EP0358094B1 - Verfahren zur Herstellung von Perborat - Google Patents

Verfahren zur Herstellung von Perborat Download PDF

Info

Publication number
EP0358094B1
EP0358094B1 EP89115952A EP89115952A EP0358094B1 EP 0358094 B1 EP0358094 B1 EP 0358094B1 EP 89115952 A EP89115952 A EP 89115952A EP 89115952 A EP89115952 A EP 89115952A EP 0358094 B1 EP0358094 B1 EP 0358094B1
Authority
EP
European Patent Office
Prior art keywords
tetrahydrate
perborate
weight
process according
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89115952A
Other languages
English (en)
French (fr)
Other versions
EP0358094A1 (de
Inventor
Klaus Dr. Köster
Franz-Josef Dr. Carduck
Ulrich Dr. Jahnke
Seamus French
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
Degussa GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Degussa GmbH filed Critical Degussa GmbH
Priority to AT89115952T priority Critical patent/ATE73527T1/de
Publication of EP0358094A1 publication Critical patent/EP0358094A1/de
Application granted granted Critical
Publication of EP0358094B1 publication Critical patent/EP0358094B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B15/00Peroxides; Peroxyhydrates; Peroxyacids or salts thereof; Superoxides; Ozonides
    • C01B15/055Peroxyhydrates; Peroxyacids or salts thereof
    • C01B15/12Peroxyhydrates; Peroxyacids or salts thereof containing boron
    • C01B15/126Dehydration of solid hydrated peroxyborates to less hydrated or anhydrous products
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B15/00Peroxides; Peroxyhydrates; Peroxyacids or salts thereof; Superoxides; Ozonides
    • C01B15/055Peroxyhydrates; Peroxyacids or salts thereof
    • C01B15/12Peroxyhydrates; Peroxyacids or salts thereof containing boron
    • C01B15/123Stabilisation of the solid compounds, subsequent to the preparation or to the crystallisation, by additives or by coating

Definitions

  • the present invention relates to the production of sodium perborate tetrahydrate and its further processing to monohydrate.
  • Sodium perborate has found widespread use as an oxidizing agent because of its safe handling and its chemical stability, for example as a mild disinfectant, but above all as a bleaching agent, especially in textile washing.
  • Sodium perborate commonly referred to as perborate
  • the so-called sodium perborate tetrahydrate and the so-called sodium perborate monohydrate, which according to the present knowledge are actually the hexahydrate or the water-free form of the ring-shaped disodium diperoxodiborate, are of technical importance in the first place.
  • the common names perborate tetrahydrate empirical formula NaBO3. 4 H2O
  • perborate monohydrate NaBO3.
  • H2O H2O
  • sodium perborate monohydrate refers to all perborates which have more than 15% by weight of active oxygen (theoretical value for NaBO3. H2O: 16.0% by weight of AO).
  • the perborates In the production of the perborates, one generally starts from sodium borate solutions and obtains them after adding Hydrogen peroxide the tetrahydrate by cooling in crystalline form.
  • the monohydrate is formed by dewatering, preferably with warm air in the fluidized bed.
  • the temperature of the fluidized bed is finally controlled during drying so that it is above the melting temperature of the tetrahydrate.
  • All of the abovementioned processes are used to improve the abrasion stability of the perborate monohydrate in the drying stage of tetrahydrate. In the majority of cases, therefore, a fine-grained fraction that was already present in the tetrahydrate also remains in the monohydrate and may have to be removed therefrom.
  • an abrasion-resistant monohydrate can be obtained more simply by using a specially pretreated tetrahydrate for drying. If one starts with the drying from a perborate tetrahydrate, which was granulated according to DE 10 52 372 with partial softening, for example with the help of an extrusion press, an abrasion-stable monohydrate is obtained without special expenditure during drying, which is largely free of fine parts.
  • the difficulties with this production route lie at the stage of tetrahydrate granulation: the temperature range in which powdery perborate tetrahydrate has the plasticity suitable for extrusion according to DE 10 52 372 is extremely small at about 2 ° C.
  • a first object of the invention is therefore a process for the production of a granular sodium perborate tetrahydrate, in which the powdery perborate tetrahydrate is softened by heating under pressure, the plastically deformable but not deliquescent mass is deformed by pressing into small strands and comminuted, characterized in that the Perborate tetrahydrate prior to processing admits 0.3 to 5 percent by weight of a sodium or potassium salt of a polymeric carboxylic acid, said carboxylic acid having an acid number between about 100 and about 1000, preferably between about 150 and about 900, and an average molecular weight between about 4000 and about 300 000, preferably between about 4000 and about 150,000.
  • the temperature range in which the tetrahydrate has sufficient plasticity and can be processed without problems extends to 5 to 8 ° C. and thus reaches a width which enables large-scale and largely trouble-free operation makes possible. Even in large extrusion systems with very sluggish temperature control behavior, it is easily possible to maintain the temperature ranges mentioned.
  • the addition of polymer does not have a negative effect on the drying behavior of the tetrahydrate granulated in this way, so that drying can be carried out quickly and in one stage in conventional plants in an energy-saving manner and provides an exceptionally abrasion-stable, dust-free monohydrate.
  • the polymeric salts used according to the invention are preferably those salts in which on average more than 50 mole percent of the acid groups present in the polymeric carboxylic acid are present in the salt form.
  • Compounds in which more than 80 mol percent, in particular more than 90 mol percent, of the acid groups are present in the salt form are particularly preferred.
  • the alkali salts mentioned the sodium salts are also preferred.
  • the salts suitable according to the invention, or the polymeric carboxylic acids on which they are based, can be prepared in ways known per se.
  • Polymers that are free of carboxyl groups can be converted into polymeric carboxylic acids (or their salts) by polymer-analogous reactions. Examples of this reaction, which may be carried out only partially, are the hydrolysis of polyacrylamide and the carboxymethylation of cellulose.
  • Another possibility is to homopolymerize polymerizable carboxylic acid or its salts or to copolymerize it with suitable comonomers and, if appropriate, to neutralize it with alkalis. Examples of this production route are the homopolymerization of acrylic acid and the copolymerization of acrylic acid with ethylene.
  • the sodium salts of carboxymethyl celluloses with degrees of substitution (number of carboxymethyl groups per anhydroglucose unit, DS) of about 0.5 to about 1, preferably 0.6 to 0.9, and in particular the sodium salts of copolymers of acrylic acid and / or are preferred Methacrylic acid with maleic acid in a molar ratio of about 10: 1 to about 1:10, preferably about 2: 1 to about 1: 5.
  • the molecular weights are preferably between about 50,000 and about 150,000, in particular between about 70,000 and about 100,000; in the case of the maleic acid copolymers preferably between about 50,000 and 200,000 and in particular between about 50,000 and 150,000.
  • the salts of carboxymethyl cellulose are often characterized solely by the viscosity of the aqueous solutions .
  • Suitable according to the invention are then CMC-Na salts which, in technical quality (content about 50-80%), have viscosities of preferably 200-8000 mPas, in particular 1500-4000 mPas (as a 5% aqueous solution) and in purified form (as 2nd % aqueous solution) have viscosities of preferably 200-5000 mPas, in particular 1500-4000 mPas (Brookfield measurement at 20 ° C. and 20 rpm).
  • polymer salts which are particularly suitable for the process according to the invention, are distinguished by the fact that they extend the plasticity range of the perborate tetrahydrate to up to 8 ° C. Furthermore, it is to be regarded as advantageous that the retention of these salts in the perborate tetrahydrate additionally improves the properties of the monohydrate produced therefrom by drying, in particular its abrasion stability. Furthermore, the polymeric additives in no way interfere with the use of the perborates in detergents.
  • the process according to the invention differs significantly from the process of DE 10 52 372 by the addition of the polymeric salts mentioned.
  • this addition can take place at any time before the tetrahydrate is processed in the extruder, for example by addition before or during the crystallization as part of the tetrahydrate production.
  • the polymeric salts are preferably admixed immediately before processing in the extrusion device, it being possible to provide a separate mixing apparatus.
  • particularly preferred is the simultaneous or simultaneous metering of perborate tetrahydrate and polymeric salt into the extrusion press, the turbulence in the intake area of the device being used for uniform mixing.
  • the polymeric salt can be added to the perborate tetrahydrate in dry form or, preferably, in the form of a concentrated aqueous preparation.
  • a concentrated aqueous preparation containing the polymeric salt in an amount of at least 20 percent by weight, preferably at least 40 percent by weight, perborate and polymeric salt appear to mix faster.
  • the presence of the water does not interfere with the further processing of the tetrahydrate, which is preferably converted into the monohydrate.
  • the amount of polymeric salt added to the tetrahydrate determines to some extent the breadth of the temperature range in which there is plasticity suitable for the extrusion process. It is usually between 0.3 and 5 percent by weight.
  • the starting material for the granulation process according to the invention is primarily crystalline perborate tetrahydrate, the grain size of which is smaller than the smallest dimension of the holes in the sieve plate used.
  • the starting material preferably has a maximum of the grain size distribution below half the smallest hole dimension.
  • Dust-like perborate tetrahydrate i. H. Material with an average grain size well below 0.2 mm, which is the most undesirable fraction in the production of crystalline tetrahydrate.
  • the starting material can be used dry or contain up to 5% by weight of water in addition to the hydrated water content. Centrifuge-moist material is also suitable. A water content of about 1 to 2 percent by weight, based on pure tetrahydrate, is particularly advantageous. Higher water contents require slightly lower extrusion temperatures.
  • the perborate tetrahydrate After leaving the granulation device, the perborate tetrahydrate is cooled, with cooling with cold air being preferred, as in DE 1 052 372.
  • the result is a low-dust sodium perborate tetrahydrate with a very narrow, precisely adjustable particle size distribution, high bulk density and high mechanical stability. Despite its compact shape, the product dissolves in water just as quickly as commercially available tetrahydrate.
  • the sodium perborate tetrahydrate obtainable by the process according to the invention is therefore a separate subject of the invention.
  • This material is directly suitable for use in detergents. However, it is preferably converted into sodium perborate monohydrate and only used in this form.
  • the additional process step consists in drying the tetrahydrate according to the invention with the removal of up to 3 mol of water of hydration and, if appropriate, adhering moisture. It is another object of the invention.
  • almost all known drying processes are suitable for the drying step, provided that they do not lead to decomposition of the perborate or to over-drying with formation of undesirable oxoborates. This is particularly the case when the individual grains can reach temperatures that are too high.
  • the drying is therefore preferably carried out in a gas or air stream, with drying using fluidized bed dryers or vibration dryers being particularly preferred.
  • These devices can, for example, work with air inlet temperatures of 100 to 180 ° C, if at the same time care is taken that the product temperature does not exceed about 70 ° C even at the end of the drying process. It is preferably carried out in such a way that drying is carried out at an air inlet temperature of 120 to 140 ° C. and air speeds of 0.9 to 1.1 m / s and the end product temperature is between 60 and 65 ° C. If the drying of the tetrahydrate immediately follows the granulation of the tetrahydrate, the cooling of the tetrahydrate after the granulation step can be largely or completely omitted. At the end of the dewatering process, the monohydrate is cooled in the air stream until it can be stored without problems.
  • the drying process according to the invention can be carried out in one stage and requires no additional measures. It leads to the goal very quickly and therefore allows the use of small systems in relation to the product throughput. Despite the high product throughput, little dust is formed. The dust is generally discharged and filtered out with the exhaust air. In most cases it can be added to the end product because of its small amounts, in other cases it is incorporated into the granulation process of the tetrahydrate.
  • the granular end product has an extremely high abrasion resistance and a high bulk density, but dissolves in water just as quickly as commercially available perborate monohydrate.
  • the sodium perborate monohydrate obtainable by the process according to the invention is therefore a further subject of the present invention.
  • Areas of application for the new technical form of perborate monohydrate are all fields known for conventional monohydrate. It is suitable, for example, for use as a bleaching and disinfecting agent, as an oxidizing agent or as a carrier of active oxygen for other purposes, and it can be further processed into oxoborate.
  • the preferred area of application is the use in detergents and cleaning agents of all kinds, where the high abrasion resistance and the narrow grain spectrum are particularly advantageous.
  • Perborate tetrahydrate as is obtained in dust form when drying crystalline perborate tetrahydrate (particle size distribution: 90% below 0.2 mm) and which, in addition to the water of hydration, contained 1.5% moisture, was mixed with 2.5% by weight of a 40% solution uniformly sprayed on the sodium salt of a copolymer of acrylic acid and maleic acid (weight ratio 78:22, Sokalan (R) CP 5 from BASF, DE). The mixture was then extruded at 20 kg / h in a PR 46 co-kneader (Buss, Pratteln, CH) with a sieve basket granulator (hole diameter 0.8 mm). The kneader was heated with hot water.
  • a PR 46 co-kneader Buss, Pratteln, CH
  • sieve basket granulator hole diameter 0.8 mm
  • the tetrahydrate had sufficient plasticity for the extrusion and could be extruded in the form of thin strands and assembled in the form of short rods by a rotating knife driven by the extruder shaft (knife speed 120 rpm, knife distance to sieve basket 2, 5 mm).
  • the bulk density was 670 g / l; the active oxygen content corresponded to that of the starting material at 10.2% by weight.
  • Example 2 perborate fine dust containing 4% moisture was now processed.
  • the temperature range suitable for plastification was 52 to 60 ° C.
  • the co-kneader was operated at a screw speed of 150 rpm, so that the cut-off granulate became somewhat finer.
  • the bulk density was 700 g / l.
  • the proportion under 0.2 mm only increased by 0.8%.
  • Example 2 The same starting materials as in Example 2 were formed into strands through a nozzle plate (hole diameter 0.8 mm) using a twin-screw extruder (type Labor-Presse D 91,000,000, counter-rotating screw conveyors, 6 D, Lihotzky, Plattling, DE) and cut to lengths of 0.8 - 1.2 mm with the help of a rotating knife.
  • the extruder was heated with hot water so that the product outlet temperature was between 53 and 59 ° C.
  • the granulate was practically dust-free (grain content below 0.2 mm less than 1%) and very abrasion-resistant. In the test, the proportion of dust below 0.2 mm increased by no more than 5%.
  • the extrusion was carried out after the addition of 0.5% by weight of Sokalan CP 5 in the form of a 40% aqueous aqueous solution; the plasticity range was 50 - 58 ° C.
  • the product had a bulk density of 660 g / l and showed the following sieve analysis:
  • Example 1 The process according to Example 1 was carried out in the same way, but without the addition of the polymer salt.
  • the temperature range suitable for the extrusion was between 57 and 59 ° C and could only be maintained exactly over more or less short times.
  • the product which was extruded at the intended temperature had a significantly higher proportion with grain sizes above 1.6 mm. This is an indication that even if the temperature interval was maintained, local or temporal overheating, which would lead to caking of the strands, could not be completely avoided:
  • Perborate tetrahydrate fine dust (with 1.5% moisture) was mixed in a Lödige mixer with 4% by weight of a solution containing 25% by weight of the sodium salt of a maleic acid-olefin copolymer (Sokalan (R) CP 9, molecular weight) 12000, company BASF, DE) contained.
  • Sokalan (R) CP 9, molecular weight) 12000, company BASF, DE a maleic acid-olefin copolymer
  • the mixture was extruded in a Buss kneader (as in Example 1) at 52 ° C. with a throughput of 15 kg / h.
  • the plasticity range was 51 - 58 ° C.
  • the finished product had a bulk density of 610 g / l and had the following grain size distribution:
  • Example 2 kg of the tetrahydrate granules produced in Example 1 were dried with warm air in a laboratory fluidized bed dryer of the STREA-1 type (Aeromatik, Bubendorf, CH).
  • the drying conditions were: air inlet temperature 120 ° C, air flow 55 m3 / h, air outlet temperature at the end of drying 62 ° C, drying time 45 minutes.
  • the result was a perborate monohydrate with an active oxygen content of 15.7% by weight, a bulk density of 542 g / l and the following sieve analysis:
  • tetrahydrate granules from Example 1 were dried in an amount of 80 kg / h. This gave 49.5 kg / h of monohydrate (15.3% AO) and 4.1 kg / h of dust (12.6% AO) as filter residue from the exhaust air.
  • the drying conditions were: air inlet temperature 120 ° C, air volume 1420 m3 / h, product temperature 68 ° C.
  • the escaping monohydrate was cooled with air to 25 ° C. in a downstream cooling zone and then stored.
  • the product had a bulk density of 535 g / l and had the following sieve analysis:
  • the fraction below 0.2 mm only increased by 10.8%.
  • the dryer output was 125 kg / h.m2 and thus about three times higher than when drying in the same dryer according to DE 22 58 319 with moist air. Nevertheless, the product obtained was extremely resistant to abrasion.
  • the material was not resistant to abrasion; in the test, the fraction below 0.2 mm increased by 35.3%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Detergent Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Glanulating (AREA)
  • Compounds Of Unknown Constitution (AREA)

Description

  • Die vorliegende Erfindung betrifft die Herstellung von Natriumperborattetrahydrat und dessen Weiterverarbeitung zu Monohydrat.
  • Natriumperborat hat wegen seiner sicheren Handhabbarkeit und seiner chemischen Stabilität als Oxidationsmittel breite Anwendung gefunden, beispielsweise als mildes Desinfektionsmittel, vor allem aber als Bleichmittel, insbesondere bei der Textilwäsche. Natriumperborat, gemeinhin nur als Perborat bezeichnet, ist seit langem Bestandteil der meisten pulverförmigen Haushaltwaschmittel in Europa. Technisch bedeutsam sind dabei in erster Linie das sogenannte Natriumperborattetrahydrat und das sogenannte Natriumperboratmonohydrat, bei denen es sich nach heutigem Wissen in Wirklichkeit um das Hexahydrat bzw. die wasserfreie Form des ringförmigen Dinatriumdiperoxodiborats handelt. Im folgenden sollen jedoch weiterhin die gebräuchlichen Bezeichnungen Perborattetrahydrat (empirische Formel NaBO₃ . 4 H₂O) und Perboratmonohydrat (NaBO₃ . H₂O) benutzt werden. Auch die in der Praxis übliche Kennzeichnung über den Aktivsauerstoffgehalt soll im folgenden Zusammenhang Gültigkeit haben. Danach bezeichnet man als Natriumperboratmonohydrat alle Perborate, die mehr als 15 Gew.-% an Aktivsauerstoff aufweisen (Theoretischer Wert für NaBO₃ . H₂O : 16,0 Gew.-% AO).
  • Bei der Herstellung der Perborate geht man im allgemeinen von Natriumboratlösungen aus und gewinnt daraus nach Zusatz von Wasserstoffperoxid das Tetrahydrat durch Abkühlen in kristalliner Form. Durch Entwässerung, vorzugsweise mit Warmluft in der Wirbelschicht, entsteht daraus das Monohydrat.
  • Mit dem Ziel, die Ausbeute und die Qualität der Perborate zu verbessern, sind eine große Zahl von Verfahrensvarianten vorgeschlagen worden, von denen aber nur wenige sich in der Praxis durchgesetzt haben. Ein bis heute nicht zur allseitigen Zufriedenheit gelöstes Problem ist die Abriebstabilität des Perboratmonohydrats. Durch den schnellen Wasseraustritt bei den üblichen Trockenverfahren bilden sich sehr poröse und leicht zerfallende Körner, mit der Folge, daß ein großer Teil des Trocknungsproduktes als Staub anfällt. Vor allem für die Anwendung in Waschmitteln ist man jedoch an abriebfestem Material interessiert, das zudem in seiner Korngröße etwa der eines Waschmittels, d. h. ca. 0,3 bis 2 mm, entsprechen sollte.
  • Keines der bisher für die Herstellung eines besonders abriebstabilen Monohydrates vorgeschlagenen Verfahrens ist frei von Nachteilen. So wird im Verfahren gemäß DE 19 30 286 in der Wirbelschicht mit besonders hohen Lufttemperaturen von 180 bis 210 °C gearbeitet. Derartig hohe Temperaturen sind jedoch auch für thermisch verhältnismäßig beständige Perverbindungen, wie die Perborate problematisch, und zudem ist die Anwendung so hoher Temperaturen wärmetechnisch aufwendig. Im Verfahren gemäß DE 20 40 507 wird das Monohydrat nach der üblichen Herstellung noch einmal, vorzugsweise im Drehrohr, oberflächlich befeuchtet und erneut getrocknet. Das Verfahren erfordert damit zwei zusätzliche Verfahrensstufen. Die Verfahren gemäß DE 22 58 319 und DE 24 47 780 trocknen das Tetrahydrat bei hohen relativen Luftfeuchten. Dadurch dauert jedoch die Trocknung entsprechend länger und erfordert größere Apparaturen und mehr Energie. Im Verfahren gemäß EP 194 952 wird schließlich bei der Trocknung die Temperatur der Wirbelschicht so geregelt, daß sie über der Schmelztemperatur des Tetrahydrats liegt. Auch hier ist die Gefahr der chemischen Zersetzung des Perborats gegeben. Alle vorstehend genannten Verfahren setzen zur Verbesserung der Abriebstabilität des Perboratmonohydrates bei der Stufe des Trockens von Tetrahydrat an. In der Mehrzahl der Fälle bleibt deshalb ein feinkörniger Anteil, der schon im Tetrahydrat vorhanden war, auch im Monohydrat erhalten und muß daraus gegebenenfalls entfernt werden.
  • Andererseits wurde auch festgestellt, daß man ein abriebstabiles Monohydrat einfacher dadurch erhalten kann, daß man zur Trocknung ein besonders vorbehandeltes Tetrahydrat einsetzt. Geht man bei der Trocknung von einem Perborattetrahydrat aus, das gemäß DE 10 52 372 unter partieller Erweichung beispielsweise mit Hilfe einer Strangpresse granuliert wurde, so erhält man ohne besondere Aufwendungen bei der Trocknung ein abriebstabiles Monohydrat, das weitgehend frei von feinen Anteilen ist. Die Schwierigkeiten liegen bei diesem Herstellungsweg auf der Stufe der Tetrahydratgranulation: Der Temperaturbereich, in dem pulverförmiges Perborattetrahydrat die zum Strangpressen gemäß DE 10 52 372 geeignete Plastizität aufweist, ist mit etwa 2 °C äußerst klein. Unterhalb dieses Bereichs findet auch unter dem Druck eines Extruders keine ausreichende Agglomeration statt, oberhalb des Bereiches schmilzt das Tetrahydrat soweit auf, daß die Stränge nach Verlassen des Extruders verkleben und nicht weiter verarbeitet werden können. Die Einhaltung des schmalen Temperaturbereiches von 2 °C bereitete in der Praxis wegen der bekanntermaßen schwierigen Temperaturführung im Extruder so große Probleme, daß das Verfahren gemäß DE 10 52 372 nie zum großtechnischen Einsatz kam.
  • Überraschenderweise wurde jetzt gefunden, daß der Temperaturbereich, in dem Perborattetrahydrat eine für das Strangpressen geeignete Plastizität aufweist, erheblich erweitert werden kann, wenn dem Tetrahydrat bestimmte polymere organische Verbindungen zugesetzt werden.
  • Ein erster Gegenstand der Erfindung ist daher ein Verfahren zur Herstellung eines körnigen Natriumperborattetrahydrates, bei dem pulverförmiges Perborattetrahydrat durch Erwärmen unter Druck erweicht, die plastisch deformierbare, jedoch nicht zerfließende Masse durch Pressen in dünne Stränge verformt und diese zerkleinert werden, dadurch gekennzeichnet, daß man dem Perborattetrahydrat vor der Verarbeitung 0,3 - 5 Gewichtsprozent eines Natrium- oder Kaliumsalzes einer polymeren Carbonsäure zumischt, wobei diese Carbonsäure eine Säurezahl zwischen etwa 100 und etwa 1000, vorzugsweise zwischen etwa 150 und etwa 900, sowie ein mittleres Molekulargewicht zwischen etwa 4000 und etwa 300 000, vorzugsweise zwischen etwa 4000 und etwa 150 000, aufweist.
  • Durch den erfindungsgemäßen Zusatz der polymeren Alkalisalze erweitert sich der Temperaturbereich, in dem das Tetrahydrat eine ausreichende Plastizität aufweist und problemlos verarbeitet werden kann, auf 5 bis 8 °C und erreicht damit eine Breite, die einen großtechnischen und weitgehend störungsfreien Betrieb möglich macht. Selbst in großen Extrusionsanlagen mit sehr trägem Temperaturregelverhalten ist die Einhaltung der genannten Temperaturbereiche ohne weiteres möglich. Gleichzeitig wirkt sich der Polymerzusatz nicht negativ auf das Trocknungsverhalten des auf diese Weise gekörnten Tetrahydrates aus, so daß die Trocknung schnell und energiesparend einstufig in herkömmlichen Anlagen durchgeführt werden kann und ein außergewöhnlich abriebstabiles, staubfreies Monohydrat liefert.
  • Bei den erfindungsgemäß eingesetzten polymeren Salzen handelt es sich vorzugsweise um solche Salze, bei denen durchschnittlich mehr als 50 Molprozent der in der polymeren Carbonsäure vorliegenden Säuregruppen in der Salzform vorliegen. Besonders bevorzugt sind Verbindungen, bei denen mehr als 80 Molprozent, insbesondere mehr als 90 Molprozent der Säuregruppen in der Salzform vorliegen. Weiterhin werden von den genannten Alkalisalzen wiederum die Natriumsalze bevorzugt.
  • Die erfindungsgemäß geeigneten Salze, beziehungsweise die ihnen zugrunde liegenden polymeren Carbonsäuren, können auf an sich bekannten Wegen hergestellt werden. So lassen sich Polymere, die frei sind von Carboxylgruppen, durch polymeranaloge Reaktionen in polymere Carbonsäuren (bzw. deren Salze) überführen. Beispiele für diese gegebenenfalls nur partiell durchzuführende Reaktion sind die Hydrolyse von Polyacrylamid und die Carboxymethylierung von Cellulose. Eine andere Möglichkeit besteht darin, polymerisierbare Carbonsäure oder deren Salze zu homopolymerisieren oder mit geeigneten Comonomeren zu copolymerisieren und gegebenenfalls mit Alkalien zu neutralisieren. Beispiele für diesen Herstellungsweg sind die Homopolymerisation von Acrylsäure und die Copolymerisation von Acrylsäure mit Ethylen.
  • Bevorzugt werden im Rahmen der Erfindung die Natriumsalze von Carboxymethylcellulosen mit Substitutionsgraden (Zahl der Carboxymethylgruppen pro Anhydroglucoseeinheit, DS) von etwa 0,5 bis etwa 1, vorzugsweise 0,6 bis 0,9, und insbesondere die Natriumsalze von Copolymerisaten aus Acrylsäure und/oder Methacrylsäure mit Maleinsäure im Molverhältnis von etwa 10 : 1 bis etwa 1 : 10, vorzugsweise etwa 2 : 1 bis etwa 1 : 5. Die Molekulargewichte liegen im Falle der Carboxymethylcellulosen vorzugsweise zwischen etwa 50 000 und etwa 150 000, insbesondere zwischen etwa 70 000 und etwa 100 000; im Falle der Maleinsäure-Copolymerisate vorzugsweise zwischen etwa 50 000 und 200 000 und insbesondere zwischen etwa 50 000 und 150 000. (Bestimmt mit Hilfe der Gelpermeationschromatographie und ausgedrückt als Gewichtsmittel.) Die Salze der Carboxymethylcellulose werden vielfach allein durch die Viskosität der wäßrigen Lösungen charakterisiert. Erfindungsgemäß geeignet sind danach CMC-Na-Salze, die in technischer Qualität (Gehalt etwa 50 - 80 %) Viskositäten von vorzugsweise 200 - 8000 mPas, insbesondere 1500 - 4000 mPas (als 5 %ige wäßrige Lösung) und in gereinigter Form (als 2 %ige wäßrige Lösung) Viskositäten von vorzugsweise 200 - 5000 mPas, insbesondere 1500 - 4000 mPas aufweisen (Messung nach Brookfield bei 20 °C und 20 Upm). Die vorgenannten, für das erfindungsgemäße Verfahren besonders geeigneten Polymersalze zeichnen sich dadurch aus, daß sie den Plastizitätsbereich des Perborattetrahydrates auf bis zu 8 °C ausdehnen. Weiterhin ist als vorteilhaft anzusehen, daß der Verbleib dieser Salze im Perborattetrahydrat die Eigenschaften des daraus durch Trocknung hergestellten Monohydrats, insbesondere dessen Abriebstabilität, zusätzlich verbessern. Weiterhin stören die polymeren Additive die Anwendung der Perborate in Waschmitteln in keiner Weise.
  • Das erfindungsgemäße Verfahren unterscheidet sich vom Verfahren der DE 10 52 372 ganz wesentlich durch den Zusatz der genannten polymeren Salze. Dieser Zusatz kann prinzipiell zu jeder Zeit vor der Verarbeitung des Tetrahydrates im Extruder erfolgen, beispielsweise durch Zugabe vor oder während der Kristallisation im Rahmen der Tetrahydrat-Herstellung. Vorzugsweise erfolgt die Zumischung der polymeren Salze aber unmittelbar vor der Verarbeitung in der Strangpreßvorrichtung, wobei ein eigener Mischapparat vorgesehen werden kann. Besonders bevorzugt ist aber die gemeinsame oder gleichzeitige Dosierung von Perborattetrahydrat und polymerem Salz in die Strangpresse, wobei zur gleichmäßigen Vermischung die Turbulenzen im Einzugsbereich des Gerätes ausgenutzt werden. Das polymere Salz kann in trockener Form oder, vorzugsweise, in Form einer konzentrierten wäßrigen Zubereitung dem Perborattetrahydrat zugesetzt werden. Bei Verwendung in Form einer konzentrierten wäßrigen Zubereitung, die das polymere Salz in einer Menge von wenigstens 20 Gewichtsprozent, vorzugsweise wenigstens 40 Gewichtsprozent, enthält, scheinen sich Perborat und polymeres Salz schneller zu mischen. Die Anwesenheit des Wassers stört die Weiterverarbeitung des Tetrahydrates, das vorzugsweise in das Monohydrat übergeführt wird, nicht. Die Menge an polymerem Salz, die dem Tetrahydrat zugesetzt wird, bestimmt in gewissem Umfang die Breite des Temperaturbereichs, in dem eine für den Extrusionsvorgang geeignete Plastizität vorliegt. Sie liegt üblicherweise zwischen 0,3 und 5 Gewichtsprozent. Als besonders gut geeignet haben sich Mengen von 0,5 bis 3 Gewichtsprozent, gerechnet als polymeres Salz (bei technischer Reinheit nur die Aktivsubstanz) und bezogen auf das als Ausgangsmaterial eingesetzte Perborattetrahydrat, erwiesen. Optimale Ergebnisse, auch im Hinblick auf das Kosten-Nutzen-Verhältnis, erzielt man mit Zusätzen von 0,8 bis 1,5 Gewichtsprozent an polymerem Salz.
  • Als Ausgangsmaterial für das erfindungsgemäße Granulationsverfahren wird in erster Linie kristallines Perborattetrahydrat verwendet, dessen Korngröße kleiner ist als die kleinste Abmessung der Löcher in der verwendeten Siebplatte. Vorzugsweise weist das Ausgangsmaterial ein Maximum der Korngrößenverteilung unterhalb der halben kleinsten Lochabmessung auf. Besonders bevorzugt wird staubförmiges Perborattetrahydrat, d. h. Material mit einer mittleren Korngröße deutlich unterhalb von 0,2 mm, wie es bei der Produktion von kristallinem Tetrahydrat als meist unerwünschte Fraktion anfällt. Das Ausgangsmaterial kann trocken eingesetzt werden oder aber bis zu 5 Gewichtsprozent an Wasser über den Hydratwassergehalt hinaus enthalten. Geeignet ist also auch zentrifugenfeuchtes Material. Besonders vorteilhaft ist ein Wassergehalt von etwa 1 bis 2 Gewichtsprozent, bezogen auf reines Tetrahydrat. Höhere Wassergehalte erfordern etwas niedrigere Extrusionstemperaturen. Andererseits ist es auch möglich, von Perboraten auszugehen, die weniger Hydratwasser als das Tetrahydrat enthalten, wenn vor der Granulation entsprechend mehr Wasser zugesetzt wird.
  • Für die Durchführung des erfindungsgemäßen Verfahrens eignen sich praktisch alle Geräte, die es erlauben, plastifizierbare Materialien unter Druck zu Strängen zu formen. Dazu zählen beispielsweise Walzenpressen, Pelletisiergeräte und Lochpressen. Ganz besonders werden Extruder mit Düsenplatten und Kneter mit Siebkorbgranuliervorrichtung bevorzugt. Dabei werden runde Durchtrittsöffnungen bevorzugt, die Durchmesser zwischen 0,5 und 2 mm, insbesondere 0,8 bis 1,2 mm aufweisen. Die Zerkleinerung der Stränge wird in diesen Fällen durch rotierende bzw. umlaufende Messer vorgenommen. Im übrigen sei auf die ausführlichen Darstellungen in der DE 1 052 372 hingewiesen, auf die hier ausdrücklich Bezug genommen wird.
  • Nach dem Verlassen des Granulationsgerätes wird das Perborattetrahydrat abgekühlt, wobei wie in der DE 1 052 372 die Abkühlung mit kalter Luft bevorzugt wird. Es resultiert ein staubarmes Natriumperborattetrahydrat mit sehr enger, genau einstellbarer Kornverteilung, hohem Schüttgewicht und hoher mechanischer Stabilität. Trotz seiner kompakten Form löst sich das Produkt in Wasser ähnlich schnell wie handelsübliches Tetrahydrat.
  • Das nach dem erfindungsgemäßen Verfahren erhältliche Natriumperborattetrahydrat ist daher ein eigener Gegenstand der Erfindung. Dieses Material eignet sich ohne weiteres direkt für den Einsatz in Waschmitteln. Vorzugsweise wird es aber in Natriumperboratmonohydrat übergeführt und erst in dieser Form verwendet.
  • Der zusätzliche Verfahrensschritt besteht in der Trocknung des erfindungsgemäßen Tetrahydrates unter Entzug von bis zu 3 Mol Hydratwasser sowie gegebenenfalls anhaftender Feuchtigkeit. Er ist ein weiterer Gegenstand der Erfindung. Für den Trocknungsschritt eignen sich prinzipiell nahezu alle bekannten Trocknungsverfahren, soweit sie nicht zu einer Zersetzung des Perborats oder zu einer Übertrocknung unter Bildung unerwünschter Oxoborate führen. Dies ist insbesondere dann der Fall, wenn die einzelnen Körner zu hohe Temperaturen erreichen können. Vorzugsweise wird die Trocknung daher im Gas- oder Luftstrom durchgeführt, wobei die Trocknung mit Hilfe von Wirbelbetttrocknern oder Vibrationstrockner besonders bevorzugt wird. Bei Anwendung dieser Geräte kann beispielsweise mit Lufteintrittstemperaturen von 100 bis 180 °C gearbeitet werden, wenn gleichzeitig darauf geachtet wird, daß die Produkttemperatur auch gegen Ende des Trockenvorganges etwa 70 °C nicht überschreitet. Vorzugsweise wird so gearbeitet, daß bei einer Lufteintrittstemperatur von 120 bis 140 °C und Luftgeschwindigkeiten von 0,9 bis 1,1 m/s getrocknet wird und die Produkttemperatur gegen Ende zwischen 60 und 65 °C liegt. Schließt sich die Trocknung des Tetrahydrates unmittelbar an die Granulierung des Tetrahydrates an, so kann die Abkühlung des Tetrahydrates nach dem Granulationsschritt weitgehend oder vollständig unterbleiben. Nach dem Ende des Entwässerungsprozesses wird das Monohydrat im Luftstrom soweit abgekühlt, daß eine problemlose Lagerung möglich ist.
  • Das erfindungsgemäße Trocknungsverfahren ist einstufig durchführbar und erfordert keine zusätzlichen Maßnahmen. Es führt sehr schnell zum Ziel und erlaubt daher, bezogen auf den Produktdurchsatz, die Anwendung kleiner Anlagen. Trotz des hohen Produktdurchsatzes bildet sich nur wenig Staub. Der Staub wird im allgemeinen mit der Abluft ausgetragen und ausgefiltert. Er kann in den meisten Fällen wegen seiner geringen Mengen dem Endprodukt beigemengt werden, in anderen Fällen wird er in den Granulationsprozeß des Tetrahydrates eingebracht.
  • Das körnige Endprodukt weist eine außerordentlich große Abriebfestigkeit auf und hat ein hohes Schüttgewicht, löst sich aber in Wasser ebenso schnell wie käufliches Perboratmonohydrat. Das mit dem erfindungsgemäßen Verfahren erhältliche Natriumperboratmonohydrat ist daher ein weiterer Gegenstand der vorliegenden Erfindung.
  • Als Anwendungsgebiete kommen für die neue technische Form des Perboratmonohydrats alle für herkömmliches Monohydrat bekannten Gebiete in Betracht. Es eignet sich beispielsweise für den Einsatz als Bleich- und Desinfektionsmittel, als Oxidationsmittel oder als Träger von Aktivsauerstoff für andere Zwecke, und es läßt sich zu Oxoborat weiter verarbeiten. Bevorzugtes Einsatzgebiet ist jedoch die Anwendung in Wasch- und Reinigungsmitteln aller Art, wo die hohe Abriebfestigkeit und das enge Kornspektrum besonders vorteilhaft zur Geltung kommen.
  • Beispiele Beispiel 1
  • Perborattetrahydrat, wie es in Staubform bei der Trocknung von kristallinem Perborattetrahydrat anfällt (Kornverteilung: 90 % unter 0,2 mm) und das zusätzlich zum Hydratwasser 1,5 % Feuchtigkeit enthielt, wurde mit 2,5 Gew.-% einer 40 %igen Lösung des Natriumsalzes eines Copolymerisates aus Acrylsäure und Maleinsäure (Gewichtsverhältnis 78 : 22, Sokalan(R) CP 5 der Firma BASF, DE) gleichmäßig bedüst. Die Mischung wurde dann mit 20 kg/h in einem Kokneter des Typs PR 46 (Firma Buss, Pratteln, CH) mit Siebkorbgranulator (Lochdurchmesser 0,8 mm) extrudiert. Die Heizung des Kneters erfolgte mit Warmwasser. Bei Produkttemperaturen zwischen 54 und 62 °C wies das Tetrahydrat eine für die Verstrangung ausreichende Plastizität auf und konnte in Form dünner Stränge extrudiert und durch ein über die Extruderwelle angetriebenes umlaufendes Messer in Form kurzer Stäbchen konfektioniert werden (Messerdrehzahl 120 Upm, Messerabstand zum Siebkorb 2,5 mm).
  • Das resultierende Abschlaggranulat, das beim Abkühlen sofort erstarrte, hatte eine enge Kornverteilung und war praktisch staubfrei: Siebanalyse (Gew.-%):
    Figure imgb0001
  • Die Schüttdichte betrug 670 g/l; der Aktivsauerstoffgehalt entsprach mit 10,2 Gew.-% dem des Ausgangsmaterials.
  • Zur Bestimmung der Abriebfestigkeit wurden 100 g des Produktes 5 Minuten in einer Kugelmühle aus Porzellan (innerer Durchmesser 130 mm, Höhe 100 mm, 8 Stahlkugeln von 20 mm Durchmesser) bei einer Drehzahl von 150 Upm gemahlen. Danach wurde erneut der Feinkornanteil unter 0,2 mm durch Siebanalyse bestimmt. Er hatte nur um 3,1 % zugenommen.
  • Beispiel 2
  • Wie in Beispiel 1 wurde jetzt Perborat-Feinstaub verarbeitet, der 4 % Feuchtigkeit enthielt. Hier lag der für die Plastifizierung geeignete Temperaturbereich bei 52 bis 60 °C. Der Kokneter wurde mit einer Schneckendrehzahl von 150 Upm betrieben, so daß das Abschlaggranulat etwas feiner wurde.
  • Siebanalyse:
  • Figure imgb0002
  • Die Schüttdichte betrug 700 g/l. Im Test auf Abriebfestigkeit (Kugelmühle) nahm der Anteil unter 0,2 mm nur um 0,8 % zu.
  • Beispiel 3
  • Dieselben Ausgangsmaterialien wie in Beispiel 2 wurden hier mit Hilfe eines Doppelschnecken-Extruders (Typ Labor-Presse D 91 000 000, gegenläufige Förderschnecken, 6 D, Firma Lihotzky, Plattling, DE) durch eine Düsenplatte (Lochdurchmesser 0,8 mm) zu Strängen geformt und mit Hilfe eines umlaufenden Messers auf Längen von 0,8 - 1,2 mm geschnitten. Die Beheizung des Extruders erfolgte mit Warmwasser so, daß die Produktaustrittstemperatur zwischen 53 und 59 °C lag. Das Granulat war praktisch staubfrei (Kornanteil unter 0,2 mm kleiner als 1 %) und sehr abriebfest. Im Test nahm der Staubanteil unterhalb 0,2 mm um nicht mehr als 5% zu.
  • Beispiel 4
  • In derselben Weise wie in Beispiel 1 wurde hier zentrifugenfeuchtes (4 % H₂O) Perborattetrahydrat-Kristallisat mit folgender Siebanalyse verarbeitet:
    Figure imgb0003
  • Die Extrusion erfolgte nach Zusatz von 0,5 Gew.-% Sokalan CP 5 in Form einer 40 %igen wäßrigen wäßrigen Lösung; der Plastizitätsbereich lag bei 50 - 58 °C. Das Produkt wies ein Schüttgewicht von 660 g/l auf und zeigte folgende Siebanalyse:
    Figure imgb0004
  • Im Abriebtest stieg der Anteil unter 0,2 mm um 3,3 %. Demgegenüber nahm bei dem als Ausgangsmaterial eingesetztem Kristallisat im selben Test der Anteil unter 0,2 mm um 9,5 % zu.
  • Beispiel 5 (Vergleich)
  • Das Verfahren nach Beispiel 1 wurde in gleicher Weise, jedoch ohne Zusatz des Polymersalzes, durchgeführt. Der für die Verstrangung geeignete Temperaturbereich lag dabei zwischen 57 und 59 °C und konnte nur über mehr oder weniger kurze Zeiten exakt eingehalten werden. Das Produkt, das bei vorgesehener Temperatur extrudiert wurde, wies im Gegensatz zum Produkt des Beispiels 1 deutlich höhere Anteil mit Korngrößen über 1,6 mm auf. Dies ist ein Hinweis darauf, daß selbst bei Einhaltung des Temperaturintervalls örtliche oder zeitliche Überhitzungen, die zu einem Verbacken der Stränge führten, nicht ganz zu vermeiden waren:
  • Siebanalyse:
  • Figure imgb0005
    Figure imgb0006
  • Schüttgewicht 660 g/l
  • Beispiel 6
  • Perborattetrahydrat-Feinstaub (mit 1,5 % Feuchtigkeit) wurde in einem Lödige-Mischer mit 4 Gew.-% einer Lösung vermischt, die 25 Gew.-% des Natriumsalzes eines Maleinsäure-Olefin-Copolymerisats (Sokalan(R)CP 9, Molekulargewicht 12000, Firma BASF, DE) enthielt. Das Gemisch wurde im Buss-Kneter (wie in Beispiel 1) bei 52 °C mit einem Durchsatz von 15 kg/h extrudiert. Der Plastizitätsbereich lag hier bei 51 - 58 °C. Das fertige Produkt wies eine Schüttdichte von 610 g/l auf und hatte folgende Korngrößenverteilung:
    Figure imgb0007
  • Im Abriebtest nahm der Anteil unter 0,2 mm nur um 5,5 % zu.
  • Beispiel 7
  • Von dem in Beispiel 1 hergestellten Tetrahydrat-Granulat wurden 2 kg in einem Labor-Wirbelschichttrockner vom Typ STREA-1 (Firma Aeromatik, Bubendorf, CH) mit Warmluft getrocknet. Die Trockenbedingungen waren: Lufteintrittstemperatur 120 °C, Luftstrom 55 m³/h, Luftaustrittstemperatur am Ende der Trocknung 62 °C, Trocknungszeit 45 Minuten. Es resultierte ein Perboratmonohydrat mit einem Aktivsauerstoffgehalt von 15,7 Gew.-%, einem Schüttgewicht von 542 g/l und folgender Siebanalyse:
    Figure imgb0008
  • Im Abriebtest (wie in Beispiel 1) nahm die Fraktion unter 0,2 mm nur um 5,4 % zu.
  • Beispiel 8
  • In einem kontinuierlich betriebenen Wirbelschichttrockner mit 0,4 m² Trocknungsfläche (Firma Allgaier, Uhingen, DE) wurde Tetrahydrat-Granulat aus Beispiel 1 in einer Menge von 80 kg/h getrocknet. Dabei wurden 49,5 kg/h an Monohydrat (15,3 % AO) und als Filterrückstand aus der Abluft 4,1 kg/h an Staub (12,6 % AO) erhalten. Die Trocknungsbedinaungen waren: Lufteintrittstemperatur 120 °C, Luftmenge 1420 m³/h, Produkttemperatur 68 °C. Das austretende Monohydrat wurde in einer nachgeschalteten Kühlzone mit Luft auf 25 °C abgekühlt und dann gelagert.
  • Das Produkt hatte ein Schüttgewicht von 535 g/l und wies folgende Siebanalyse auf:
    Figure imgb0009
    Figure imgb0010
  • Im Abriebtest nahm die Fraktion unter 0,2 mm nur um 10,8 % zu. Im vorliegenden Versuch lag die Trocknerleistung bei 125 kg/h.m² und damit etwa dreimal höher als wenn im gleichen Trockner gemäß DE 22 58 319 mit feuchter Luft getrocknet wurde. Trotzdem war das erhaltene Produkt äußerst abriebfest.
  • Beispiel 9 (Vergleich)
  • Unter den in Beispiel 7 beschriebenen Bedingungen wurde ungranuliertes Perborattetrahydratkristallisat (wie in Beispiel 4 verwendet) in der Aeromatic-Wirbelschicht getrocknet. Es resultierte ein Monohydrat mit einem Schüttgewicht von 492 g/l und folgender Siebanlalyse:
    Figure imgb0011
  • Das Material war nicht abriebfest; im Test nahm die Fraktion unter 0,2 mm um 35,3 % zu.
  • Beispiel 10
  • In einen kontinuierlich betriebenen Kokneter (Firma Buss, Pratteln, CH) wurden 650 kg/h an Perborattetrahydrat-Feinstaub, 10 kg/h an pulverförmiger Na-Carboxymethylcellulose (DS 0,8 - 0,95, etwa 65 %ig; Relatin(R) U 300, Firma Henkel, DE,) und 15 kg/h an Wasser eingetragen und bei einer Heiztemperatur von 65 °C vermischt. Das plastifizierte Material wurde über einen Siebkorb (Lochdurchmesser 1 mm) extrudiert und geschnitten. Die Austrittstemperatur des Produktes lag zwischen 55 und 60 °C. Es wurde ein praktisch staubfreies Produkt erhalten, dessen Korngröße zu 98 % zwischen 0,4 und 1,6 mm lag. Im Abriebtest nahm der Kornanteil unter 0,2 mm nur um 5 % zu.
  • Ein Teil des anfallenden Produktes wurde in einem Aeromatic-Wirbelschichttrockner (Laborgerät) bei einer Zulufttemperatur von 120 °C zu Monohydrat mit 15,4 % AO getrocknet. Das Produkt wies in der Siebanalyse folgende Kornverteilung auf:
    Figure imgb0012
  • Im Abriebtest nahm die Fraktion unter 0,2 mm nur um 8 % zu.

Claims (10)

1. Verfahren zur Herstellung eines körnigen Natriumperborattetrahydrates, bei dem pulverförmiges Perborattetrahydrat durch Erwärmen unter Druck erweicht, die plastisch deformierbare Masse durch Pressen in dünne Stränge verformt und diese zerkleinert werden, dadurch gekennzeichnet, daß man dem pulverförmigen Tetrahydrat vor der Verarbeitung 0,3 bis 5 Gewichtsprozent eines Natrium- oder Kaliumsalzes einer polymeren Carbonsäure zumischt, wobei diese Carbonsäure eine Säurezahl zwischen 100 und 1000 sowie ein mittleres Molekulargewicht zwischen 4000 und 300 000 aufweist.
2. Verfahren nach Anspruch 1, bei dem als polymeres Salz Natriumcarboxymethylcellulose mit einem Substitutionsgrad zwischen 0,5 und 1 oder das Natriumsalz eines Copolymerisats von Acrylsäure und/oder Methacrylsäure mit Maleinsäure im Molverhältnis 10 : 1 bis 1 : 10 eingesetzt wird.
3. Verfahren nach einem der Ansprüche 1 oder 2, bei dem 0,5 bis 3 Gew.-%, vorzugsweise 0,8 bis 1,5 Gew.-% des polymeren Salzes zugesetzt werden.
4. Verfahren nach einem der Ansprüche 1 bis 3, bei dem die polymeren Salze in Form einer wäßrigen Zubereitung zugesetzt werden, die wenigstens 20 Gew.-%, vorzugsweise enigstens 40 Gew.-% an Salz enthält.
5. Verfahren nach einem der Ansprüche 1 bis 4, das in einem Extruder mit Siebplatte oder in einem Kneter mit Siebkorbgranuliervorrichtung durchgeführt wird.
6. Verfahren nach einem der Ansprüche 1 bis 5, bei dem das polymere Salz unmittelbar vor dem Verarbeiten in der Strangpreßvorrichtung zugemischt wird.
7. Perborattetrahydrat, erhältlich nach einem der Ansprüche 1 bis 6.
8. Verfahren zur Herstellung von Perboratmonohydrat durch Entwässerung von Perborattetrahydrat, dadurch gekennzeichnet, daß von einem Perborattetrahydrat gemäß Anspruch 7 ausgegangen wird.
9. Verfahren nach Anspruch 8, bei dem die Entwässerung in einem Wirbelschichttrockner oder einem Vibrationstrockner mit Hilfe von Warmluft vorgenommen wird.
10. Perboratmonohydrat, erhältlich nach einem Verfahren gemäß einen der Ansprüche 8 oder 9.
EP89115952A 1988-09-08 1989-08-30 Verfahren zur Herstellung von Perborat Expired - Lifetime EP0358094B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT89115952T ATE73527T1 (de) 1988-09-08 1989-08-30 Verfahren zur herstellung von perborat.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3830545A DE3830545A1 (de) 1988-09-08 1988-09-08 Verfahren zur herstellung von perborat
DE3830545 1988-09-08

Publications (2)

Publication Number Publication Date
EP0358094A1 EP0358094A1 (de) 1990-03-14
EP0358094B1 true EP0358094B1 (de) 1992-03-11

Family

ID=6362542

Family Applications (2)

Application Number Title Priority Date Filing Date
EP89115952A Expired - Lifetime EP0358094B1 (de) 1988-09-08 1989-08-30 Verfahren zur Herstellung von Perborat
EP89909746A Pending EP0433320A1 (de) 1988-09-08 1989-08-30 Verfahren zur herstellung von perborat

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP89909746A Pending EP0433320A1 (de) 1988-09-08 1989-08-30 Verfahren zur herstellung von perborat

Country Status (7)

Country Link
US (1) US5283024A (de)
EP (2) EP0358094B1 (de)
JP (1) JPH04505911A (de)
AT (1) ATE73527T1 (de)
DE (2) DE3830545A1 (de)
ES (1) ES2033060T3 (de)
WO (1) WO1990002703A1 (de)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE550367A (de) * 1955-11-04
BE561362A (de) * 1956-11-09
DE1240508B (de) * 1963-04-01 1967-05-18 Degussa Verfahren zur Granulierung von Perborat
DE1930286B2 (de) * 1968-07-17 1979-09-06 Solvay & Cie., Bruessel Verfahren zur Herstellung von Natriumperborat-monohydrat
DE2040507A1 (de) * 1970-08-14 1972-02-17 Degussa Verfahren zur Herstellung von Perboratmonohydrat
DE2258319C3 (de) * 1972-11-29 1978-04-13 Peroxid-Chemie Gmbh, 8023 Hoellriegelskreuth Verfahren zur Herstellung von abriebfestem Natriumperboratmonohydrat
US3857524A (en) * 1973-10-05 1974-12-31 Beloit Corp Surface enveloper transfer winder
US4405486A (en) * 1981-08-31 1983-09-20 Warner-Lambert Company Method for preparing granulated perborate salts containing a polymeric fluorocarbon
FR2560590B1 (fr) * 1984-03-01 1986-08-29 Atochem Procede de fabrication de perborate de sodium monohydrate a partir de perborate de sodium tetrahydrate
FR2577916B1 (fr) * 1985-02-26 1987-04-17 Atochem Procede de fabrication en continu de perborate de sodium monohydrate a partir de perborate de sodium tetrahydrate

Also Published As

Publication number Publication date
JPH04505911A (ja) 1992-10-15
US5283024A (en) 1994-02-01
ATE73527T1 (de) 1992-03-15
DE58900949D1 (de) 1992-04-16
EP0433320A1 (de) 1991-06-26
WO1990002703A1 (de) 1990-03-22
EP0358094A1 (de) 1990-03-14
DE3830545A1 (de) 1990-03-15
ES2033060T3 (es) 1993-03-01

Similar Documents

Publication Publication Date Title
DE69404543T2 (de) Stabilisiertes Natriumpercarbonatteilchen
DE68921858T2 (de) Verfahren zur Herstellung von Bleichmittelgranulaten.
CA1110384A (en) Plastics based composition
DE69019574T2 (de) Detergens-Zusammensetzungen und Verfahren zu ihrer Herstellung.
EP0523099B1 (de) Verfahren zur herstellung von wasch- und reinigungsmitteln
DE2730481A1 (de) Verfahren zur herstellung eines enzymgranulats, das dabei erhaltene produkt und seine verwendung
WO1998031710A1 (de) Verfahren zur herstellung von feinteiligen polysaccharidderivaten
DE69207727T2 (de) Verfahren zur Herstellung von Salzgranulaten
WO1992002608A1 (de) Bleichaktivatoren in granulatform
DE69032929T2 (de) Polymer enthaltende Granulate
DE4331747A1 (de) Extrudiertes, faserverstärktes Naturstoff-Granulat zur thermoplastischen Weiterverarbeitung, sowie Verfahren zu seiner Herstellung
EP1015550A1 (de) Verfahren zur herstellung teilchenförmiger wasch- oder reinigungsmittel
WO1990001535A1 (de) Granulares, bleichaktivatoren enthaltendes bleichhilfsmittel
DE60001203T2 (de) Herstellung von Natriumborohydrid aus Natriumborohydriddihydrat in einem Wirbelbetttrockner
DE3045019C2 (de) Verfahren zum Modifizieren eines Acrylamidpolymeren
EP0358094B1 (de) Verfahren zur Herstellung von Perborat
DE3510615C2 (de)
DE3926253A1 (de) Verdichtete wasch- und reinigungsmittel in granulatform, verfahren zu ihrer herstellung und anwendung des verfahrens zur gewinnung lagerstabil rieselfaehiger waschmittel-konzentrate
DE3617756A1 (de) Verfahren zum herstellen einer granularen detergentien-zusammensetzung mit hoher schuettdichte
DE69324510T2 (de) Granuläres Vinylchloridharz
WO1999013046A1 (de) Verfahren zur herstellung teilchenförmiger wasch- oder reinigungsmittel
EP0573797B1 (de) Verfahren zur Erhöhung des Schüttgewichts von Natriumperborat-monohydrat
DE1916089A1 (de) Nichtzusammenballende Harnstoff-Zusammensetzung
JPH0244462B2 (de)
DE1404986A1 (de) Alkaliloesliche Hydroxyaethylcellulose in gekoernter Form

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): ES

17P Request for examination filed

Effective date: 19900823

RHK1 Main classification (correction)

Ipc: F16C 3/00

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DEGUSSA AKTIENGESELLSCHAFT

17Q First examination report despatched

Effective date: 19910730

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL SE

XX Miscellaneous (additional remarks)

Free format text: VERBUNDEN MIT 89909746.3/0433320 (EUROPAEISCHE ANMELDENUMMER/VEROEFFENTLICHUNGSNUMMER) DURCH ENTSCHEIDUNG VOM 16.10.91.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 73527

Country of ref document: AT

Date of ref document: 19920315

Kind code of ref document: T

XX Miscellaneous (additional remarks)

Free format text: VERBUNDEN MIT 89909746.3/0433320 (EUROPAEISCHE ANMELDENUMMER/VEROEFFENTLICHUNGSNUMMER) DURCH ENTSCHEIDUNG VOM 16.10.91.

ITF It: translation for a ep patent filed
ET Fr: translation filed
REF Corresponds to:

Ref document number: 58900949

Country of ref document: DE

Date of ref document: 19920416

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2033060

Country of ref document: ES

Kind code of ref document: T3

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19930709

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19930713

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19930728

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19930730

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19930809

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930820

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19930831

Year of fee payment: 5

Ref country code: FR

Payment date: 19930831

Year of fee payment: 5

Ref country code: CH

Payment date: 19930831

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19931029

Year of fee payment: 5

EPTA Lu: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19940830

Ref country code: GB

Effective date: 19940830

Ref country code: AT

Effective date: 19940830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19940831

Ref country code: LI

Effective date: 19940831

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 19940831

Ref country code: CH

Effective date: 19940831

Ref country code: BE

Effective date: 19940831

EAL Se: european patent in force in sweden

Ref document number: 89115952.7

BERE Be: lapsed

Owner name: DEGUSSA A.G.

Effective date: 19940831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19950301

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950428

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950503

EUG Se: european patent has lapsed

Ref document number: 89115952.7

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19990601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050830