EP0350111A1 - Sheet-type dynode, electron multiplier and photomultiplier having such dynodes - Google Patents

Sheet-type dynode, electron multiplier and photomultiplier having such dynodes Download PDF

Info

Publication number
EP0350111A1
EP0350111A1 EP89201727A EP89201727A EP0350111A1 EP 0350111 A1 EP0350111 A1 EP 0350111A1 EP 89201727 A EP89201727 A EP 89201727A EP 89201727 A EP89201727 A EP 89201727A EP 0350111 A1 EP0350111 A1 EP 0350111A1
Authority
EP
European Patent Office
Prior art keywords
dynode
dynodes
emitting
multiplier
holes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP89201727A
Other languages
German (de)
French (fr)
Other versions
EP0350111B1 (en
Inventor
Pierre L'hermite
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Photonis SAS
Koninklijke Philips NV
Original Assignee
Radiotechnique Compelec RTC SA
Photonis SAS
Philips Gloeilampenfabrieken NV
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Radiotechnique Compelec RTC SA, Photonis SAS, Philips Gloeilampenfabrieken NV, Koninklijke Philips Electronics NV filed Critical Radiotechnique Compelec RTC SA
Publication of EP0350111A1 publication Critical patent/EP0350111A1/en
Application granted granted Critical
Publication of EP0350111B1 publication Critical patent/EP0350111B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J43/00Secondary-emission tubes; Electron-multiplier tubes
    • H01J43/04Electron multipliers
    • H01J43/06Electrode arrangements
    • H01J43/18Electrode arrangements using essentially more than one dynode
    • H01J43/22Dynodes consisting of electron-permeable material, e.g. foil, grid, tube, venetian blind

Definitions

  • the present invention relates to an electron multiplier dynode of the "leaf" type, that is to say essentially consisting of two half-dynodes in the form of sheets pierced with holes arranged in a network of a given pattern. It also relates to an electron multiplier and a photomultiplier tube comprising such multiplier dynodes.
  • the invention finds a particularly advantageous application in the field of photomultiplier tubes.
  • the holes of the emitting half-dynode are given a largely flared shape so that the walls of the holes, covered with a secondary emission material, constitute the useful zones of electronic multiplication.
  • the advantages that a "leaf" multiplier brings to photomultiplier tubes are numerous. They offer in fact under a reduced bulk, a large collection surface, which makes them particularly advantageous when the incident electrons are in the form of a wide beam, as is the case with proximity focusing or in association with a first large focused dynode.
  • the possibility of partitioning the multiplier makes it possible to produce, in the same tube, a certain number of secondary photomultiplier tubes, with the advantages that this provides in nuclear physics, for example, as regards the precise localization of the particles detected.
  • the electron multiplier dynodes known from the prior art have the drawback that the flared holes necessary for the multiplication of electrons are relatively expensive to produce since they require chemical attack and the use of masks.
  • the outlet opening of the holes is relatively small, which makes it more difficult to correctly position the metal sheets relative to one another within a same electron multiplier.
  • the technical problem to be solved by the object of the present invention is to produce an electron multiplier dynode, comprising a first half-dynode, called the extracting half-dynode, and a second half-dynode, called the transmitting half-dynode.
  • the half-dynodes being parallel, brought to the same electrical potential, and having the form of sheets pierced with holes arranged in a network of the same basic pattern, the second half-dynode having an electronic multiplication surface on which produces electron multiplication, a multiplying dynode which would be inexpensive to manufacture, and whose assembly would be facilitated by less severe tolerancing without harming collection efficiency.
  • the solution to the technical problem posed consists, according to the present invention, in that, said holes are holes with a straight edge, and in that the two half-dynodes are offset from each other so that each hole of one of the half-dynodes is located opposite the center of a basic pattern of the other half-dynode.
  • the holes being on a straight edge, since they are intended only for the passage of electrons, their production is much easier and less costly, and can be carried out using conventional mechanical means.
  • the surface of electronic multiplication being appreciably larger than in the case of the dynodes of the state of the art, one can envisage increasing the diameter of the holes without much affecting the power of collection of the emitting half-dynodes , which has the effect of making the assembly of dynodes in an electron multiplier less critical.
  • an electron multiplier comprising, in order, a first emitting half-dynode and a plurality of electron multiplying dynodes, according to the invention, is remarkable in that each extracting half-dynode is located in position of coincidence with the preceding transmitting half-dynode, and in that the first transmitting half-dynode and the successive multiplying dynodes are brought to increasing electric potentials.
  • the extracting half-dynodes can play their role of extraction of the secondary electrons produced by the preceding half-emitting dynodes, without creating an obstacle to the passage of these electrons towards the following half-emitting dynodes, insofar as the holes of the extracting half-dynodes coincide with the holes of the preceding emitting half-dynodes.
  • a photomultiplier tube comprising a photocathode, a first dynode, an electron multiplier according to the invention, coupled to the first dynode, and an anode, is remarkable in that, between said first dynode and the multiplier, is interposed a input gate, parallel to the first emitting half-dynode, and whose electrical potential is equal to the electrical potential of said first emitting half-dynode.
  • the grid input serves as a shielding electrode essential to the first emitting half-dynode so that the electrons which come from it can be extracted by the extracting half-dynode of the following dynode.
  • FIG. 1 shows, in section, an electron multiplier dynode D, consisting of two half-dynodes d, d ′ parallel and brought to the same electrical potential V.
  • These half-dynodes are in the form of metal sheets 10, 20, made for example from mild steel, and pierced with holes 11, 21 arranged in a regular repeating network of the same basic pattern 12, 22.
  • the basic patterns 12, 22 are both constituted by an equilateral triangle, but they could just as easily be constituted by a square, a rectangle, etc.
  • the holes 11, 21 are holes with a straight edge, very simple to make.
  • said holes 11, 21 can have a diameter of 0.5 mm, while the distance between two consecutive holes is of the order of 1 mm.
  • the second half-dynode d ′ called the half-emitting dynode is covered with a material 25 with secondary emission, such as antimony or beryllium oxide, the multiplication of incident electrons 30 occurring on the surface 23 of said corresponding metal sheet 20, the second dynode d ′ can also be made of a material giving rise to secondary emission such as a copper-beryllium alloy having undergone the conventional treatment: heating-migration of beryllium and oxidation.
  • the electron multiplier 50 shown in FIG. 3 comprises, in order, a first emitting half-dynode d′2 and a plurality of dynodes D3 ..., D i , D i + 1 , ..., D n electron multipliers, of the type described above with reference to FIGS. 1 and 2. As shown in FIG. 3, each extracting half-dynode d i + 1 is located in the position of coincidence with the emitting half-dynode d ′ I previous.
  • the first emitting half-dynode dode and the d3 dynodes, ... , D i , D i + 1 , ..., D n successive multipliers are brought to electric potentials V2, V3, ..., V i , V i + 1 , ..., V n increasing.
  • the extracting half-dynode d i + 1 therefore has the function of attracting towards the half-emitting dynode of ′ i + 1 the electrons coming from the half-emitting dynode of ′ i , but it also serves to shield electrically the half-dynode emitting i + 1 of the preceding dynodes.
  • the distance between an extracting half-dynode and the emitting half-dynode of the same dynode is relatively large, for example from 0.5 to 0.8 mm.
  • the distance between a transmitting half-dynode and the following extracting half-dynode can be smaller, of the order of a few tenths of a mm, typically 0.3 mm.
  • FIG. 4 shows, in section, a photomultiplier tube 60 comprising a photocathode 61, a first large cylindrical d1 D1, a multiplier 50 conforming to that of FIG. 3, and an anode A.
  • the multiplier 50 of electrons is coupled to the first dynode Dode using the coupling means described in the French patent application, unpublished, No. 88 07 778, but, of course, other coupling means known to the skilled in the art can be used.
  • an input gate G is interposed between the first dynode D1 and the multiplier 50, an input gate G, parallel to the first half-dynode emitting d′2, and whose electrical potential is equal to the potential electric V2 of said first emitting half-dynode 2.
  • Said input gate G therefore constitutes, with the first emitting half-dynode, a second dynode D2 equivalent to higher order dynode waters D3, ..., D n .
  • the essential role of the input gate G is to ensure, with good transparency, a shielding for the first half-dynode emitting 2.
  • the electrical potential V1 of the first dynode D1 is less than the electrical potential V2 of the equivalent dynode D2.

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Electron Tubes For Measurement (AREA)
  • Common Detailed Techniques For Electron Tubes Or Discharge Tubes (AREA)
  • Measurement Of Radiation (AREA)
  • Image-Pickup Tubes, Image-Amplification Tubes, And Storage Tubes (AREA)

Abstract

Dynode (D) multiplicatrice d'électrons, constituée de deux demi-dynodes (d,d') parallèles, portées à un même potentiel électrique (V), et ayant la forme de feuilles métalliques (10,20) percées de trous (11,21). Selon l'invention, la deuxième demi-dynode (d'), dite demi-dynode émettrice, est recouverte d'un matériau (25) à émission secondaire, la multiplication des électrons incidents (30) se produisant sur la surface (23) de ladite feuille métallique (20) correspondante, et en ce que ladite demi-dynode émettrice (d') et la première demi-dynode (d), dite demi-dynode extractrice, sont décalées entre elles. Application aux tubes photomultiplicateurs.Electron multiplier dynode (D), consisting of two parallel half-dynodes (d, d '), brought to the same electrical potential (V), and having the form of metal sheets (10,20) pierced with holes (11 , 21). According to the invention, the second half-dynode (d '), called the half-emitting dynode, is covered with a material (25) with secondary emission, the multiplication of the incident electrons (30) occurring on the surface (23) of said corresponding metal sheet (20), and in that said emitting half-dynode (d ') and the first half-dynode (d), called the extracting half-dynode, are offset between them. Application to photomultiplier tubes.

Description

La présente invention concerne une dynode multipli­catrice d'électrons du type "à feuilles", c'est à dire essen­tiellement constituée de deux demi-dynodes ayant la forme de feuilles percées de trous disposés en un réseau d'un motif donné. Elle concerne également un multiplicateur d'électrons et un tube photomultiplicateur comportant de telles dynodes multiplicatrices.The present invention relates to an electron multiplier dynode of the "leaf" type, that is to say essentially consisting of two half-dynodes in the form of sheets pierced with holes arranged in a network of a given pattern. It also relates to an electron multiplier and a photomultiplier tube comprising such multiplier dynodes.

L'invention trouve une application particulièrement avantageuse dans le domaine des tubes photomultiplicateurs.The invention finds a particularly advantageous application in the field of photomultiplier tubes.

L'utilisation, dans les tubes photomultiplicateurs, de dynodes et de multiplicateurs dits "à feuilles" est connue, par exemple, du brevet français n° 2 549 288. Ce brevet dé­crit, en effet, une dynode multiplicatrice d'électrons, cons­tituée de deux demi-dynodes parallèles, portées à un même po­tentiel électrique, et réalisées à l'aide de feuilles métalli­ques percées de trous régulièrement disposés selon un réseau répétitif d'un même motif de base. Dans un multiplicateur com­portant plusieurs de ces dynodes, la première demi-dynode joue le rôle d'électrode extractrice des électrons issus de la dy­node précédente, tandis que la deuxième demi-dynode est l'électrode émettrice d'électrons. A cet effet, il est donné aux trous de la demi-dynode émettrice une forme largement éva­sée de façon que les parois des trous, recouvertes d'un maté­riau à émission secondaire, constituent les zones utiles de multiplication électronique. Les électrons secondaires ainsi créés, attirés par l'électrode extractrice suivante, franchis­sent la demi-dynode émettrice à travers le trou qui leur a donné naissance. Les avantages qu'un multiplicateur "a feuil­les" apporte aux tubes photomultiplicateurs sont nombreux. Ils offrent en effet sous un encombrement réduit, une grande surface de collection, ce qui les rend particulièrement avan­tageux lorsque les électrons incidents se présentent sous la forme d'un faisceau large, comme c'est le cas en focalisation de proximité ou en association avec une première dynode foca­lisée de grande dimension. D'autre part, la possibilité de cloisonner le multiplicateur permet de réaliser, dans un même tube, un certain nombre de tubes photomultiplicateurs secon­daires, avec les avantages que cela procure en physique nuclé­aire, par exemple, quant à la localisation précise des parti­cules détectées.The use, in photomultiplier tubes, of dynodes and so-called "leaf" multipliers is known, for example, from French patent No. 2,549,288. This patent describes, in fact, an electron multiplier dynode, consisting of two parallel half-dynodes, brought to the same electrical potential, and produced using metal sheets pierced with holes regularly arranged in a repeating network of the same basic pattern. In a multiplier comprising several of these dynodes, the first half-dynode acts as an electrode for extracting the electrons from the previous dynode, while the second half-dynode is the electron-emitting electrode. For this purpose, the holes of the emitting half-dynode are given a largely flared shape so that the walls of the holes, covered with a secondary emission material, constitute the useful zones of electronic multiplication. The secondary electrons thus created, attracted by the following extracting electrode, cross the emitting half-dynode through the hole which gave birth to them. The advantages that a "leaf" multiplier brings to photomultiplier tubes are numerous. They offer in fact under a reduced bulk, a large collection surface, which makes them particularly advantageous when the incident electrons are in the form of a wide beam, as is the case with proximity focusing or in association with a first large focused dynode. On the other hand, the possibility of partitioning the multiplier makes it possible to produce, in the same tube, a certain number of secondary photomultiplier tubes, with the advantages that this provides in nuclear physics, for example, as regards the precise localization of the particles detected.

Toutefois, les dynodes multiplicatrices d'électrons connues de l'état de la technique présentent l'inconvénient que les trous évasés nécessaires à la multiplication des élec­trons sont relativement coûteux à réaliser puisqu'ils exigent attaque chimique et utilisation de masques. De plus, il faut signaler que, dans le but d'augmenter la surface multiplica­trice, l'ouverture de sortie des trous est relativement petite ce qui rend plus délicat le positionnement correct des feuil­les métalliques les unes par rapport aux autres au sein d'un même multiplicateur d'électrons.However, the electron multiplier dynodes known from the prior art have the drawback that the flared holes necessary for the multiplication of electrons are relatively expensive to produce since they require chemical attack and the use of masks. In addition, it should be noted that, in order to increase the multiplying surface, the outlet opening of the holes is relatively small, which makes it more difficult to correctly position the metal sheets relative to one another within a same electron multiplier.

Aussi, le problème technique à résoudre par l'objet de la présente invention est de réaliser une dynode multipli­catrice d'électrons, comportant une première demi-dynode, dite demi-dynode extractrice, et une deuxième demi-dynode, dite de­mi-dynode émettrice, les demi-dynodes étant parallèles, por­tées à un même potentiel électrique, et ayant la forme de feuilles percées de trous disposés en un réseau d'un même mo­tif de base, la deuxième demi-dynode ayant une surface de mul­tiplication électronique sur laquelle se produit la multipli­cation d'électrons, dynode multiplicatrice qui serait bon mar­ché à fabriquer, et dont le montage serait facilité par un to­lérancement moins sévère sans nuire pour autant à l'efficacité de collection.Also, the technical problem to be solved by the object of the present invention is to produce an electron multiplier dynode, comprising a first half-dynode, called the extracting half-dynode, and a second half-dynode, called the transmitting half-dynode. , the half-dynodes being parallel, brought to the same electrical potential, and having the form of sheets pierced with holes arranged in a network of the same basic pattern, the second half-dynode having an electronic multiplication surface on which produces electron multiplication, a multiplying dynode which would be inexpensive to manufacture, and whose assembly would be facilitated by less severe tolerancing without harming collection efficiency.

La solution au problème technique posé consiste, selon la présente invention, en ce que, lesdits trous sont des trous à bord droit, et en ce que les deux demi-dynodes sont décalées entre elles de sorte que chaque trou de l'une des demi-dynodes se trouve en regard du centre d'un motif de base de l'autre demi-dynode.The solution to the technical problem posed consists, according to the present invention, in that, said holes are holes with a straight edge, and in that the two half-dynodes are offset from each other so that each hole of one of the half-dynodes is located opposite the center of a basic pattern of the other half-dynode.

Ainsi, les trous étant à bord droit, car destinés uniquement au passage des électrons, leur réalisation est beaucoup plus facile et moins coûteuse, et peut être conduite à l'aide de moyens mécaniques conventionnels. D'autre part, la surface de multiplication électronique étant sensiblement plus grande que dans le cas des dynodes de l'état de la technique, on peut envisager d'augmenter le diamètre des trous sans beaucoup affecter le pouvoir de collection des demi-dynodes émettrices, ce qui a pour effet de rendre moins critique l'assemblage des dynodes dans un multiplicateur d'électrons. En ce sens, un multiplicateur d'électrons comportant, dans l'ordre, une première demi-dynode émettrice et une pluralité de dynodes multiplicatrices d'électrons, selon l'invention, est remarquable en ce que chaque demi-dynode extractrice est située en position de coïncidence avec la demi-dynode émettrice précédente, et en ce que la première demi-dynode émettrice et les dynodes multiplicatrices successives sont portées à des potentiels électriques croissants. En conséquence, les demi-dynodes extractrices peuvent jouer leur rôle d'extraction des électrons secondaires produits par les demi-dynodes émettrices précédentes, sans créer d'obstacle au passage de ces électrons vers les demi-dynodes émettrices suivantes, dans la mesure où les trous des demi-dynodes extractrices coïncident avec les trous des demi-dynodes émettrices précédentes.Thus, the holes being on a straight edge, since they are intended only for the passage of electrons, their production is much easier and less costly, and can be carried out using conventional mechanical means. On the other hand, the surface of electronic multiplication being appreciably larger than in the case of the dynodes of the state of the art, one can envisage increasing the diameter of the holes without much affecting the power of collection of the emitting half-dynodes , which has the effect of making the assembly of dynodes in an electron multiplier less critical. In this sense, an electron multiplier comprising, in order, a first emitting half-dynode and a plurality of electron multiplying dynodes, according to the invention, is remarkable in that each extracting half-dynode is located in position of coincidence with the preceding transmitting half-dynode, and in that the first transmitting half-dynode and the successive multiplying dynodes are brought to increasing electric potentials. Consequently, the extracting half-dynodes can play their role of extraction of the secondary electrons produced by the preceding half-emitting dynodes, without creating an obstacle to the passage of these electrons towards the following half-emitting dynodes, insofar as the holes of the extracting half-dynodes coincide with the holes of the preceding emitting half-dynodes.

Enfin, un tube photomultiplicateur comportant une photocathode, une première dynode, un multiplicateur d'élec­trons selon l'invention, couplé à la première dynode, et une anode, est remarquable en ce que, entre ladite première dynode et le multiplicateur, est intercalée une grille d'entrée, pa­rallèle à la première demi-dynode émettrice, et dont le poten­tiel électrique est égal au potentiel électrique de ladite première demi-dynode émettrice.Finally, a photomultiplier tube comprising a photocathode, a first dynode, an electron multiplier according to the invention, coupled to the first dynode, and an anode, is remarkable in that, between said first dynode and the multiplier, is interposed a input gate, parallel to the first emitting half-dynode, and whose electrical potential is equal to the electrical potential of said first emitting half-dynode.

Comme on le verra plus loin en détail, la grille d'entrée sert d'électrode de blindage indispensable à la pre­mière demi-dynode émettrice pour que les électrons qui y sont issus puissent être extraits par la demi-dynode extractrice de la dynode suivante.As will be seen below in detail, the grid input serves as a shielding electrode essential to the first emitting half-dynode so that the electrons which come from it can be extracted by the extracting half-dynode of the following dynode.

La description qui va suivre en regard des dessins annexés, donnés à titre d'exemples non limitatifs, fera bien comprendre en quoi consiste l'invention et comment elle peut être réalisée.

  • La figure 1 est une vue en coupe d'une dynode mul­tiplicatrice d'électrons selon l'invention.
  • La figure 2 est une vue de dessus de la dynode de la figure 1.
  • La figure 3 est une vue en coupe d'un multiplica­teur d'électrons selon l'invention.
  • La figure 4 est une vue en coupe d'un tube photo­multiplicateur selon l'invention.
The description which follows with reference to the appended drawings, given by way of nonlimiting examples, will make it clear what the invention consists of and how it can be implemented.
  • Figure 1 is a sectional view of an electron multiplier dynode according to the invention.
  • Figure 2 is a top view of the dynode of Figure 1.
  • Figure 3 is a sectional view of an electron multiplier according to the invention.
  • Figure 4 is a sectional view of a photomultiplier tube according to the invention.

La figure 1 montre, en coupe, une dynode D multi­plicatrice d'électrons, constituée de deux demi-dynodes d, d′ parallèles et portées à un même potentiel électrique V. Ces demi-dynodes se présentent sous la forme de feuilles métalli­ques 10, 20, réalisées par exemple en acier doux, et percées de trous 11, 21 disposés en un réseau régulier répétitif d'un même motif 12, 22 de base. Dans le mode d'exécution montré à la figure 2, les motifs de base 12, 22 sont tous deux consti­tués par un triangle équilatéral, mais ils pourraient tout aussi bien être constitués par un carré, un rectangle, etc... Comme on peut le voir sur les figures 1 et 2, les trous 11, 21 sont des trous à bord droit, de réalisation très simple. Typi­quement, lesdits trous 11, 21 peuvent avoir un diamètre de 0,5 mm, tandis que la distance entre deux trous consécutifs est de l'ordre de 1 mm. D'autre part, la deuxième demi-dynode d′, di­te demi-dynode émettrice est recouverte d'un matériau 25 à émission secondaire, comme de l'antimoine ou de l'oxyde de bé­ryllium, la multiplication des électrons incidents 30 se pro­duisant sur la surface 23 de ladite feuille métallique 20 cor­respondante, la deuxième dynode d′ peut également être réali­sée dans un matériau donnant lieu à émission secondaire comme un alliage de cuivre-béryllium ayant subi le traitement classique : chauffage-migration du béryllium et oxydation. Enfin, les figures 1 et 2 montrent que la demi-dynode émettrice d′ et la première demi-dynode d, dite demi-dynode extractrice, sont décalées entre elles de sorte que chaque trou 11, 21 de l'une d, d′ des demi-dynodes se trouve en regard du centre 24, 14 d'un motif 22, 12 de base de l'autre d′, d demi-dynode. De cette manière, les électrons 30 qui traversent la demi-dynode extractrice d par un trou 11 rencontrent nécessairement la demi-dynode émettrice 20 en un endroit doué d'émission secondaire.FIG. 1 shows, in section, an electron multiplier dynode D, consisting of two half-dynodes d, d ′ parallel and brought to the same electrical potential V. These half-dynodes are in the form of metal sheets 10, 20, made for example from mild steel, and pierced with holes 11, 21 arranged in a regular repeating network of the same basic pattern 12, 22. In the embodiment shown in FIG. 2, the basic patterns 12, 22 are both constituted by an equilateral triangle, but they could just as easily be constituted by a square, a rectangle, etc. As can be see in Figures 1 and 2, the holes 11, 21 are holes with a straight edge, very simple to make. Typically, said holes 11, 21 can have a diameter of 0.5 mm, while the distance between two consecutive holes is of the order of 1 mm. On the other hand, the second half-dynode d ′, called the half-emitting dynode is covered with a material 25 with secondary emission, such as antimony or beryllium oxide, the multiplication of incident electrons 30 occurring on the surface 23 of said corresponding metal sheet 20, the second dynode d ′ can also be made of a material giving rise to secondary emission such as a copper-beryllium alloy having undergone the conventional treatment: heating-migration of beryllium and oxidation. Finally, FIGS. 1 and 2 show that the emitting half-dynode d ′ and the first half-dynode d, known as the extracting half-dynode, are offset between them so that each hole 11, 21 of one d, d ′ half dynodes is located opposite the center 24, 14 of a basic pattern 22, 12 of the other d ′, d half dynode. In this way, the electrons 30 which pass through the extractor half-dynode d through a hole 11 necessarily meet the emitting half-dynode 20 at a location endowed with secondary emission.

Le multiplicateur 50 d'électrons représenté à la figure 3 comporte, dans l'ordre, une première demi-dynode émettrice d′₂ et une pluralité de dynodes D₃...,Di, Di+1,...,Dn multiplicatrices d'électrons, du type de celles décrites précédemment en référence aux figures 1 et 2. Ainsi que le montre la figure 3, chaque demi-dynode extractrice di+1 est située en position de coïncidence avec la demi-dynode émettrice d′i précédente. De plus, de façon à ce que les électrons puissent progresser de la première demi-dynode émettrice d′₂ à la dernière demi-dynode émettrice d′n, la première demi-dynode émettrice d′₂ et les dynodes D₃,...,Di, Di+1,...,Dn multiplicatrices successives sont portées à des potentiels électriques V₂,­V₃,...,Vi,Vi+1,...,Vn croissants. La demi-dynode ex­tractrice di+1, par exemple, a donc pour fonction d'attirer vers la demi-dynode émettrice d′i+1 les électrons issus de la demi-dynode émettrice d′i, mais elle sert également à blinder électriquement la demi-dynode émettrice d′i+1 des dynodes précédentes. En l'absence de ce blindage, qui créée une zone de faible champ entre les demi-dynodes di+1 et d′i+1, il ne serait pas possible aux électrons émis par la demi-dynode émettrice d′i+1 d'être extraits par la demi-dy­node extractrice di+2 suivante. De façon à ce que l'effet de blindage soit suffisant, il y a intérêt à ce que la distance entre une demi-dynode extractrice et la demi-dynode émettrice d'une même dynode soit relativement grande, par exemple de 0,5 à 0,8 mm. La distance entre une demi-dynode émettrice et la demi-dynode extractrice suivante pouvant être plus petite, de l'ordre de quelques dixièmes de mm, typiquement 0,3 mm.The electron multiplier 50 shown in FIG. 3 comprises, in order, a first emitting half-dynode d′₂ and a plurality of dynodes D₃ ..., D i , D i + 1 , ..., D n electron multipliers, of the type described above with reference to FIGS. 1 and 2. As shown in FIG. 3, each extracting half-dynode d i + 1 is located in the position of coincidence with the emitting half-dynode d ′ I previous. Furthermore, so that the electrons can progress from the first emitting half-dynode d d to the last emitting half-dynode d′n, the first emitting half-dynode dode and the d₃ dynodes, ... , D i , D i + 1 , ..., D n successive multipliers are brought to electric potentials V₂, V₃, ..., V i , V i + 1 , ..., V n increasing. The extracting half-dynode d i + 1 , for example, therefore has the function of attracting towards the half-emitting dynode of ′ i + 1 the electrons coming from the half-emitting dynode of ′ i , but it also serves to shield electrically the half-dynode emitting i + 1 of the preceding dynodes. In the absence of this shielding, which creates a weak field between the half-dynodes d i + 1 and d ′ i + 1 , it would not be possible for the electrons emitted by the half-dynode emitting d ′ i + 1 to be extracted by the following extracting half-dynode d i + 2 . In order for the shielding effect to be sufficient, it is advantageous for the distance between an extracting half-dynode and the emitting half-dynode of the same dynode is relatively large, for example from 0.5 to 0.8 mm. The distance between a transmitting half-dynode and the following extracting half-dynode can be smaller, of the order of a few tenths of a mm, typically 0.3 mm.

