EP0230694B1 - Multiplying element with high collection efficiency, multiplying device equipped with such an element and application to a photomultiplier - Google Patents

Multiplying element with high collection efficiency, multiplying device equipped with such an element and application to a photomultiplier Download PDF

Info

Publication number
EP0230694B1
EP0230694B1 EP86202323A EP86202323A EP0230694B1 EP 0230694 B1 EP0230694 B1 EP 0230694B1 EP 86202323 A EP86202323 A EP 86202323A EP 86202323 A EP86202323 A EP 86202323A EP 0230694 B1 EP0230694 B1 EP 0230694B1
Authority
EP
European Patent Office
Prior art keywords
multiplier
metal plate
hole
electron
holes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP86202323A
Other languages
German (de)
French (fr)
Other versions
EP0230694A1 (en
Inventor
Gilbert Eschard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Photonis SAS
Koninklijke Philips NV
Original Assignee
Radiotechnique Compelec RTC SA
Photonis SAS
Philips Gloeilampenfabrieken NV
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Radiotechnique Compelec RTC SA, Photonis SAS, Philips Gloeilampenfabrieken NV, Koninklijke Philips Electronics NV filed Critical Radiotechnique Compelec RTC SA
Publication of EP0230694A1 publication Critical patent/EP0230694A1/en
Application granted granted Critical
Publication of EP0230694B1 publication Critical patent/EP0230694B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J43/00Secondary-emission tubes; Electron-multiplier tubes
    • H01J43/04Electron multipliers
    • H01J43/06Electrode arrangements
    • H01J43/18Electrode arrangements using essentially more than one dynode
    • H01J43/22Dynodes consisting of electron-permeable material, e.g. foil, grid, tube, venetian blind
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/12Manufacture of electrodes or electrode systems of photo-emissive cathodes; of secondary-emission electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/32Secondary emission electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/34Photoemissive electrodes
    • H01J2201/342Cathodes
    • H01J2201/3421Composition of the emitting surface
    • H01J2201/3425Metals, metal alloys

Definitions

  • the present invention relates to an electron multiplier element with secondary emission composed, on the one hand, of a first metal plate pierced with at least one hole, called multiplier hole, having an inlet opening and an outlet opening, and whose wall is endowed with emissive power, and, on the other hand, a second metal plate, parallel to the first, pierced with at least one hole, called auxiliary hole, disposed opposite the outlet opening of the hole multiplier, the second plate, electrically isolated from the first, being brought to an electrical potential greater than the electrical potential of said first plate.
  • the invention also relates to an electron multiplier device comprising N multiplier elements in accordance with the preamble and an application of said electron multiplier device to a photomultiplier tube.
  • the invention finds a particularly advantageous application in the field of photomultiplier tubes.
  • a multiplier element of the type described in the preamble is known from French patent application No. 2,549,288 (see also EP-A-0 131 339).
  • This patent application shows a multiplier element whose multiplier holes are either symmetrical, that is to say that the inlet and outlet openings are coaxial, or dissymmetrical, that is to say that the inlet and outlet openings outlet are offset from each other, the outlet opening however remains opposite the inlet opening.
  • This structure of electron multiplier element has the disadvantage of offering a collection efficiency limited by the fact that many incident electrons can pass through the multiplier element without undergoing multiplication on the wall of the multiplier holes, passing directly to through the inlet and outlet openings.
  • the object of the invention is to remedy these drawbacks by proposing an electron multiplier element having an increased collection efficiency.
  • an electron multiplier element with secondary emission composed, on the one hand, of a first metal plate pierced with at least one hole, called multiplier hole, having an inlet opening and a outlet opening, and the wall of which is emissive, and, on the other hand, a second metal plate, parallel to the first, pierced with at least one hole, called an auxiliary hole, disposed opposite the opening outlet of the multiplier hole, the second plate, electrically isolated from the first, being brought to an electrical potential greater than the electrical potential of said first plate, is particularly remarkable in that the straight projection of the outlet opening of the multiplier hole on a plane parallel to the first metal plate is at least partially located outside the corresponding projection of the inlet opening.
  • said first metal plate is pierced with a plurality of multiplier holes arranged in a regular plane network.
  • This regular planar network can be square or hexagonal, just as the inlet and outlet openings are circular, square or hexagonal.
  • the multiplier element according to the invention can be advantageously used to make an electron multiplier device comprising N multiplier elements according to the invention, remarkable in that the second metal plate of the ith multiplier element is brought to an electrical potential identical to the potential electric of the first metal plate of (i + I) th multiplier element.
  • the electron multiplier device also offers the possibility of image formation.
  • Two types of geometry can be envisaged, one in which said N multiplying elements are in parallel configuration with respect to each other.
  • said N multiplier elements are in head-to-tail configuration with respect to each other, which allows, with each multiplication, to fold the electron beam back on itself.
  • the multiplier device according to the invention advantageously applies to a photomultiplier tube comprising a photocathode and n adjacent anodes.
  • said multiplier device is placed near the photocathode and is divided into n secondary multiplier devices by electron-tight partitions, located substantially opposite the separation zones of two contiguous anodes so as to produce n secondary photomultiplier tubes in the same photomultiplier tube.
  • a method of producing a first metal plate of an electron multiplier element according to the invention is mainly remarkable in that the two faces of the same metal plate are simultaneously attacked, each using sets of masks, the successive windows of which increase in size and are offset with respect to each other, the windows of the last set of masks reproducing respectively the shape of the entry opening and the exit opening of the multiplier hole.
  • Figures 1, 2 and 3 show in section ( Figures 1a, 2a, 3a) and in top view ( Figures 1b, 2b, 3b), an electron multiplier element 10 with secondary emission, composed of a part, of a first metal plate 11 pierced with holes 12, called multiplier holes, having an opening 13 of entry and an opening 14 of exit.
  • the inner wall 15 of the multiplier holes 12 is endowed with emissive power.
  • the first metal plate 11 is made of a material capable of secondary emission such as the copper-beryllium alloy, after heating, migration of the beryllium and oxidation. It can also be made of an inexpensive material, such as mild steel, covered with a secondary emission material: layer of oxidized copper-beryllium alloy or layer of manganese oxide.
  • the multiplier element 10 is composed of a second metal plate "16, parallel to the first, pierced with holes 17, called auxiliary holes, arranged opposite the openings 14 for the exit of the multiplier holes 12.
  • This second metal plate 16 is electrically isolated from the first plate 11, the electrical insulation of the two plates 11 and 16 being able to be carried out, for example, using small glass beads 30, 100 to 200 ⁇ m in diameter, sealed at the periphery of said plates
  • the second metal plate 16 is brought to an electrical potential V1 greater than the electrical potential VO of said first plate 11, the second plate 16 thus playing the role of accelerating electrode.
  • the right projection 18 of the opening 14 out of the hole MULTIPLICA - tor 12 on a plane P parallel to the first metal plate 11 is known at least partially, here entirely, located outside the corresponding projection 19 of the inlet opening 13.
  • This configuration offers the incident electrons 50 whose angle of incidence is not too large a maximum surface for capture by the multiplier wall 15.
  • most of the electrons entering the multiplier hole 12 through the inlet opening 13 will not be able to exit directly from the outlet opening 14, but will give rise to secondary emission thereby contributing to a significant increase in the collection efficiency of the multiplier 10, as the Applicant has observed experimentally. This suggests that electrons which strike the multiplier wall 15 relatively far from the outlet opening 14 and which do not exit directly after multiplication can bounce without loss on the wall before exiting through said outlet opening.
  • said first metal plate 11 is pierced with a plurality of multiplier holes 12 arranged in a regular plane network.
  • said regular planar network is a hexagonal network and said inlet and outlet openings (13, 14) are circular.
  • FIGS. 2b and 3b give two configurations which make it possible to increase the useful multiplication surface of the first plate 11.
  • the regular plane network of multiplier holes (12) is a hexagonal network, said inlet openings 13 are hexagonal and the circular outlet openings 14 while with reference to FIG. 3b, the regular plane array of multiplier holes 12 is a square array, the inlet openings 13 are square and the outlet openings 14 circular.
  • the electrical potentials applied to each of the first 11 and second 16 plates of each multiplier element are such that the second metal plate 16 of the ith multiplier element is brought to an electrical potential V ⁇ identical to the electric potential VO (i + 1) of the (i + 1) th element N8um therefore we have the equalities:
  • the multiplier device of FIG. 4 is such that the multiplier elements 10 are in parallel configuration with respect to each other. This configuration, if it maintains a one-to-one correspondence between the electrons leaving the (i + 2) th multiplier element and the electrons entering the th multiplier element, however, leads to a spatial offset between the incoming electrons and the electrons leaving the multiplier device.
  • the device shown in FIG. 5 makes it possible to avoid this offset, in the sense that the multiplier elements 10 are in head-to-tail configuration consecutively with respect to each other.
  • said multiplier device 22 is placed near the photocathode 20 and is divided into n secondary multiplier devices 23 by electron-tight partitions 24, situated substantially opposite the separation zones of two contiguous anodes 21 so as to produce n secondary photomultiplier tubes in the same photomultiplier tube.
  • Tubes of the type shown in FIG. 6 can advantageously be used in nuclear physics for the precise localization of the elementary particles detected.
  • the watertight partitions 24 are produced in a sectional manner by masking and photoengraving of a metal plate.
  • FIG. 7 illustrates a process for producing a first metal plate 11 of an electron multiplier element of the kind described above.
  • the two faces of the same metal plate 11 are simultaneously attacked, by photoengraving, using sets of masks, 31/41, 32/42 and 33/43, the successive windows of which increase by size and are offset with respect to each other, the windows of the last set of masks 33/43 reproducing respectively the shape of the opening 13 of entry and the opening 14 of exit of the multiplier hole 12.
  • the Applicant has produced , by this method, a metal plate with multiplier holes whose thickness was 0.15 mm, for respective dimensions d1, d2 of openings of 0.6 mm and 0.3 mm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Common Detailed Techniques For Electron Tubes Or Discharge Tubes (AREA)
  • External Artificial Organs (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Electron Tubes For Measurement (AREA)

Description

La présente invention concerne un élément multiplicateur d'électrons à émission secondaire composé, d'une part, d'une première plaque métallique percée d'au moins un trou, dit trou multiplicateur, présentant une ouverture d'entrée et une ouverture de sortie, et dont la paroi est douée de pouvoir émissif, et, d'autre part, une deuxième plaque métallique, parallèle à la première, percée d'au moins un trou, dit trou auxiliaire, disposé en regard de l'ouverture de sortie du trou multiplicateur, la deuxième plaque, électriquement isolée de la première, étant portée à un potentiel électrique supérieur au potentiel électrique de ladite première plaque.The present invention relates to an electron multiplier element with secondary emission composed, on the one hand, of a first metal plate pierced with at least one hole, called multiplier hole, having an inlet opening and an outlet opening, and whose wall is endowed with emissive power, and, on the other hand, a second metal plate, parallel to the first, pierced with at least one hole, called auxiliary hole, disposed opposite the outlet opening of the hole multiplier, the second plate, electrically isolated from the first, being brought to an electrical potential greater than the electrical potential of said first plate.

L'invention concerne également un dispositif multiplicateur d'électrons comportant N éléments multiplicateurs conformes au préambule et une application dudit dispositif multiplicateur d'électrons à un tube photomultiplicateur.The invention also relates to an electron multiplier device comprising N multiplier elements in accordance with the preamble and an application of said electron multiplier device to a photomultiplier tube.

L'invention trouve une application particulièrement avantageuse dans le domaine des tubes photomultiplicateurs.The invention finds a particularly advantageous application in the field of photomultiplier tubes.

Un élément multiplicateur du type de celui décrit dans le préambule est connu de la demande de brevet français No 2 549 288 (voir ausei EP-A-0 131 339). Cette demande de brevet montre un élément multiplicateur dont les trous multiplicateurs sont, soit symétriques, c'est à dire que les ouvertures d'entrée et de sortie sont coaxiales, soit dissymétriques, c'est à dire que les ouvertures d'entrée et de sortie sont décalées l'une par rapport à l'autre, l'ouverture de sortie restant cependant en regard de l'ouverture d'entrée. Cette structure d'élément multiplicateur d'électrons présente l'inconvénient d'offrir une efficacité de collection limitée par le fait que de nombreux électrons incidents peuvent traverser l'élément multiplicateur sans subir de multiplication aur la paroi des trous multiplicateurs, en passant directement à travers les ouvertures d'entrée et de sortie. D'autre part, cette perte d'efficacité de collection se reproduit à chaque étage d'un dispositif multiplicateur comportant N éléments multiplicateurs du type connu, et se traduit donc par une perte de gain, un défaut de linéarité et un allongement du temps de réponse, par exemple lorsque ledit dispositif multiplicateur est incorporé à un tube photomultiplicateur.A multiplier element of the type described in the preamble is known from French patent application No. 2,549,288 (see also EP-A-0 131 339). This patent application shows a multiplier element whose multiplier holes are either symmetrical, that is to say that the inlet and outlet openings are coaxial, or dissymmetrical, that is to say that the inlet and outlet openings outlet are offset from each other, the outlet opening however remains opposite the inlet opening. This structure of electron multiplier element has the disadvantage of offering a collection efficiency limited by the fact that many incident electrons can pass through the multiplier element without undergoing multiplication on the wall of the multiplier holes, passing directly to through the inlet and outlet openings. On the other hand, this loss of collection efficiency is reproduced on each stage of a multiplier device comprising N multiplier elements of the known type, and therefore results in a loss of gain, a lack of linearity and an extension of the time of response, for example when said multiplier device is incorporated into a photomultiplier tube.

Le but de l'invention est de remédier à ces inconvénients en proposant un élément multiplicateur d'électrons présentant une efficacité de collection augmentée.The object of the invention is to remedy these drawbacks by proposing an electron multiplier element having an increased collection efficiency.

En effet, selon la présente invention, un élément multiplicateur d'électrons à émission secondaire composé, d'une part, d'une première plaque métallique percée d'au moins un trou, dit trou multiplicateur, présentant une ouverture d'entrée et une ouverture de sortie, et dont la paroi est douée de pouvoir émissif, et, d'autre part, une deuxième plaque métallique, parallèle à la première, percée d'au moins un trou, dit trou auxiliaire, disposé en regard de l'ouverture de sortie du trou multiplicateur, la deuxième plaque, électriquement isolée de la première, étant portée à un potentiel électrique supérieur au potentiel électrique de ladite première plaque, est notamment remarquable en ce que la projection droite de l'ouverture de sortie du trou multiplicateur sur un plan parallèle à la première plaque métallique est au moins partiellement située à l'extérieur de la projection correspondante de l'ouverture d'entrée.Indeed, according to the present invention, an electron multiplier element with secondary emission composed, on the one hand, of a first metal plate pierced with at least one hole, called multiplier hole, having an inlet opening and a outlet opening, and the wall of which is emissive, and, on the other hand, a second metal plate, parallel to the first, pierced with at least one hole, called an auxiliary hole, disposed opposite the opening outlet of the multiplier hole, the second plate, electrically isolated from the first, being brought to an electrical potential greater than the electrical potential of said first plate, is particularly remarkable in that the straight projection of the outlet opening of the multiplier hole on a plane parallel to the first metal plate is at least partially located outside the corresponding projection of the inlet opening.

Ainsi, la plupart des électrons incidents arrivant sur l'élément multiplicateur d'électrons selon l'invention, à l'exception de ceux, peu nombreux, se présentant sous une incidence trop grande, rencontrent la paroi du trou multiplicateur et y subissent donc une multiplication. Des essais effectués par la Demanderesse sur des trous multiplicateurs à ouvertures totalement décalées ont montré que l'efficacité de collection d'un tel élément multiplicateur était très sensiblement augmentée, et ceci bien que l'on puisse penser que, compte-tenu des dimensions relativement grandes du trou multiplicateur, des électrons multipliés pourraient revenir sur la paroi dudit trou et seraient ainsi perdus. Ce fait expérimental accrédite l'idée d'une possibilité de rebond sans perte des électrons sur la paroi du trou multiplicateur. r.Thus, most of the incident electrons arriving on the electron multiplier element according to the invention, with the exception of those, few in number, occurring under too great an incidence, meet the wall of the multiplier hole and therefore undergo a multiplication. Tests carried out by the Applicant on multiplier holes with totally offset openings have shown that the collection efficiency of such a multiplier element is very significantly increased, and this although one might think that, given the relatively small dimensions large of the multiplier hole, multiplied electrons could return to the wall of said hole and would be lost. This experimental fact gives credence to the idea of a possibility of rebound without loss of electrons on the wall of the multiplier hole. r.

Dans un mode très général de réalisation de l'élement multiplicateur selon l'invention, ladite première plaque métallique est percée d'une pluralité de trous multiplicateurs disposés selon un réseau plan régulier. Ce réseau plan régulier peut être carré ou hexagonal, de même que les ouvertures d'entrée et de sortie sont circulaires, carrées ou hexagonales.In a very general embodiment of the multiplier element according to the invention, said first metal plate is pierced with a plurality of multiplier holes arranged in a regular plane network. This regular planar network can be square or hexagonal, just as the inlet and outlet openings are circular, square or hexagonal.

L'élément multiplicateur selon l'invention peut être avantageusement utilisé pour réaliser un dispositif multiplicateur d'électrons comportant N éléments multiplicateurs selon l'invention, remarquable en ce que la deuxième plaque métallique du ième élément multiplicateur est portée à un potentiel électrique identique au potentiel électrique de la première plaque métallique du (i+I)ièmes élément multiplicateur.The multiplier element according to the invention can be advantageously used to make an electron multiplier device comprising N multiplier elements according to the invention, remarkable in that the second metal plate of the ith multiplier element is brought to an electrical potential identical to the potential electric of the first metal plate of (i + I) th multiplier element.

On assure ainsi une meilleure collection des électrons entre un élément multiplicateur et le suivant, lorsque ceux-ci sont relativement éloignés. Outre une efficacité de collection améliorée, le dispositif multiplicateur d'électrons selon l'invention offre également la possibilité de formation d'image. Deux types de géométrie peuvent être envisagés, l'une dans laquelle lesdits N éléments multiplicateurs sont en configuration parallèle les uns par rapport aux autres. Dans une autre géométrie plus avantageuse, lesdits N éléments multiplicateurs sont en configuration tête-bêche les uns par rapport aux autres, ce qui permet, à chaque multiplication, de replier le faisceau électronique sur lui-même.This ensures a better collection of electrons between a multiplier element and the next, when these are relatively far apart. In addition to improved collection efficiency, the electron multiplier device according to the invention also offers the possibility of image formation. Two types of geometry can be envisaged, one in which said N multiplying elements are in parallel configuration with respect to each other. In another more advantageous geometry, said N multiplier elements are in head-to-tail configuration with respect to each other, which allows, with each multiplication, to fold the electron beam back on itself.

Le dispositif multiplicateur selon l'invention s'applique de façon avantageuse à un tube photomultiplicateur comportant une photocathode et n anodes adjacentes. Dans cette application, il est prévu, selon l'invention, que ledit dispositif multiplicateur est placé à proximité de la photocathode et est divisé en n dispositifs multiplicateurs secondaires par des cloisons étanches aux électrons, situées sensiblement en regard des zones de séparation de deux anodes contigües de façon à réaliser n tubes photomultiplicateurs secondaires dans le même tube photomultiplicateur.The multiplier device according to the invention advantageously applies to a photomultiplier tube comprising a photocathode and n adjacent anodes. In this application, it is provided, according to the invention, that said multiplier device is placed near the photocathode and is divided into n secondary multiplier devices by electron-tight partitions, located substantially opposite the separation zones of two contiguous anodes so as to produce n secondary photomultiplier tubes in the same photomultiplier tube.

Enfin, un procédé de réalisation d'une première plaque métallique d'un élément multiplicateur d'électrons selon l'invention est principalement remarquable en ce que les deux faces d'une même plaque métallique sont simultanément attaquées, chacune à l'aide de jeux de masques dont les fenêtres successives vont en augmentant de taille et sont décalées les unes par rapport aux autres, les fenêtres du dernier jeu de masques reproduisant respectivement la forme de l'ouverture d'entrée et de l'ouverture de sortie du trou multiplicateur.Finally, a method of producing a first metal plate of an electron multiplier element according to the invention is mainly remarkable in that the two faces of the same metal plate are simultaneously attacked, each using sets of masks, the successive windows of which increase in size and are offset with respect to each other, the windows of the last set of masks reproducing respectively the shape of the entry opening and the exit opening of the multiplier hole.

La description qui va suivre en regard des dessins annexés, donnés à titre d'exemples non limitatifs, fera bien comprendre en quoi consiste l'invention et comment elle peut être réalisée.

  • Les figures la a et 1 b montrent, en coupe et en vue de dessus, un premier mode de réalisation d'un élément multiplicateur d'électrons selon l'invention.
  • Les figures 2a et 2b montrent, en coupe et en vue de dessus, un deuxième mode de réalisation d'un élément multiplicateur d'électrons selon l'invention.
  • Les figures 3a et 3b montrent, en coupe et en vue de dessus, un troisième mode de réalisation d'un élément multiplicateur d'électrons selon l'invention.
  • La figure 4 est une vue en coupe d'un premier dispositif multiplicateur d'électrons selon l'invention.
  • La figure 5 est une vue en coupe d'un deuxième dispositif multiplicateur d'électrons selon l'invention.
  • La figure 6 montre en coupe un tube photomultiplicateur comportant un dispositif multiplicateur analogue à celui de la figure 5.
  • La figure 7 illustre par une vue en coupe un procédé de réalisation d'une première plaque d'un élément multiplicateur conforme à l'invention.
The description which follows with reference to the appended drawings, given by way of nonlimiting examples, will make it clear what the invention consists of and how it can be implemented.
  • Figures la and 1b show, in section and in top view, a first embodiment of an electron multiplier element according to the invention.
  • Figures 2a and 2b show, in section and in top view, a second embodiment of an electron multiplier element according to the invention.
  • Figures 3a and 3b show, in section and in top view, a third embodiment of an electron multiplier element according to the invention.
  • Figure 4 is a sectional view of a first electron multiplier device according to the invention.
  • Figure 5 is a sectional view of a second electron multiplier device according to the invention.
  • FIG. 6 shows in section a photomultiplier tube comprising a multiplier device similar to that of FIG. 5.
  • FIG. 7 illustrates by a sectional view a process for producing a first plate of a multiplier element according to the invention.

Les figures 1, 2 et 3 montrent en coupe (figures 1 a, 2a, 3a) et en vue de dessus (figures 1 b, 2b, 3b), un élément multiplicateur 10 d'électrons à émission secondaire, composé, d'une part, d'une première plaque métallique 11 percée de trous 12, dits trous multiplicateurs, présentant une ouverture 13 d'entrée et une ouverture 14 de sortie. La paroi intérieure 15 des trous multiplicateurs 12 est douée de pouvoir émissif. Pour cela, la première plaque métallique 11 est réalisée dans un matériau susceptible d'émission secondaire comme l'alliage cuivre-béryllium, après chauffage, migration du béryllium et oxydation. Elle peut être également réalisée dans un matériau peu coûteux, comme l'acier doux, recouvert d'un matériau à émission secondaire: couche d'alliage cuivre-béryllium oxydé ou couche d'oxyde de manganèse.Figures 1, 2 and 3 show in section (Figures 1a, 2a, 3a) and in top view (Figures 1b, 2b, 3b), an electron multiplier element 10 with secondary emission, composed of a part, of a first metal plate 11 pierced with holes 12, called multiplier holes, having an opening 13 of entry and an opening 14 of exit. The inner wall 15 of the multiplier holes 12 is endowed with emissive power. For this, the first metal plate 11 is made of a material capable of secondary emission such as the copper-beryllium alloy, after heating, migration of the beryllium and oxidation. It can also be made of an inexpensive material, such as mild steel, covered with a secondary emission material: layer of oxidized copper-beryllium alloy or layer of manganese oxide.

D'autre part, l'élément multiplicateur 10 est composé d'une deuxième plaque métallique" 16, parallèle à la première, percée de trous 17, dits trous auxiliaires, disposés en regard des ouvertures 14 de sortie des trous multiplicateurs 12. Cette deuxième plaque métallique 16 est électriquement isolée de la première plaque 11, l'isolation électrique des deux plaques 11 et 16 pouvant être réalisée, par exemple, à l'aide de petites billes 30 de verre, de 100 à 200 um de diamètre, scellées à la périphérie desdites plaques. La deuxième plaque métallique 16 est portée à un potentiel électrique V1 supérieur au potentiel électrique VO de ladite première plaque 11, la deuxième plaque 16 jouant ainsi le rôle d'électrode accélératrice.On the other hand, the multiplier element 10 is composed of a second metal plate "16, parallel to the first, pierced with holes 17, called auxiliary holes, arranged opposite the openings 14 for the exit of the multiplier holes 12. This second metal plate 16 is electrically isolated from the first plate 11, the electrical insulation of the two plates 11 and 16 being able to be carried out, for example, using small glass beads 30, 100 to 200 μm in diameter, sealed at the periphery of said plates The second metal plate 16 is brought to an electrical potential V1 greater than the electrical potential VO of said first plate 11, the second plate 16 thus playing the role of accelerating electrode.

Comme on peut le voir sur l'ensemble des figures 1 a, 1 b, 2a, 2b et 3a, 3b, la projection droite 18 de l'ouverture 14 de sortie du trou multiplica- teur 12 sur un plan P parallèle à la première plaque métallique 11 est su moins partiellement, ici entièrement, située à l'extérieur de la projection correspondante 19 de l'ouverture 13 d'entrée. Cette configuration offre aux électrons incidents 50 dont l'angle d'incidence n'est pas trop grand une surface maximale de capture par la paroi 15 multiplicatrice. En d'autres termes, la plupart des électrons pénétrant dans le trou multiplicateur 12 par l'ouverture 13 d'entrée ne pourront en sortir directement par l'ouverture 14 de sortie, mais donneront lieu à émission secondaire contribuant ainsi à une augmentation sensible de l'efficacité de collection de l'élément multiplicateur 10, comme la Demanderesse l'a observé expérimentalement. Ceci permet de penser que des électrons qui frappent la paroi multiplicatrice 15 relativement loin de l'ouverture 14 de sortie et qui ne sortent pas directement après multiplication peuvent rebondir sans perte sur la paroi avant de sortir par ladite ouverture de sortie.As can be seen in all of Figures 1 a, 1 b, 2a, 2b and 3a, 3b, the right projection 18 of the opening 14 out of the hole MULTIPLICA - tor 12 on a plane P parallel to the first metal plate 11 is known at least partially, here entirely, located outside the corresponding projection 19 of the inlet opening 13. This configuration offers the incident electrons 50 whose angle of incidence is not too large a maximum surface for capture by the multiplier wall 15. In other words, most of the electrons entering the multiplier hole 12 through the inlet opening 13 will not be able to exit directly from the outlet opening 14, but will give rise to secondary emission thereby contributing to a significant increase in the collection efficiency of the multiplier 10, as the Applicant has observed experimentally. This suggests that electrons which strike the multiplier wall 15 relatively far from the outlet opening 14 and which do not exit directly after multiplication can bounce without loss on the wall before exiting through said outlet opening.

Ainsi qu'on peut le voir aux figures 1 b, 2b et 3b, ladite première plaque métallique 11 est percée d'une pluralité de trous multiplicateurs 12 disposés selon un réseau plan régulier. Conformément à la figure 1 b, ledit réseau plan régulierestun réseau hexagonal et lesdites ouvertures (13, 14) d'entrée et de sortie sont circulaires. Les figures 2b et 3b donnent deux configurations que permettent d'augmenter la surface utile de multiplication de la première plaque 11. Selon la figure 2b, le réseau plan régulier de trous multiplicateurs (12) est un réseau hexagonal, lesdites ouvertures 13 d'entrée sont hexagonales et les ouvertures 14 de sortie circulaires tandis qu'en référence à la figure 3b, le réseau plan régulier de trous multiplicateurs 12 est un réseau carré, les ouvertures 13 d'entrée sont carrées et les ouvertures 14 de sortie circulaires.As can be seen in Figures 1b, 2b and 3b, said first metal plate 11 is pierced with a plurality of multiplier holes 12 arranged in a regular plane network. According to FIG. 1 b, said regular planar network is a hexagonal network and said inlet and outlet openings (13, 14) are circular. FIGS. 2b and 3b give two configurations which make it possible to increase the useful multiplication surface of the first plate 11. According to FIG. 2b, the regular plane network of multiplier holes (12) is a hexagonal network, said inlet openings 13 are hexagonal and the circular outlet openings 14 while with reference to FIG. 3b, the regular plane array of multiplier holes 12 is a square array, the inlet openings 13 are square and the outlet openings 14 circular.

Les figures 4 et 5 montrent en coupe deux dispositifs multiplicateurs d'électrons comportant N (ici N=3) éléments multiplicateurs du type de ceux décrits précédemment aux figures 1, 2 et 3. Les potentiels électriques appliqués à chacune des première 11 et deuxième 16 plaques de chaque élément multiplicateur sont tels que la deuxième plaque métallique 16 du ième élément multiplicateur eat portée à un potentiel électrique Vµ identique au potentiel électrique VO(i+1) du (i+1)éme élément N8um avons donc les égalités:Figures 4 and 5 show in section two electron multiplier devices comprising N (here N = 3) multiplier elements of the type described above in Figures 1, 2 and 3. The electrical potentials applied to each of the first 11 and second 16 plates of each multiplier element are such that the second metal plate 16 of the ith multiplier element is brought to an electrical potential Vµ identical to the electric potential VO (i + 1) of the (i + 1) th element N8um therefore we have the equalities:

Figure imgb0001
Figure imgb0001

Le dispositif multiplicateur de la figure 4 est tel que les éléments multiplicateurs 10 sont en configuration parallèle les uns par rapport aux autres. Cette configuration, si elle maintient une correspondance univoque entre les électrons sortant du (i+2) ième élément multiplicateur et les électrons entrant dans le ième élément multiplicateur conduit cependant à un décalage spacial entre électrons entrant et électrons sortant du dispositif multiplicateur. Le dispositif montré à la figure 5 permet d'éviter ce décalage, en ce sens que les éléments multiplicateurs 10 sont en configuration tête-bêche consécutivement les uns par rapport aux autres.The multiplier device of FIG. 4 is such that the multiplier elements 10 are in parallel configuration with respect to each other. This configuration, if it maintains a one-to-one correspondence between the electrons leaving the (i + 2) th multiplier element and the electrons entering the th multiplier element, however, leads to a spatial offset between the incoming electrons and the electrons leaving the multiplier device. The device shown in FIG. 5 makes it possible to avoid this offset, in the sense that the multiplier elements 10 are in head-to-tail configuration consecutively with respect to each other.

Le dispositif multiplicateur d'électrons selon l'invention trouve une application particulièrement avantageuse dans le domaine des tubes photomultiplicateurs, notamment des tubes dits à focalisation de proximité. La figure 6 montre, par une vue en coupe, un exemple d'une telle application à un tube photomultiplicateur comportant une photocathode 20 et n (ici n=2) anodes adjacentes 21. Conformément à la figure 6, ledit dispositif multiplicateur 22 est placé à proximité de la photocathode 20 et est divisé en n dispositifs multiplicateurs secondaires 23 par des cloisons 24 étanches aux électrons, situés sensiblement en regard des zones de séparation de deux anodes 21 contigües de façon à réaliser n tubes photomultiplicateurs secondaires dans le même tube photomultiplicateur. Les tubes du type de celui représenté à la figure 6 peuvent être avantageusement utilisés en physique nucléaire pour la localiaation précise des particules élémentaires détectées. Les cloisons étanches 24 sont réalisées de façon clasaique par masquage et photogravure d'une plaque métallique.The electron multiplier device according to the invention finds a particularly advantageous application in the field of photomultiplier tubes, in particular so-called proximity focusing tubes. FIG. 6 shows, in a sectional view, an example of such an application to a photomultiplier tube comprising a photocathode 20 and n (here n = 2) adjacent anodes 21. According to FIG. 6, said multiplier device 22 is placed near the photocathode 20 and is divided into n secondary multiplier devices 23 by electron-tight partitions 24, situated substantially opposite the separation zones of two contiguous anodes 21 so as to produce n secondary photomultiplier tubes in the same photomultiplier tube. Tubes of the type shown in FIG. 6 can advantageously be used in nuclear physics for the precise localization of the elementary particles detected. The watertight partitions 24 are produced in a clasical manner by masking and photoengraving of a metal plate.

La figure 7 illustre un procédé de réalisation d'une première plaque métallique 11 d'un élément multiplicateur d'électrons du genre de ceux décrits ci-dessus. Selon ce procédé, les deux faces d'une même plaque métallique 11 sont simultanément attaquées, par photogravure, à l'aide de jeux de masques, 31/41, 32/42 et 33/43, dont les fenêtres successives vont en augmentant de taille et sont décalées les unes par rapport aux autres, les fenêtres du dernier jeu de masques 33/ 43 reproduisant respectivement la forme de l'ouverture 13 d'entrée et de l'ouverture 14 de sortie du trou multiplicateur 12. La Demanderesse a réalisé, par ce procédé, une plaque métallique à trous multiplicateurs dont l'épaisseur était de 0,15 mm, pour des dimensions respectives d1, d2 d'ouvertures de 0,6 mm et 0,3 mm.FIG. 7 illustrates a process for producing a first metal plate 11 of an electron multiplier element of the kind described above. According to this method, the two faces of the same metal plate 11 are simultaneously attacked, by photoengraving, using sets of masks, 31/41, 32/42 and 33/43, the successive windows of which increase by size and are offset with respect to each other, the windows of the last set of masks 33/43 reproducing respectively the shape of the opening 13 of entry and the opening 14 of exit of the multiplier hole 12. The Applicant has produced , by this method, a metal plate with multiplier holes whose thickness was 0.15 mm, for respective dimensions d1, d2 of openings of 0.6 mm and 0.3 mm.

Claims (9)

1. An electron multiplier element (10) for secondary emission, consisting of a first metal plate (11) which has at least one hole (12), referred to as multiplier hole, having one input aperture (13) and one output aperture (14) and whose wall (15) has emissive power, and of a second metal plate (16) in parallel with the first plate (11), which has at least one hole (17), referred to as auxiliary hole, and is disposed opposite the output aperture (14) of the multiplier hole (12), the second plate (16), which is electrically insulated from the first (11), being brought at an electric potential (V1) which is higher than the electric potential (VO) of the first plate, characterized in that the straight projection (18) of the output aperture (14) of the multiplier hole (12) onto a plane which is parallel to the first metal plate (11) is at least partly located outside the corresponding projection (19) of the input aperture (13).
2. A multiplier element as claimed in Claim 1, characterized in that said first metal plate (11) has a plurality of multiplier holes (12) arranged in accordance with a regular plane network.
3. A multiplier element as claimed in Claim 2, characterized in that regular plane network of multiplier holes (12) is a square-shaped network, and in that said input aperture (13) is square-shaped and said output aperture (14) is circular.
4. A multiplier element as claimed in Claim 2, characterized in that said regular plane network of multiplier holes (12) is a hexagonal network and in that said input and output apertures (13, 14) are circular.
5. A multiplier element as claimed in Claim 2, characterized in that said regular plane network of multiplier holes (12) is a hexagonal network and in that said input aperture (13) is hexagonal and said output aperture (14) is circular.
6. An electron multiplier device comprising N multiplier elements as claimed in any one of Claims 1 to 5, characterized in that the second metal plate (16) of the (i)th multiplier element is brought at an electric potential which is identical to the electrical potential of the first metal plate (11) of the (i+1)st multiplier element.
7. An electron multiplier device as claimed in Claim 6, characterized in that said N multiplier elements (10) are arranged in a parallel configuration with respect to one another.
8. An electron multiplier device as claimed in Claim 6, characterized in that said N multiplier elements (10) are consecutively arranged in a head-to-tail configuration.
9. A photomultiplier tube comprising a photocathode (20), n adjacent anodes (21) and an electron multiplier device as claimed in any one of Claims 6 to 8, characterized in that said multiplier device (22) is placed in the proximity of the photocathode (20) and is divided into n secondary multiplier devices (23) by partitions (24) which are impervious to electrons and which are located substantially opposite separation zones of two contiguous anodes (21) in such a manner that n secondary photomultiplier tubes are obtained in one and the same photomultiplier tube.
EP86202323A 1985-12-31 1986-12-18 Multiplying element with high collection efficiency, multiplying device equipped with such an element and application to a photomultiplier Expired - Lifetime EP0230694B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8519482A FR2592523A1 (en) 1985-12-31 1985-12-31 HIGH EFFICIENCY COLLECTION MULTIPLIER ELEMENT
FR8519482 1985-12-31

Publications (2)

Publication Number Publication Date
EP0230694A1 EP0230694A1 (en) 1987-08-05
EP0230694B1 true EP0230694B1 (en) 1990-06-06

Family

ID=9326358

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86202323A Expired - Lifetime EP0230694B1 (en) 1985-12-31 1986-12-18 Multiplying element with high collection efficiency, multiplying device equipped with such an element and application to a photomultiplier

Country Status (5)

Country Link
US (1) US4806827A (en)
EP (1) EP0230694B1 (en)
JP (1) JPS62160652A (en)
DE (1) DE3671810D1 (en)
FR (1) FR2592523A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5205902A (en) * 1989-08-18 1993-04-27 Galileo Electro-Optics Corporation Method of manufacturing microchannel electron multipliers
US5086248A (en) * 1989-08-18 1992-02-04 Galileo Electro-Optics Corporation Microchannel electron multipliers
US5818500A (en) * 1991-05-06 1998-10-06 Eastman Kodak Company High resolution field emission image source and image recording apparatus
JP3078905B2 (en) * 1991-12-26 2000-08-21 浜松ホトニクス株式会社 Electron tube with electron multiplier
US5237180A (en) * 1991-12-31 1993-08-17 Eastman Kodak Company High resolution image source
US5656807A (en) * 1995-09-22 1997-08-12 Packard; Lyle E. 360 degrees surround photon detector/electron multiplier with cylindrical photocathode defining an internal detection chamber
JP4108905B2 (en) * 2000-06-19 2008-06-25 浜松ホトニクス株式会社 Manufacturing method and structure of dynode
US7154086B2 (en) * 2003-03-19 2006-12-26 Burle Technologies, Inc. Conductive tube for use as a reflectron lens
TWI224352B (en) * 2003-06-17 2004-11-21 Ind Tech Res Inst Field emission display
TWI267104B (en) * 2005-11-14 2006-11-21 Tatung Co Illumination module of field emission device
US20080073516A1 (en) * 2006-03-10 2008-03-27 Laprade Bruce N Resistive glass structures used to shape electric fields in analytical instruments
WO2014146673A1 (en) * 2013-03-22 2014-09-25 Cern - European Organization For Nuclear Research A wall-less electron multiplier assembly
WO2023232199A2 (en) 2022-06-03 2023-12-07 P+S Pulverbeschichtungs- Und Staubfilteranlagen Gmbh Method for applying powder and powder spray nozzle for carrying out the method

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2872721A (en) * 1956-04-12 1959-02-10 Mcgee James Dwyer Electron image multiplier apparatus
US4041343A (en) * 1963-07-12 1977-08-09 International Telephone And Telegraph Corporation Electron multiplier mosaic
US3265916A (en) * 1963-12-10 1966-08-09 William H Johnston Lab Inc Focused mesh electron multiplier
US3374380A (en) * 1965-11-10 1968-03-19 Bendix Corp Apparatus for suppression of ion feedback in electron multipliers
US3612946A (en) * 1967-08-01 1971-10-12 Murata Manufacturing Co Electron multiplier device using semiconductor ceramic
JPS4724714B1 (en) * 1967-11-14 1972-07-07 Matsushita Electric Ind Co Ltd
US3513345A (en) * 1967-12-13 1970-05-19 Westinghouse Electric Corp High speed electron multiplier
US4031423A (en) * 1969-04-30 1977-06-21 American Optical Corporation Channel structure for multi-channel electron multipliers and method of making same
GB1321022A (en) * 1971-04-22 1973-06-20 Standard Telephones Cables Ltd Channel plate
GB1368753A (en) * 1972-05-19 1974-10-02 Mullard Ltd Electron multiplers
GB1361006A (en) * 1971-08-02 1974-07-24 Mullard Ltd Electron multipliers
US3939375A (en) * 1971-09-14 1976-02-17 U.S. Philips Corporation Cathode ray tube having channel multiplier and electron reflecting system for energizing color phosphor strips
GB1434053A (en) * 1973-04-06 1976-04-28 Mullard Ltd Electron multipliers
GB1446774A (en) * 1973-04-19 1976-08-18 Mullard Ltd Electron beam devices incorporating electron multipliers
US3873867A (en) * 1974-01-25 1975-03-25 Rca Corp Support and focus structure for photomultiplier
FR2260863B1 (en) * 1974-02-13 1977-09-16 Labo Electronique Physique
CA1046127A (en) * 1974-10-14 1979-01-09 Matsushita Electric Industrial Co., Ltd. Secondary-electron multiplier including electron-conductive high-polymer composition
GB2143078A (en) * 1983-07-08 1985-01-30 Philips Electronic Associated Cathode ray tube with electron multiplier
FR2549288B1 (en) * 1983-07-11 1985-10-25 Hyperelec ELECTRON MULTIPLIER ELEMENT, ELECTRON MULTIPLIER DEVICE COMPRISING THE MULTIPLIER ELEMENT AND APPLICATION TO A PHOTOMULTIPLIER TUBE
FR2566175B1 (en) * 1984-05-09 1986-10-10 Anvar ELECTRON MULTIPLIER DEVICE, LOCATED BY THE ELECTRIC FIELD

Also Published As

Publication number Publication date
DE3671810D1 (en) 1990-07-12
JPS62160652A (en) 1987-07-16
FR2592523A1 (en) 1987-07-03
EP0230694A1 (en) 1987-08-05
US4806827A (en) 1989-02-21

Similar Documents

Publication Publication Date Title
EP0131339B1 (en) Electron multiplier element, electron multiplying device made up of this element and its application to a photomultiplier tube
EP0230694B1 (en) Multiplying element with high collection efficiency, multiplying device equipped with such an element and application to a photomultiplier
EP0742954B1 (en) Ionising radiation detector having proportional microcounters
DE69328818T2 (en) Hybrid photomultiplier tube with high sensitivity
EP0428215B1 (en) Segmented photomultiplier tube with high collection efficiency and reduced cross-talk
FR2693592A1 (en) Photomultiplier tube segmented in N independent channels arranged around a central axis.
EP0350111B1 (en) Sheet-type dynode, electron multiplier and photomultiplier having such dynodes
EP0402549B1 (en) Travelling-wave tube with a helical delay line made of boron nitride and attached to the vacuum tube
EP0515261A1 (en) Ceramic electron multiplying structure especially for photomultiplier and its manufacturing procedure
EP0264992A1 (en) Segmented photomultiplier tube
FR2735900A1 (en) FIELD EMISSION TYPE ELECTRON SOURCE AND METHOD FOR MANUFACTURING SAME
EP0389051B1 (en) Photomultiplier tube with a large collection homogeneity
FR2480497A1 (en) MULTI-STAGE DEPRESSED COLLECTOR FOR HYPERFREQUENCY TUBE AND HYPERFREQUENCY TUBE HAVING SUCH A COLLECTOR
EP0379243A1 (en) Photomultiplier tube provided with a big first dynode and a stacked dynodes multiplier
EP0423886A1 (en) Multi-path photomultiplier with high inter-signal resolution
EP0044239B1 (en) Microchannels image intensifier tube and image pick-up assembly comprising such a tube
FR2599557A1 (en) MULTIPLICATION DIRECTED MULTIPLICATION ELECTRONIC PLATE, MULTIPLIER ELEMENT COMPRISING SAID PLATE, MULTIPLIER DEVICE COMPRISING SAID ELEMENT AND APPLICATION OF SAID DEVICE TO A PHOTOMULTIPLIER TUBE
EP0345888B1 (en) Coupling device between the first dynode of a photomultiplier and a sheet multiplier
FR3034908A1 (en) MULTIBAND PHOTOCATHODE AND ASSOCIATED DETECTOR
WO2007003723A2 (en) Multi-channel electron multiplier tube
GB2207802A (en) Thermal radiation imaging devices
FR2504728A1 (en) Electron multiplier for photomultiplier tube - has electron deflecting grid assembly having elements repeated at same or sub-multiple of dynode structure spacing
EP0956581B1 (en) Photoelectric multiplier tube of reduced length
CA2129354A1 (en) Method for producing microdot emitting cathodes on silicon for compact flat screens and resulting products
FR2875331A1 (en) Multiple section photoelectric electron-multiplier tube, has transparent window with cavities provided as hollow parts with surfaces receiving photo-emissive layer to form photocathode, where each surface forms photocathode zone

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19871118

17Q First examination report despatched

Effective date: 19890131

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: N.V. PHILIPS' GLOEILAMPENFABRIEKEN

Owner name: PHILIPS COMPOSANTS

REF Corresponds to:

Ref document number: 3671810

Country of ref document: DE

Date of ref document: 19900712

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19911202

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19911218

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19920224

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19921218

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19921218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19930831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19930901

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST