyl ethers of guar, as dry strength additives.
- a mixture of cationic and anionic polymers useful as a strengthening additive in paper-making processes is characterized in that it comprises a water-soluble, linear, cationic polymer having a reduced specific viscosity (0.05 weight % in a 2 M NaCl solution at 30 o C) greater than 2 dl/g and a charge density of 0.2 to 4 meq/g, and a water-soluble, anionic polymer having a charge density of less than 5 meq/g that is reactable in the presence of water with the cationic polymer to form a polyelectrolyte complex.
- a process for making the mixture of cationic and anionic polymers according to the invention is characterized in that a water-soluble, linear, cationic polymer having a reduced specific viscosity (0.05 weight % in a 2 M NaCl solution at 30 o C) greater than 2 dl/g and a charge density of 0.2 to 4 meq/g is incorporated into a conventional aqueous suspension of cellulosic fibers, in an amount of 0.1 to 15%, by dry weight of the fibers, in a process for making paper in which the suspension of cellulosic fibers contains a water-soluble, anionic polymer having a charge density of less than 5 meq/g.
- the amount of the cationic polymer is 0.2 to 3%, by dry weight of the fibers.
- the use of the mixture of cationic and anionic polymers according to the invention is characterized in that the said mixture is incorporated into a conventional aqueous suspension of cellulosic fibers in a process for making paper.
- the polymers useful in this invention are water-soluble cationic and anionic polymers.
- water-soluble it is meant that the polymers form a non-colloidal 1% aqueous solution.
- linear it is meant that the polymers are straight-chained, with no significant branching present. Exemplary polymers are described below.
- Charge Density can be determined based on the known structure of the polymer by calculating as follows: It may also be determined by experimentation, for instance, by using the colloidal titration technique described by L. K. Wang and W. W. Schuster in Ind. Eng. Chem., Prd. Res. Dev., 14(4)312 (1975).
- molecular weight is expressed in terms of the polymers reduced specific viscosity (RSV) measured in a 2 M NaCl solution containing 0.05 weight percent of the polymer at 30°C. Under these conditions, a cationic acrylamide copolymer of molecular weight 1 x 106 has a RSV of approximately 2 dl/g.
- the polyelectrolyte complex that may form from the mixture of cationic and anionic polymers may be soluble, partially soluble or insoluble in water. Thus, it forms what may be conventionally termed a "solution”, “suspension”, “dispersion”, etc.
- aqueous system will be used to refer to the same. In some instances the term “aqueous system” is also used with respect to aqueous solutions of the water-soluble polymers that form the polyelectrolyte complex.
- the cationic polymers of this invention have a RSV greater than 2 dl/g, preferably in the range of about 10 to about 25 dl/g. They have a charge density in the range of from 0.2 to 4 meq/g, preferably 0.5 to 1.5 meq/g. Optimum performance is obtained with cationic polymers having a charge density of about 0.8 meq/g.
- Exemplary cationic polymers include polysaccharides such as cationic guar (e.g., guar derivatized with glycidyltrimethylammonium chloride) and other natural gum derivatives, and synthetic polymers such as copolymers of acrylamide.
- the latter include copolymers of acrylamide with diallyldimethyl-ammonium chloride (DADMAC), acryloyloxyethyltrimethylammonium chloride, methacryloyloxyethyltrimethyl ammonium methylsulfate, methacryloyloxyethyltrimethyl ammonium chloride (MTMAC) or methacrylamidopropyltrimethylammonium chloride, etc.
- DADMAC diallyldimethyl-ammonium chloride
- MTMAC methacryloyloxyethyltrimethyl ammonium chloride
- methacrylamidopropyltrimethylammonium chloride etc.
- copolymers of acrylamide with DADMAC or MTMAC are preferred.
- Some of the cationic polymers described above may undergo hydrolysis of their ester linkages under conditions of high temperature, extreme pH's, or extended storage. This hydrolysis results in the loss of cationic charge and the introduction of anionic sites into the polymer. If sufficient hydrolysis occurs, the polymer solution may become hazy. However, this hydrolysis has been found to have no significant effect on the performance of the polymer so long as the net cationic charge density (sum of cationic polymer charge density (meq. +/g) plus anionic polymer charge density (meq. -/g)) remains within the ranges specified.
- the anionic components of this invention include those normally present in unbleached pulps such as solubilized lignins and hemicelluloses; synthetic anionic polymers; and anionically modified natural polymers (i.e., those other than lignins and hemicelluloses). When present in the paper-making process in sufficient quantity, the anionic polymer normally present in unbleached pulps are preferred.
- Solubilized lignins and hemicelluloses are normally present in unbleached pulps as a result of incomplete removal of materials solubilized during manufacture of the pulp. Such products result from both chemical and mechanical pulping.
- black liquors such as kraft black liquor or neutral sulfite brown liquor
- black liquors comprise solubilized lignin and hemicellulose. Washed, unbleached pulp normally contains 1 to 10 weight percent black liquors.
- Exemplary synthetic anionic polymers and anionically modified natural polymers useful in the present invention include copolymers of acrylamide and sodium acrylate, sodium methacrylate and sodium-2-acrylamide-2-methylpropane sulfonate; sodium carboxymethylcellulose; sodium carboxymethyl guar; sodium alginate; sodium polypectate; and poly-(sodium-2-acrylamide-2-methylpropane sulfonate). They may be used by themselves or in any combination.
- lignin and hemicellulose are obtained, e.g., by oxidation, sulfonation or carboxymethylation.
- Oxidized and sulfonated lignins and hemicelluloses are naturally present as by-products of the pulping process and are normally present in unbleached pulps useful in this invention.
- the naturally present lignins and hemicellulose may also be modified by synthetic processes such as oxidation, sulfonation and carboxymethylation.
- the polyelectrolyte complex of this invention provides paper having improved dry strength in most papermaking systems. It is especially useful in the presence of the anionic materials found in unbleached papermaking systems, i.e., black liquors, as prior dry strength additives show reduced effectiveness in such systems.
- the process for manufacturing paper comprises three principal steps: (1) forming an aqueous suspension of cellulosic fibers; (2) adding the strengthening additive; and (3) sheeting and drying the fibers to form the desired cellulosic web.
- the first step of forming an aqueous suspension of cellulosic fibers is performed by conventional means, such as known mechanical, chemical and semichemical, etc., pulping processes. After the mechanical grinding and/or chemical pulping step the pulp is washed to remove residual pulping chemicals and solubilized wood components. These steps are well known, for instance, as described in Casey, Pulp and Paper (New York, Interscience Publishers, Inc. 1952).
- the second step may be carried out by adding the polyelectrolyte complex, or cationic component, or cationic and anionic components, or blends of the anionic and cationic components directly to the papermaking system.
- the individual components and blends of the components may be dry or they may be in aqueous systems. Further, this step may be carried out by forming an aqueous system comprising the polyelectrolyte complex, or polymer, or polymers, and adding the same to the papermaking system.
- the third step is carried out according to well-known and conventional means, such as those described in, e.g., Casey, Pulp and Paper, cited above.
- the polyelectrolyte complex forms when the components are mixed in an aqueous system, preferably under high shear. It may be formed and then added during the paper-making process, or may be formed in the papermaking process. In the latter instance, the cationic component may be added by itself to react with naturally present anionic polymers or may be simultaneously or successively added with an anionic component. When added successively, the anionic polymer is generally added prior to the cationic polymer in order to avoid flocculating the pulp. Here, the amount of each anionic polymer to be incorporated in the polyelectrolyte complex is reduced to take into account the amount of that polymer already in the system.
- the specific amount and type of polyelectrolyte complex that is preferable will depend on, among other things, the characteristics of the pulp; the presence or absence of black liquors and, where present, the amount and nature thereof; characteristics of the polymers used to form the complex; the characteristics of the complex; the desirability of transporting an aqueous system comprising the polyelectrolyte complex; and the nature of the papermaking process in which the aqueous system is to be used.
- the polyelectrolyte complex will typically comprise polymers in a ratio of cationic polymer(s):anionic polymer(s) of 4:100 to 40:1, preferably 1:4 to 4:1.
- Aqueous systems formed prior to addition to the pulp normally comprise 0.1 to 10 weight percent, based on the weight of the water in the system, of the polyelectrolyte complex.
- the polyelectrolyte complex is effective when add d to the stock in an amount of 0.1 to 15%, preferivelyably 0.2 to 3%, by dry weight of the pulp.
- anionic polymer to be used is dependent on the source of the anionic material. Naturally present anionic polymers are typically found at a level of 0.1 to 5%, based on the dry weight of the pulp. When anionic polymers are added to the sytem, the total weight of anionic polymers generally falls in the range of 0.1 to 10%, based on the dry weight of the pulp. Preferably, the total weight of added anionic polymers is in the range of 0.1 to 2.5%, based on the dry weight of the pulp.
- the level of cationic polymer required is highly dependent on the level of anionic material present.
- the level of cationic polymer is generally 0.1 to 5%, preferably 0.1 to 2.5%, based on the dry weight of the pulp.
- the anionic charge fraction is indicative of the nature of the polyelectrolyte complex. It can be determined by the following formula: in which the total anionic charge is determined by multiplying the absolute value of the charge density (electrostatic charge per weight of polymer, e.g., in meq/g) of each anionic polymer forming the polyelectrolyte complex by the weight of that polymer in the polyelectrolyte complex and adding the total charge of all of the anionic polymers.
- the total cationic charge is determined by multiplying the charge density of each cationic polymer forming the poly-electrolyte complex by the weight of that polymer in the polyelectrolyte complex and adding the total charge of all of the cationic polymers.
- the polyelectrolyte complex is completely soluble at an anionic charge fraction of less than 0.2, colloidal at an anionic charge fraction of 0.2 to 0.4, and fibrous (in some instances as a stringy gel that precipitates from solution, but which becomes colloidal under high shear) at an anionic charge fraction greater than 0.4.
- Polyelectrolyte complexes of this invention generally have an anionic charge fraction of 0.1 to 0.98, preferably an anionic charge fraction of 0.3 to 0.8, and more preferively 0.45 to 0.6. All polyelectrolyte complexes per this invention provide enhanced dry strength, particularly in the presence of black liquors. However, except as described below, the fibrous polyelectrolyte complexes (particularly those having the more preferred anionic charge fraction listed above) provide larger improvement in dry strength than colloidal or water-soluble polyelectrolyte complexes prepared from the same polymers. Under high shear in papermaking, these fibrous particles break into colloidal particles that provide excellent dry strength properties.
- Unique properties are obtained by forming the polyelectrolyte complex by mixing the anionic and cationic components in an aqueous system at a temperature of at least 75°C and letting the mixture cool to less than about 60°C, preferably less than 50°C. This can be achieved by adding the dry powder polymers to water heated to at least 75°C and, then, allowing the resultant aqueous system to cool to less than about 60°C. Premixing of the polymers into a dry polymer mixture may facilitate handling.
- the same properties can be obtained by preparing separation aqueous systems of the anionic and cationic polymers, heating each of the aqueous systems to at least 75°C, mixing them together, and, then, allowing the resultant aqueous system to cool to less than about 60°C.
- Polyelectrolyte complexes prepared by these processes generally have an anionic charge fraction of 0.1 to 0.98, preferably 0.4 to 0.9, and most preferably 0.65 to 0.85. High shear mixing aids in the rapid preparation of these polyelectrolyte complexes, but is not necessary. Maintaining the temperature of the preparation solution, dispersion, or slurry at above about 75°C for one hour aids in the homogenization of the mixture.
- Polyelectrolyte complexes having an anionic charge fraction of less than about 0.2 prepared by heating to at least 75°C and cooling will be water-soluble and perform in the same manner to those having the same anionic charge fraction prepared at lower temperatures.
- Polyelectrolyte complexes with anionic charge fractions of from about 0.2 to less than about 0.65 form colloidal particles that perform similar to the colloidal and fibrous particles prepared without heating to at least 75 o C and cooling.
- the anionic charge fraction is about 0.65 or higher and the polyelectrolyte complexes are prepared by heating to at least 75°C followed by cooling, water-soluble polyelectrolyte complexes are obtained that perform even better as dry strength additives than the other species of this invention.
- These soluble polyelectrolyte complexes are also useful as shear activated flocculants, retention aids on high speed paper machines, viscosifiers and drag reduction agents, and in water treatment.
- Such water-soluble complexes can be prepared from all of the aforementioned types of anionic components.
- temperatures are not normally sufficiently high during paper-making for formation of such a water-soluble polyelectrolyte complex. Therefore, to use those anionic polymers normally present in unbleached pulps, it is necessary to separate the anionic component from the pulp. This separation is normally carried out in the papermaking process, making such anionic components readily available.
- Water-soluble polyelectrolyte complexes can be prepared from, for example poly(acrylamide-co-dimethyldiallyammonium chloride) and Marasperse N-3 sodium lignin sulfonate (Reed Lignin Inc., Greenwich, CT), or AqualonTM CMC 7M (Aqualon Company, Wilmington, DE), or southern pine black liquor; quaternary amine modified waxy maize starch and Marasperse N-22 sodium lignin sulfonate (Reed Lignin Inc., Greenwich, CT); poly(acrylamide-co-methylacryloxyethyltrimethylammonium chloride) and Marasperse N-3 sodium lignin sulfonate; and poly(acrylamide-co-methylacryloxyethyltrimethylammonium chloride) and Marasperse N-3 sodium lignin sulfonate.
- additives useful in the papermaking process of this invention include sizes, defoamers, fillers, wetting agents, optical brighteners, inorganic salts, etc.
- Handsheets were made on a Noble and Wood Sheet Machine (Noble and Wood Machine Co., Hoosick Falls, NY) using the following: 1. Pulp: unbleached southern kraft pulp beaten to 550 Canadian Standard Freeness (CSF) at pH 8. 2. Standard Hard Water: Standard hard water having 50 ppm alkalinity and 100 ppm hardness was prepared by adding CaCl2 and NaHCO3 to distilled water, and adjusting the pH to 6.5 with H2SO4. 3.
- Pulp unbleached southern kraft pulp beaten to 550 Canadian Standard Freeness (CSF) at pH 8.
- CSF Canadian Standard Freeness
- Standard Hard Water Standard hard water having 50 ppm alkalinity and 100 ppm hardness was prepared by adding CaCl2 and NaHCO3 to distilled water, and adjusting the pH to 6.5 with H2SO4. 3.
- Black Liquor (Union Camp Corp., Worcester, GA): Total Solids: 15.9% (measured by Tappi Standard T650) Sulfate Ash: 8.9% Sodium: 2.6% (by atomic absorption spectroscopy) Sulfur: 0.7% (by x-ray fluoresence) Lignin: 5.2% (by UV spectroscopy) Charge density (by colloidal titration): .057 meq/g at pH 5.5 .103 meq/g at pH 9.0 4. Defoamer: Defoamer 491A (Hercules Incorporated, Wilmington, DE).
- a clean thoroughly wetted screen was placed on an open deckle.
- the deckle was clamped closed and then filled with the 6.5 pH standard hard water (described above), from the white water return tank, to the bottom mark on the deckle box.
- a one liter aliquout of stock was drawn from the proportioner and poured into the deckle.
- the stock in the deckle was stirred using three rapid strokes of the dasher, the dasher was removed, and the deckle was drawn into the white water return tank. The screen and retained pulp was then transferred to the open felt at the entrance to the press.
- the felted sheets were run through the press with the press weights adjusted so as to obtained a pressed sheet having 33-34% solids. Then, the sheet and screen were placed in the drum dryer, having an internal temperature of 240 o F and a throughput time of 50-55 seconds, and run through two times (during the first run the sheet was in contact with the drum and during the second run the screen was in contact with the drum.). The sheets were conditions at 72 o F and 50% relative humidity for 24 hours. Eight sheets were prepared in this manner, with the last five being used for testing.
- Table 1 shows that improved results are obtained with respect to both the STFI Compression Strength and Mullen Burst tests when a cationic polymer of this invention is added to a pulp containing black liquor. Looking at the rows of data it can be seen that best STFI Compression Strength results were obtained with samples containing black liquor. Similarly, Mullen Burst results were better for samples containing black liquor than samples that did not contain black liquor at polymer levels of 0.2% or more, despite the fact that better results were obtained when the control did not contain black liquor. Looking at the columns, it can be seen that results were significantly better with samples containing black liquor having 0.2% or more of the cationic polymer. Thus, this example demonstrates formation of a polyelectrolute complex between the cationic polymer added and the anionic polymers present in the black liquor, and that improved dry strength is obtained with the polyelectrolyte complex of this invention.
- the examples illustrate the effect of molecular weight on the performance of the cationic polymer forming the polyelectrolyte complex.
- the procedure of examples 1-6 was repeated using 0.4%, by dry weight of the pulp, of the polymer used in examples 2-6 which was ultrasonically degraded in order to obtain samples of lower molecular weight. Results, along with data for control Example No. 1 and Example No. 4 which is included for convenience, are shown in Table 2 below.
- the data in Table 4 shows that improved STFI Compression Strength and Mullen Burst results are obtained using the cationic polymers of this invention.
- the samples prepared with cationic polymers per this invention performed better than the control sample.
- STFI Compression Strength was better in each instance with black liquor.
- Mullen Burst results were better with the samples prepared with black liquor than samples that were not prepared with black liquor, except with respect to sample No. 22.
- the results indicate that a polyelectrolyte complex forms between the cationic polymers of this invention and anionic polymer present in black liquors.
- Example 1 show the effect of addition of both anionic and cationic polymers during papermaking and the beneficial effect of addition of higher levels of anionic component.
- Example 1 The procedures of Example 1 were repeated using 0.5% of the cationic polymer used in example 2-6 and the anionic polymers listed in Table 5, below. The results are shown below in Table 5.
- Table 5 Addition of Natural Polymers Example No. Anionic Polymer Anionic Polymer (% Added)1 STFI (lbs/1"width) Mullen Burst (psi) 23. (Control) - - 17.9 68.5 24.
- Kraft black liquor2 2.4 19.5 71.0 25.
- Kraft lignin3 0.84 19.8 72.2 27.
- Table 5 demonstrates that superior dry strength properties are obtained when both an anionic and cationic polymer are added during papermaking so as to form a polyelectrolyte complex.
- example 25 shows that improved results are achieved when the amount of anionic polymer is such that the cationic and anionic changes are nearly balanced (i.e., the charges are neutralized).
- Table 6 shows the superior dry strength properties of paper prepared with the polyelectrolyte complex of this invention.
- Example No. 35 the sample prepared with black liquor performed better than the sample prepared without black liquor.
- Example No. 28 a polyelectrolyte complex forms with the cationic polymers and the naturally present anionic polymers in black liquor, providing improved dry strength.
- Examples 29 and 30 have superior dry strength compared to example 28 in the absence of black liquor, indicating formation of a polyelectrolute complex by the cationic polymer and CMC.
- Similar results were found to occur with other cationic/anionic polymer combination per this invention, in the absence of black liquor, in examples 31 to 33.
- the lower STFI value achieved with poly(sodium)acrylate (no black liquor present) indicates that additive anionic polymers per the instance invention provide superior dry strength as compared to other additive anionic polymers.
- results obtained in example 34 in the presence of black liquor can be attributed to formation of a polyelectrolyte complex between the cationic polymer and the anionic polymers forming the black liquor.
- Sample 35 is a comparative example showing the use of a cationic polymer outside the scope of the instant invention.
- the STFI value was lower in the presence of black liquor using this cationic polymer.
- this invention provides superior dry strength in the presence of black liquor than in the absence of black liquor, whereas a decrease in dry strength occurs in the presence of black liquor using dry strength additives outside the scope of this invention.
- examples illustrate the effect of premixing a portion of the anionic component with the cationic polymer so as to form an aqueous system containing a polyelectrolyte complex and adding the aqueous sytem to a papermaking furnish.
- the procedure of examples 106 were repeated so as to prepare a control example having no cationic polymer, example 36, and a sample prepared with a cationic copolymer comprised of 87.6 mole % acrylamide units and 12.4% diallyldimethylammonium chloride units.
- Example 37 Example 37.
- Sample 38 was prepared using an additive composition comprising 86 parts of the aforementioned acrylamide copolymer and 14 parts sodium lignin sulfonate, which was premixed in a Waring blender so as to form a water-insoluble particulate polyelectrolyte complex prior to addition to the papermaking furnish according to the following procedure.
- Table 7 demonstrates that excellent dry strength properties are obtained using an anionic and cationic polymer per this invention, particularly when they are premixed to form a particulate polyelectrolyte complex prior to addition to the papermaking process. Excellent dry strength properties occur in the presence of black liquor, and superior performance to the cationic polymer only is shown in the absence of black liquor.
- Examples 1-6 illustrates the performance of comparative polymers.
- the procedure of Examples 1-6 was repeated using the following polymers: no cationic polymer, (sample No. 39); Corcat P600 polyethyleneimine (PEI) (Cordova Chemical Co. Muskegon, MI) (sample No. 40); poly(diallyldimethylammonium chloride) (sample No. 41); poly(acryloyloxyethyltrimethylammonium chloride) (sample No. 42); polyaminoamide epichlorohydrin resin (sample No.
- Example No. 44 copolymer prepared from 11 mole % styrene, 5 mole % sodium acrylate and 84 mole % acrylamide, prepared according to the procedures of example 12 of U.S. Patent No. 3,840,489) (sample No. 44); a copolymer prepared by mixing the copolymer of Example 44 with polyaminoamide epichlorohydrin resin according to the procedures of U.S. Patent No. 4,002,588 (the polymers were mixed at an equal charge ratio) (sample No.
- 196 g of a 0.5 weight percent solution of a copolymer of acrylamide and diallyldimethylammonium chloride (6 mol %) and 200 g of a solution containing the amount of Marasperse N-3 sodium lignin sulfonate (Reed Lignin Inc., Greenwich, CT) listed in the following table (no sodium lignin sulfonate was used in control example 47) were heated to 80°C.
- the two solutions were added to a baffled, heated vessel and mixed with a Cowles disperser blade for 5 minutes at 750 rpm, while the temperature was maintained at 80°C, and then the resulting aqueous system was allowed to cool to room temperature.
- Table 9 Ex. Anionic Charge Fraction Sodium Lignin Sulfonate(g) Nature of Polyelectrolyte Complex Brookfield Viscosity1 47 0 0 None formed 37 cps 48 0.6 0.993 0.6 micron colloidal particle 5.7 cps 49 0.8 2.648 soluble 4.6 cps 1. 60 rpm, #2 spindle.
- Example 10 In order to study the properties of paper prepared using the complexes of Examples 48 and 49, and complexes prepared by adding the anionic and cationic components directly to a papermaking system, the procedures of Examples 1 - 6 were repeated used the cationic polymer at an addition level of 0.5 weight %, by weight of dry pulp. A control sample was prepared without using an additive. The results are shown in Table 10 below. Table 10 Ex. Additive STFI Compression (lbs/in) Mullen Burst (psi) 50 Control (none) 14.9 42 51 Complex of Example 48 17.6 88 52 Components used in Example 481 18.2 72 53 Complex of Example 49 19.5 91 54 Components used in Example 491 17.9 82 1. The components were added directly to the papermaking system, as 0.5% aqueous solutions, with the anionic component being added prior to the cationic.
- a dry powder was prepared by mixing 0.98 g of copolymer of acrylamide and diallyldimethylammonium chloride (6 mole %) and the amount of Marasperse N-3 sodium lignin sulfonate (Reed Lignin Inc., Greenwich, CT) listed in the following table.
- the dry powder mixture was then added to 200 g of water that had been heated to 80°C and the mixture was stirred using a Cowles disperser blade in a baffled, heated vessel for 5 minutes at 750 rpm, while the temperature was maintained 80°C, and then allowed to cool to room temperature.
- polyelectrolyte complex of Example 56 provides improved dry strength, particularly in papers prepared with unbleached pulp and black liquor. Therefore, the polyelectrolyte complex of this invention is suitable for use as dry strength additive in all types of paper and is particularly useful as a dry strength additive for unbleached paper and paper board.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Paper (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US25233388A | 1988-10-03 | 1988-10-03 | |
US252333 | 1999-02-18 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0362770A2 true EP0362770A2 (fr) | 1990-04-11 |
EP0362770A3 EP0362770A3 (fr) | 1991-01-09 |
EP0362770B1 EP0362770B1 (fr) | 1994-07-27 |
Family
ID=22955589
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP89118245A Expired - Lifetime EP0362770B1 (fr) | 1988-10-03 | 1989-10-02 | Additif de résistance à sec pour papier |
Country Status (11)
Country | Link |
---|---|
EP (1) | EP0362770B1 (fr) |
JP (1) | JP2862913B2 (fr) |
KR (1) | KR0159921B1 (fr) |
AT (1) | ATE109230T1 (fr) |
AU (1) | AU619599B2 (fr) |
BR (1) | BR8905018A (fr) |
DE (1) | DE68917069T2 (fr) |
ES (1) | ES2059664T3 (fr) |
FI (1) | FI98941C (fr) |
RU (1) | RU2040618C1 (fr) |
ZA (1) | ZA897516B (fr) |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0414496A1 (fr) * | 1989-08-23 | 1991-02-27 | Nalco Chemical Company | Méthode et pâte pour améliorer la rétention des poudres et des agents de remplissage du papier |
EP0548960A1 (fr) * | 1991-12-23 | 1993-06-30 | Hercules Incorporated | Amélioration de la résistance à l'état sec d'un papier grâce à une combinaison de guars anionique et cationique |
US5338407A (en) * | 1991-12-23 | 1994-08-16 | Hercules Incorporated | Enhancement of paper dry strength by anionic and cationic guar combination |
WO1994029523A1 (fr) * | 1993-06-09 | 1994-12-22 | Ceca S.A. | Procede non polluant pour augmenter la resistance humide du papier |
US5501772A (en) * | 1993-05-28 | 1996-03-26 | Calgon Corporation | Cellulosic modified lignin and cationic polymer composition and process for making improved paper or paperboard |
US5501773A (en) * | 1993-05-28 | 1996-03-26 | Calgon Corporation | Cellulosic, modified lignin and cationic polymer composition and process for making improved paper or paperboard |
US5567277A (en) * | 1993-05-28 | 1996-10-22 | Calgon Corporation | Cellulosic, modified lignin and cationic polymer composition and process for making improved paper or paperboard |
US6359040B1 (en) | 1998-05-12 | 2002-03-19 | Hercules Incorporated | Aqueous systems comprising an ionic polymer and a viscosity promoter, processes for their preparation, and uses thereof |
WO2002066393A1 (fr) * | 2001-01-10 | 2002-08-29 | Florida State University Research Foundation, Inc. | Procede de reglage de la viscosite d'un melange a base de ciment a l'aide de polyelectrolytes a charges opposees |
EP1285993A1 (fr) * | 2001-08-20 | 2003-02-26 | Armstrong World Industries, Inc. | Liant de feuille fibreuse |
WO2004060689A1 (fr) * | 2002-12-20 | 2004-07-22 | Meadwestvaco Corporation | Compositions de melanges de polymeres |
WO2004096895A2 (fr) * | 2003-04-30 | 2004-11-11 | Basf Aktiengesellschaft | Procede de fabrication de dispersions aqueuses de complexes de polyelectrolytes, et leur utilisation pour augmenter la resistance a l'etat humide du papier et du carton |
WO2005012639A1 (fr) * | 2003-07-29 | 2005-02-10 | Georgia-Pacific Resins, Inc. | Melange de polymeres anioniques-cationiques pour encollage de surface |
US7141617B2 (en) * | 2003-06-17 | 2006-11-28 | The Board Of Trustees Of The University Of Illinois | Directed assembly of three-dimensional structures with micron-scale features |
US7261771B2 (en) | 2002-01-09 | 2007-08-28 | Nanostrata Inc. | Method of controlling the viscosity of a cementitious mixture using oppositely-charged polyelectrolytes |
WO2007104716A1 (fr) * | 2006-03-16 | 2007-09-20 | Basf Se | Procédé de fabrication de papier et de carton présentant une grande résistance à sec |
EP1918455A1 (fr) * | 2006-10-31 | 2008-05-07 | M-real Oyj | Procédé de fabrication de papier et de carton |
WO2012067877A1 (fr) | 2010-11-15 | 2012-05-24 | Kemira Oyj | Composition et processus d'augmentation de la force à l'état sec d'un produit papetier |
WO2012065951A1 (fr) * | 2010-11-16 | 2012-05-24 | Basf Se | Fabrication de feuilles de pâte cellulosique |
WO2014072587A1 (fr) * | 2012-11-12 | 2014-05-15 | Kemira Oyj | Procédé pour le traitement d'une pâte de fibres pour la fabrication de papier, de carton ou similaire et produit correspondant |
US8969261B2 (en) | 2010-02-12 | 2015-03-03 | Rhodia Operations | Rheology modifier compositions and methods of use |
US10273634B2 (en) | 2014-08-18 | 2019-04-30 | Kemira Oyj | Strength agent, its use and method for increasing strength properties of paper |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3549330B2 (ja) * | 1996-05-07 | 2004-08-04 | 三井化学株式会社 | 製紙用添加剤 |
ATE410455T1 (de) | 1999-05-26 | 2008-10-15 | Rhodia | Blockpolymere, zusammensetzungen und verfahren zur verwendung in schäumen, waschmitteln, duschreinigern und koagulierungsmitteln |
US7939601B1 (en) | 1999-05-26 | 2011-05-10 | Rhodia Inc. | Polymers, compositions and methods of use for foams, laundry detergents, shower rinses, and coagulants |
ATE504314T1 (de) * | 1999-05-26 | 2011-04-15 | Rhodia | Polymere, zusammensetzungen sowie verfahren zur verwendung als schäume, waschmittel, duschreiniger und koagulierungsmittel |
MX252220B (es) * | 2000-08-07 | 2007-12-09 | Akzo Nobel Nv | Proceso para encolado de papel. |
JP5217240B2 (ja) * | 2007-05-21 | 2013-06-19 | 星光Pmc株式会社 | 紙用添加剤およびそれを使用した製紙方法 |
KR101349076B1 (ko) * | 2011-07-20 | 2014-01-14 | 현대자동차주식회사 | 연료전지 스택용 매니폴드 블록의 산화층 형성 장치 및 방법 |
JP2014034753A (ja) * | 2012-08-10 | 2014-02-24 | Rengo Co Ltd | 製紙用添加剤及びその製造方法 |
JP6570662B2 (ja) | 2015-06-19 | 2019-09-04 | ストラタシス,インコーポレイテッド | 付加製造に使用される水分散性ポリマー |
EP3315659A1 (fr) * | 2016-10-27 | 2018-05-02 | Kelheim Fibres GmbH | Fibre artificielle de cellulose et non-tissé ou papier comprenant la fibre de cellulose |
JP6999162B2 (ja) * | 2017-12-22 | 2022-02-10 | 国立研究開発法人産業技術総合研究所 | リグニンスルホン酸とカチオン性高分子を成分とするイオン複合材料 |
KR102317783B1 (ko) * | 2020-05-15 | 2021-10-25 | 배명직 | 아노다이징 지그 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3660338A (en) * | 1966-04-29 | 1972-05-02 | American Cyanamid Co | Amphoteric strengthening agents for paper |
US3677888A (en) * | 1966-04-29 | 1972-07-18 | American Cyanamid Co | Manufacture of paper using amphoteric strengthening agents |
JPS55152896A (en) * | 1979-05-11 | 1980-11-28 | Rei Tech Inc | Increasing of dry paper strength |
US4347100A (en) * | 1981-05-21 | 1982-08-31 | The Chemithon Corporation | Strength of paper from mechanical or thermomechanical pulp |
JPS57191394A (en) * | 1981-05-19 | 1982-11-25 | Rei Tech Inc | Papermaking method using lignin like substance and cationic polymer |
JPS58120898A (ja) * | 1982-01-06 | 1983-07-18 | 株式会社協立有機工業研究所 | 紙の乾燥強度を向上させる抄紙方法 |
EP0193111A2 (fr) * | 1985-02-27 | 1986-09-03 | BASF Aktiengesellschaft | Procédé de fabrication de papier à résistance élevée à l'état sec |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL134024C (fr) * | 1965-11-17 | 1900-01-01 | ||
JPS5536315A (en) * | 1978-08-29 | 1980-03-13 | Arakawa Rinsan Kagaku Kogyo | Light weight newspaper |
JPS5719139A (en) * | 1980-07-09 | 1982-02-01 | Kobe Steel Ltd | Method and device for measuring molten steel level in mold |
SE8701252D0 (sv) * | 1987-03-03 | 1987-03-25 | Eka Nobel Ab | Sett vid framstellning av papper |
US4798653A (en) * | 1988-03-08 | 1989-01-17 | Procomp, Inc. | Retention and drainage aid for papermaking |
-
1989
- 1989-09-30 KR KR1019890014136A patent/KR0159921B1/ko not_active IP Right Cessation
- 1989-10-02 ES ES89118245T patent/ES2059664T3/es not_active Expired - Lifetime
- 1989-10-02 EP EP89118245A patent/EP0362770B1/fr not_active Expired - Lifetime
- 1989-10-02 DE DE68917069T patent/DE68917069T2/de not_active Expired - Fee Related
- 1989-10-02 RU SU894742293A patent/RU2040618C1/ru active
- 1989-10-02 JP JP1255343A patent/JP2862913B2/ja not_active Expired - Lifetime
- 1989-10-02 AT AT89118245T patent/ATE109230T1/de not_active IP Right Cessation
- 1989-10-03 BR BR898905018A patent/BR8905018A/pt not_active Application Discontinuation
- 1989-10-03 ZA ZA897516A patent/ZA897516B/xx unknown
- 1989-10-03 AU AU42523/89A patent/AU619599B2/en not_active Ceased
- 1989-10-03 FI FI894684A patent/FI98941C/fi not_active IP Right Cessation
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3660338A (en) * | 1966-04-29 | 1972-05-02 | American Cyanamid Co | Amphoteric strengthening agents for paper |
US3677888A (en) * | 1966-04-29 | 1972-07-18 | American Cyanamid Co | Manufacture of paper using amphoteric strengthening agents |
JPS55152896A (en) * | 1979-05-11 | 1980-11-28 | Rei Tech Inc | Increasing of dry paper strength |
JPS57191394A (en) * | 1981-05-19 | 1982-11-25 | Rei Tech Inc | Papermaking method using lignin like substance and cationic polymer |
US4347100A (en) * | 1981-05-21 | 1982-08-31 | The Chemithon Corporation | Strength of paper from mechanical or thermomechanical pulp |
JPS58120898A (ja) * | 1982-01-06 | 1983-07-18 | 株式会社協立有機工業研究所 | 紙の乾燥強度を向上させる抄紙方法 |
EP0193111A2 (fr) * | 1985-02-27 | 1986-09-03 | BASF Aktiengesellschaft | Procédé de fabrication de papier à résistance élevée à l'état sec |
Non-Patent Citations (3)
Title |
---|
ABSTRACT BULLETIN OF THE INSTITUTE OF PAPER CHEMISTRY, vol 51, NØ11, May 1981, page 1241, NØ 11649; & JP-A-55 152 896 (KYORITSU) (28-11-1980) * |
DATABASE WPIL,NØ83-02920k,Derwent Publications; & JP-A-57 191 394 (KYORITSU)(25-11-82) * |
DATABASE WPIL,NØ83-744757,Derwent Publications; & JP-A-58 120 898 (KYORITSU)(18-07-1983) * |
Cited By (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0414496A1 (fr) * | 1989-08-23 | 1991-02-27 | Nalco Chemical Company | Méthode et pâte pour améliorer la rétention des poudres et des agents de remplissage du papier |
US5633300A (en) * | 1991-12-23 | 1997-05-27 | Hercules Incorporated | Enhancement of paper dry strength by anionic and cationic guar combination |
EP0548960A1 (fr) * | 1991-12-23 | 1993-06-30 | Hercules Incorporated | Amélioration de la résistance à l'état sec d'un papier grâce à une combinaison de guars anionique et cationique |
US5318669A (en) * | 1991-12-23 | 1994-06-07 | Hercules Incorporated | Enhancement of paper dry strength by anionic and cationic polymer combination |
US5338407A (en) * | 1991-12-23 | 1994-08-16 | Hercules Incorporated | Enhancement of paper dry strength by anionic and cationic guar combination |
US5502091A (en) * | 1991-12-23 | 1996-03-26 | Hercules Incorporated | Enhancement of paper dry strength by anionic and cationic guar combination |
US5647956A (en) * | 1993-05-28 | 1997-07-15 | Calgon Corporation | Cellulosic, modified lignin and cationic polymer composition and process for making improved paper or paperboard |
US5501772A (en) * | 1993-05-28 | 1996-03-26 | Calgon Corporation | Cellulosic modified lignin and cationic polymer composition and process for making improved paper or paperboard |
US5501773A (en) * | 1993-05-28 | 1996-03-26 | Calgon Corporation | Cellulosic, modified lignin and cationic polymer composition and process for making improved paper or paperboard |
US5567277A (en) * | 1993-05-28 | 1996-10-22 | Calgon Corporation | Cellulosic, modified lignin and cationic polymer composition and process for making improved paper or paperboard |
FR2706496A1 (fr) * | 1993-06-09 | 1994-12-23 | Ceca Sa | Nouveau procédé non polluant pour augmenter la résistance humide du papier. |
WO1994029523A1 (fr) * | 1993-06-09 | 1994-12-22 | Ceca S.A. | Procede non polluant pour augmenter la resistance humide du papier |
US6359040B1 (en) | 1998-05-12 | 2002-03-19 | Hercules Incorporated | Aqueous systems comprising an ionic polymer and a viscosity promoter, processes for their preparation, and uses thereof |
WO2002066393A1 (fr) * | 2001-01-10 | 2002-08-29 | Florida State University Research Foundation, Inc. | Procede de reglage de la viscosite d'un melange a base de ciment a l'aide de polyelectrolytes a charges opposees |
EP1285993A1 (fr) * | 2001-08-20 | 2003-02-26 | Armstrong World Industries, Inc. | Liant de feuille fibreuse |
US6716312B2 (en) | 2001-08-20 | 2004-04-06 | Armstrong World Industries, Inc. | Fibrous sheet binders |
US6755938B2 (en) | 2001-08-20 | 2004-06-29 | Armstrong World Industries, Inc. | Fibrous sheet binders |
USRE42110E1 (en) | 2001-08-20 | 2011-02-08 | Awi Licensing Company | Fibrous sheet binders |
US7261771B2 (en) | 2002-01-09 | 2007-08-28 | Nanostrata Inc. | Method of controlling the viscosity of a cementitious mixture using oppositely-charged polyelectrolytes |
WO2004060689A1 (fr) * | 2002-12-20 | 2004-07-22 | Meadwestvaco Corporation | Compositions de melanges de polymeres |
WO2004096895A2 (fr) * | 2003-04-30 | 2004-11-11 | Basf Aktiengesellschaft | Procede de fabrication de dispersions aqueuses de complexes de polyelectrolytes, et leur utilisation pour augmenter la resistance a l'etat humide du papier et du carton |
WO2004096895A3 (fr) * | 2003-04-30 | 2005-02-24 | Basf Ag | Procede de fabrication de dispersions aqueuses de complexes de polyelectrolytes, et leur utilisation pour augmenter la resistance a l'etat humide du papier et du carton |
US7141617B2 (en) * | 2003-06-17 | 2006-11-28 | The Board Of Trustees Of The University Of Illinois | Directed assembly of three-dimensional structures with micron-scale features |
WO2005012639A1 (fr) * | 2003-07-29 | 2005-02-10 | Georgia-Pacific Resins, Inc. | Melange de polymeres anioniques-cationiques pour encollage de surface |
WO2007104716A1 (fr) * | 2006-03-16 | 2007-09-20 | Basf Se | Procédé de fabrication de papier et de carton présentant une grande résistance à sec |
US7922867B2 (en) | 2006-03-16 | 2011-04-12 | Basf Se | Method for producing paper, paperboard and cardboard having high dry strength |
EP1918455A1 (fr) * | 2006-10-31 | 2008-05-07 | M-real Oyj | Procédé de fabrication de papier et de carton |
US8969261B2 (en) | 2010-02-12 | 2015-03-03 | Rhodia Operations | Rheology modifier compositions and methods of use |
WO2012067877A1 (fr) | 2010-11-15 | 2012-05-24 | Kemira Oyj | Composition et processus d'augmentation de la force à l'état sec d'un produit papetier |
US8980056B2 (en) | 2010-11-15 | 2015-03-17 | Kemira Oyj | Composition and process for increasing the dry strength of a paper product |
US8916026B2 (en) | 2010-11-16 | 2014-12-23 | Basf Se | Manufacture of cellulosic pulp sheets |
WO2012065951A1 (fr) * | 2010-11-16 | 2012-05-24 | Basf Se | Fabrication de feuilles de pâte cellulosique |
US9567710B2 (en) | 2010-11-16 | 2017-02-14 | Basf Se | Manufacture of cellulosic pulp sheets |
WO2014072587A1 (fr) * | 2012-11-12 | 2014-05-15 | Kemira Oyj | Procédé pour le traitement d'une pâte de fibres pour la fabrication de papier, de carton ou similaire et produit correspondant |
US9752284B2 (en) | 2012-11-12 | 2017-09-05 | Kemira Oyj | Method for treating a fibre stock for making of paper, board or the like and product |
US10273634B2 (en) | 2014-08-18 | 2019-04-30 | Kemira Oyj | Strength agent, its use and method for increasing strength properties of paper |
Also Published As
Publication number | Publication date |
---|---|
FI894684A0 (fi) | 1989-10-03 |
EP0362770A3 (fr) | 1991-01-09 |
ES2059664T3 (es) | 1994-11-16 |
DE68917069D1 (de) | 1994-09-01 |
FI98941C (fi) | 1997-09-10 |
KR0159921B1 (ko) | 1999-01-15 |
DE68917069T2 (de) | 1994-12-08 |
JP2862913B2 (ja) | 1999-03-03 |
ATE109230T1 (de) | 1994-08-15 |
FI98941B (fi) | 1997-05-30 |
AU4252389A (en) | 1990-04-05 |
FI894684A (fi) | 1990-04-04 |
ZA897516B (en) | 1990-09-26 |
EP0362770B1 (fr) | 1994-07-27 |
KR900006615A (ko) | 1990-05-08 |
RU2040618C1 (ru) | 1995-07-25 |
AU619599B2 (en) | 1992-01-30 |
BR8905018A (pt) | 1990-05-08 |
JPH02251696A (ja) | 1990-10-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0362770B1 (fr) | Additif de résistance à sec pour papier | |
US5338406A (en) | Dry strength additive for paper | |
EP0723047B1 (fr) | Amélioration de la résistance du papier fait à partir de pâte des composés carboxyl tensioactifs | |
EP0548960B1 (fr) | Amélioration de la résistance à l'état sec d'un papier grâce à une combinaison de guars anionique et cationique | |
US5633300A (en) | Enhancement of paper dry strength by anionic and cationic guar combination | |
CA1255856B (fr) | Production de papier et de carton | |
EP0335575B2 (fr) | Fabrication de papier et carton | |
Dunlop-Jones | Wet-strength chemistry | |
CN111886381B (zh) | 干强度组合物、其用途及用于制造纸、板等的方法 | |
EP0960237A1 (fr) | Procedes de fabrication de papier et compositions afferentes | |
KR20010101326A (ko) | 셀룰로오스 물질의 개선 방법 | |
WO1993025754A1 (fr) | Ameliorations relatives a la fabrication de papier | |
CN111433407B (zh) | 纸强度改进聚合物组合物和添加剂体系、其用途以及纸制品的制造 | |
RU2223356C2 (ru) | Композиция добавки для производства бумаги | |
CA1325303C (fr) | Resine a bonne resistance a sec de colloide amino/aldehyde-acide avec un polymere a base d'acrylamide, procede pour sa production et papier produit a partir de celui-ci | |
US4880498A (en) | Dry strength resin of amino/aldehyde acid colloid with acrylamide polymer, process for the production thereof and paper produced therefrom | |
WO2001029313A1 (fr) | Polysaccharides a modification cationique | |
US11453979B2 (en) | Paper strength improving composition, manufacture thereof and use in paper making | |
Korhonen et al. | Strengthening wood fiber networks by adsorption of complexes of chitosan with dialdehyde starch | |
Andreasson et al. | On the mechanisms behind the action of wet strength and wet strength agents | |
EP0722011A1 (fr) | Composition de fabrication de papier et procédé de fabrication de tissu, papier journal, papier ou carton |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE DE ES FR GB IT SE |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE DE ES FR GB IT SE |
|
17P | Request for examination filed |
Effective date: 19910612 |
|
17Q | First examination report despatched |
Effective date: 19920629 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE DE ES FR GB IT SE |
|
REF | Corresponds to: |
Ref document number: 109230 Country of ref document: AT Date of ref document: 19940815 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 68917069 Country of ref document: DE Date of ref document: 19940901 |
|
ITF | It: translation for a ep patent filed | ||
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2059664 Country of ref document: ES Kind code of ref document: T3 |
|
EAL | Se: european patent in force in sweden |
Ref document number: 89118245.3 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 19951011 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 19951030 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19951110 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Effective date: 19961002 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 19961003 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Effective date: 19961031 |
|
BERE | Be: lapsed |
Owner name: HERCULES INC. Effective date: 19961031 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 19990601 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20000918 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20001004 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20001009 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20001030 Year of fee payment: 12 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20011002 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20011003 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20011002 |
|
EUG | Se: european patent has lapsed |
Ref document number: 89118245.3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020628 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020702 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20051002 |