La figure 4 montre, en coupe, un tube photomulti­plicateur 60 comportant une photocathode 61, une première dy­node D₁ cylindrique de grande dimension, un multiplicateur 50 conforme à celui de la figure 3, et une anode A. A titre d'exemple, le multiplicateur 50 d'électrons est couplé à la première dynode D₁ à l'aide des moyens de couplage décrits dans la demande de brevet français, non publiée, n°88 07 778, mais, bien sûr, d'autres moyens de couplage connus de l'homme du métier peuvent être utilisés. Comme on peut le voir à la figure 4, est intercalée entre la première dynode D₁ et le multiplicateur 50, une grille G d'entrée, parallèle à la pre­mière demi-dynode émettrice d′₂, et dont le potentiel élec­trique est égal au potentiel électrique V₂ de ladite premiè­re demi-dynode émettrice d′₂. Ladite grille G d'entrée cons­titue donc avec la première demi-dynode émettrice une deuxième dynode D₂ équivalent eaux dynodes d'ordre supérieur D₃,...,Dn. Le rôle essentiel de la grille G d'entrée est d'assurer, avec une bonne transparence, un blindage pour la première demi-dynode émettrice d′₂. De façon usuelle, le po­tentiel électrique V₁ de la première dynode D₁ est infé­rieur au potentiel électrique V₂ de la dynode D₂ équiva­lente.FIG. 4 shows, in section, a photomultiplier tube 60 comprising a photocathode 61, a first large cylindrical d₁ D₁, a multiplier 50 conforming to that of FIG. 3, and an anode A. By way of example, the multiplier 50 of electrons is coupled to the first dynode Dode using the coupling means described in the French patent application, unpublished, No. 88 07 778, but, of course, other coupling means known to the skilled in the art can be used. As can be seen in Figure 4, is interposed between the first dynode D₁ and the multiplier 50, an input gate G, parallel to the first half-dynode emitting d′₂, and whose electrical potential is equal to the potential electric V₂ of said first emitting half-dynode ₂. Said input gate G therefore constitutes, with the first emitting half-dynode, a second dynode D₂ equivalent to higher order dynode waters D₃, ..., D n . The essential role of the input gate G is to ensure, with good transparency, a shielding for the first half-dynode emitting ₂. Usually, the electrical potential V₁ of the first dynode D₁ is less than the electrical potential V₂ of the equivalent dynode D₂.

Claims (3)

1. Dynode (D) multiplicatrice d'électrons, comportant une première demi-dynode (d), dite demi-dynode extractrice, et une deuxième demi-dynode (d′), dite demi-dynode émettrice, les demi-dynodes (d,d′) étant parallèles, portées à un même potentiel électrique (V), et ayant la forme de feuilles (10,20) percées de trous (11,21) disposés en un réseau d'un même motif (12,22) de base, la deuxième demi-dynode (d′) ayant une surface de multiplication électronique sur laquelle se produit la multiplication d'électrons, caractérisée en ce que, lesdits trous (11,21) sont des trous à bord droit, et en ce que les deux demi-dynodes sont décalées entre elles de sorte que chaque trou (11,21) de l'une (d,d′) des demi-dynodes se trouve en regard du centre (24,14) d'un motif (22,12) de base de l'autre (d′,d) demi-dynode.1. Electron multiplier dynode (D), comprising a first half-dynode (d), called the extracting half-dynode, and a second half-dynode (d ′), called the transmitting half-dynode, the half-dynodes (d , d ′) being parallel, brought to the same electrical potential (V), and having the form of sheets (10,20) pierced with holes (11,21) arranged in a network of the same pattern (12,22) base, the second half-dynode (d ′) having an electronic multiplication surface on which the multiplication of electrons occurs, characterized in that, said holes (11,21) are holes with a straight edge, and in that that the two half-dynodes are offset from each other so that each hole (11,21) of one (d, d ′) of the half-dynodes is opposite the center (24,14) of a pattern ( 22,12) base of the other (d ′, d) half-dynode. 2. Multiplicateur (50) d'électrons comportant, dans l'ordre, une première demi-dynode émettrice (d′₂) et une pluralité de dynodes (D₃,...,Di,Di+1,...,Dn) multipli­catrices d'électrons, selon la revendication 1, caractérisé en ce que chaque demi-dynode extractrice (di+1) est située en position de coïncidence avec la demi-dynode émettrice (d′i) précédente, et en ce que la première demi-dynode émettrice (d′₂) et les dynodes (D₃,...,Di,Di+1,...,Dn) multi­plicatrices successives sont portées à des potentiels électri­ques (V₂,V₃,...,Vi,Vi+1,Vn) croissants.2. Multiplier (50) of electrons comprising, in order, a first emitting half-dynode (d′₂) and a plurality of dynodes (D₃, ..., D i , D i + 1 , ... , D n ) electron multiplier, according to claim 1, characterized in that each extracting half-dynode (d i + 1 ) is situated in position of coincidence with the preceding half-emitting dynode (d ′ i ), and in that the first emitting half-dynode (d′₂) and the successive multiplier dynodes (D₃, ..., D i , D i + 1 , ..., D n ) are brought to electric potentials (V₂, V₃ , ..., V i , V i + 1 , V n ) increasing. 3. Tube photomultiplicateur (60) comportant une photo­cathode (61), une première dynode (D₁), un multiplicateur (50) d'électrons selon la revendication 2, couplé à la premiè­re dynode (D₁), et une anode (A), caractérisé en ce que, entre ladite première dynode (D₁) et le multiplicateur (50), est intercalée une grille (G) d'entrée, parallèle à la premiè­re demi-dynode émettrice (d′₂), et dont le potentiel élec­trique est égal au potentiel électrique (V₂) de ladite pre­mière demi-dynode émettrice.3. Photomultiplier tube (60) comprising a photocathode (61), a first dynode (D₁), an electron multiplier (50) according to claim 2, coupled to the first dynode (D₁), and an anode (A), characterized in that, between said first dynode (D₁) and the multiplier (50), an input grid (G) is interposed, parallel to the first emitting half-dynode (d′₂), and whose electrical potential is equal to the electrical potential (V₂) of said first emitting half-dynode.
EP89201727A 1988-07-05 1989-06-29 Sheet-type dynode, electron multiplier and photomultiplier having such dynodes Expired - Lifetime EP0350111B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8809083 1988-07-05
FR8809083A FR2634062A1 (en) 1988-07-05 1988-07-05 "SHEET" TYPE DYNODE, ELECTRON MULTIPLIER AND PHOTOMULTIPLIER TUBE COMPRISING SUCH DYNODES

Publications (2)

Publication Number Publication Date
EP0350111A1 true EP0350111A1 (en) 1990-01-10
EP0350111B1 EP0350111B1 (en) 1995-01-18

Family

ID=9368084

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89201727A Expired - Lifetime EP0350111B1 (en) 1988-07-05 1989-06-29 Sheet-type dynode, electron multiplier and photomultiplier having such dynodes

Country Status (6)

Country Link
US (1) US4980604A (en)
EP (1) EP0350111B1 (en)
JP (1) JPH0254859A (en)
DE (1) DE68920644T2 (en)
FR (1) FR2634062A1 (en)
IL (1) IL90843A0 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0471563A2 (en) * 1990-08-15 1992-02-19 Hamamatsu Photonics K.K. Photomultiplier tube having grid type dynodes

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2644932B1 (en) * 1989-03-24 1991-07-26 Radiotechnique Compelec RAPID PHOTOMULTIPLIER TUBE WITH HIGH COLLECTION HOMOGENEITY
FR2654552A1 (en) * 1989-11-14 1991-05-17 Radiotechnique Compelec SEGMENTED PHOTOMULTIPLIER TUBE WITH HIGH COLLECTION EFFICIENCY AND LIMITED DIAPHYT.
FR2693592B1 (en) * 1992-07-08 1994-09-23 Philips Photonique Photomultiplier tube segmented into N independent channels arranged around a central axis.
US5624706A (en) * 1993-07-15 1997-04-29 Electron R+D International, Inc. Method for fabricating electron multipliers
JP3392240B2 (en) * 1994-11-18 2003-03-31 浜松ホトニクス株式会社 Electron multiplier
FR2733629B1 (en) * 1995-04-26 1997-07-18 Philips Photonique ELECTRON MULTIPLIER FOR MULTI-WAY PHOTOMULTIPLIER TUBE
JP3618013B2 (en) * 1995-07-20 2005-02-09 浜松ホトニクス株式会社 Photomultiplier tube
US6314275B1 (en) 1997-08-19 2001-11-06 Telit Mobile Terminals, S.P.A. Hand-held transmitting and/or receiving apparatus
WO2000044030A1 (en) * 1999-01-19 2000-07-27 Hamamatsu Photonics K.K. Photomultiplier
US6617768B1 (en) * 2000-04-03 2003-09-09 Agilent Technologies, Inc. Multi dynode device and hybrid detector apparatus for mass spectrometry

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3265916A (en) * 1963-12-10 1966-08-09 William H Johnston Lab Inc Focused mesh electron multiplier
EP0131339A1 (en) * 1983-07-11 1985-01-16 Hyperelec Electron multiplier element, electron multiplying device made up of this element and its application to a photomultiplier tube

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1490695A (en) * 1974-10-21 1977-11-02 Emi Ltd Radiation detecting arrangements
US4182969A (en) * 1976-03-29 1980-01-08 Rca Corporation Electron multiplier device with surface ion feedback
US4311939A (en) * 1980-03-21 1982-01-19 Rca Corporation Alkali antimonide layer on a beryllim-copper primary dynode
FR2566175B1 (en) * 1984-05-09 1986-10-10 Anvar ELECTRON MULTIPLIER DEVICE, LOCATED BY THE ELECTRIC FIELD

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3265916A (en) * 1963-12-10 1966-08-09 William H Johnston Lab Inc Focused mesh electron multiplier
EP0131339A1 (en) * 1983-07-11 1985-01-16 Hyperelec Electron multiplier element, electron multiplying device made up of this element and its application to a photomultiplier tube

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0471563A2 (en) * 1990-08-15 1992-02-19 Hamamatsu Photonics K.K. Photomultiplier tube having grid type dynodes
EP0471563A3 (en) * 1990-08-15 1992-04-08 Hamamatsu Photonics K.K. Photomultiplier tube having grid type dynodes
US5254906A (en) * 1990-08-15 1993-10-19 Hamamatsu Photonics K.K. Photomultiplier tube having a grid type of dynodes

Also Published As

Publication number Publication date
DE68920644T2 (en) 1995-08-24
DE68920644D1 (en) 1995-03-02
IL90843A0 (en) 1990-02-09
FR2634062A1 (en) 1990-01-12
EP0350111B1 (en) 1995-01-18
US4980604A (en) 1990-12-25
JPH0254859A (en) 1990-02-23

Similar Documents

Publication Publication Date Title
EP0131339B1 (en) Electron multiplier element, electron multiplying device made up of this element and its application to a photomultiplier tube
EP0350111B1 (en) Sheet-type dynode, electron multiplier and photomultiplier having such dynodes
CA2204756C (en) Hybrid multiplier tube with ion deflection
JP4639379B2 (en) Detector for bipolar time-of-flight mass spectrometer
EP0230694B1 (en) Multiplying element with high collection efficiency, multiplying device equipped with such an element and application to a photomultiplier
EP0428215B1 (en) Segmented photomultiplier tube with high collection efficiency and reduced cross-talk
JP4990615B2 (en) Detection pixel matrix integrated in load reading circuit
FR2693592A1 (en) Photomultiplier tube segmented in N independent channels arranged around a central axis.
FR2604824A1 (en) SEGMENTED PHOTOMULTIPLIER TUBE
EP0389051B1 (en) Photomultiplier tube with a large collection homogeneity
FR2641900A1 (en) PHOTOMULTIPLIER TUBE COMPRISING A LARGE FIRST DYNODE AND A STACKABLE DYNODY MULTIPLIER
EP0350358B1 (en) Electron gun and electron tube including such an electron gun
EP0345888B1 (en) Coupling device between the first dynode of a photomultiplier and a sheet multiplier
US3265916A (en) Focused mesh electron multiplier
FR2504728A1 (en) Electron multiplier for photomultiplier tube - has electron deflecting grid assembly having elements repeated at same or sub-multiple of dynode structure spacing
EP0423886A1 (en) Multi-path photomultiplier with high inter-signal resolution
JPH07320681A (en) High sensitivity hybrid photomultiplier tube
EP0044239A1 (en) Microchannels image intensifier tube and image pick-up assembly comprising such a tube
FR2599557A1 (en) MULTIPLICATION DIRECTED MULTIPLICATION ELECTRONIC PLATE, MULTIPLIER ELEMENT COMPRISING SAID PLATE, MULTIPLIER DEVICE COMPRISING SAID ELEMENT AND APPLICATION OF SAID DEVICE TO A PHOTOMULTIPLIER TUBE
EP0956581B1 (en) Photoelectric multiplier tube of reduced length
FR2546663A1 (en) PHOTOMULTIPLIER TUBE HAS AN INSENSITIVE DYNODE AT HIGH MAGNETIC FIELDS
EP0286191B1 (en) Vacuum arc ion source
FR2875331A1 (en) Multiple section photoelectric electron-multiplier tube, has transparent window with cavities provided as hollow parts with surfaces receiving photo-emissive layer to form photocathode, where each surface forms photocathode zone
FR2481004A1 (en) Photo multiplier with grid anode - is formed by ladder network of coplanar spaced leaf collectors in parallel planes
EP0013235A1 (en) Electron multiplying apparatus with axial magnetic field

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB LI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: N.V. PHILIPS' GLOEILAMPENFABRIEKEN

Owner name: PHILIPS COMPOSANTS

17P Request for examination filed

Effective date: 19900626

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: N.V. PHILIPS' GLOEILAMPENFABRIEKEN

Owner name: PHILIPS PHOTONIQUE

17Q First examination report despatched

Effective date: 19930317

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB LI

REF Corresponds to:

Ref document number: 68920644

Country of ref document: DE

Date of ref document: 19950302

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950413

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19980601

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19980623

Year of fee payment: 10

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Free format text: PHILIPS ELECTRONICS N.V. TRANSFER- KONINKLIJKE PHILIPS ELECTRONICS N.V.

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19980824

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19980904

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990630

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19990630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19990629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000503

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST