EP0956581B1 - Photoelectric multiplier tube of reduced length - Google Patents

Photoelectric multiplier tube of reduced length Download PDF

Info

Publication number
EP0956581B1
EP0956581B1 EP98900630A EP98900630A EP0956581B1 EP 0956581 B1 EP0956581 B1 EP 0956581B1 EP 98900630 A EP98900630 A EP 98900630A EP 98900630 A EP98900630 A EP 98900630A EP 0956581 B1 EP0956581 B1 EP 0956581B1
Authority
EP
European Patent Office
Prior art keywords
dynode
dynodes
tube
potential
rajkman
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98900630A
Other languages
German (de)
French (fr)
Other versions
EP0956581A1 (en
Inventor
Pierre L'hermite
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Photonis SAS
Original Assignee
Photonis SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Photonis SAS filed Critical Photonis SAS
Publication of EP0956581A1 publication Critical patent/EP0956581A1/en
Application granted granted Critical
Publication of EP0956581B1 publication Critical patent/EP0956581B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J43/00Secondary-emission tubes; Electron-multiplier tubes
    • H01J43/04Electron multipliers
    • H01J43/06Electrode arrangements

Definitions

  • the plane of the dynodes is parallel to the axis of the tube.
  • the dimension of the tube along this axis is therefore important. This can be prohibitive in many applications, for example when the tube is used within a gamma-camera for the detection of radiation, we wish have tubes of reduced length in order to reduce the size of the device in which they are integrated into.
  • the object of the invention is to remedy this drawback by proposing a photomultiplier tube in which the plane of the dynodes is not parallel to the axis of the tube.
  • a photomultiplier tube as described in the paragraph introductory is characterized according to the present invention in that the focusing optics further comprises a second dynode intended to be brought to a potential whose value is intermediate between those of the second and third potentials, the second dynode having a concave re-emitting surface on the side of the re-emitting surface of the first dynode, and in that the plane of the dynodes presents with respect to the axis of the tube, defined as being an axis which is perpendicular to the photocathode in its middle, an angle greater than 45 °, the concavity of the first Rajkman dynode being directed towards the re-emitting surface of the second dynode.
  • the size, considered in the sense of length, due to the succession of Rajkman dynodes is all the more reduced as the angle between the plane of the dynodes and the axis of the tube is large.
  • the second dynode allows to re-direct the flow of electrons from the first dynode to the first dynode of Rajkman.
  • the second dynode can advantageously be provided with a conductive grid placed across the path followed by the electron stream between the first and second dynode, which grid is then brought to a potential close to that of the second dynode.
  • the plane of cynodes has an angle close to 90 ° relative to the axis of the tube.
  • Such a configuration allows a maximum reduction of the influence of the succession of Rajkman dynodes over the total length of the tube.
  • a tube photomultiplier as described above is characterized in that it comprises a grid, disposed between the second dynode and the first dynode of Rajkman, and intended to be brought to an electrical potential close to that to which the second dynode of Rajkman.
  • the presence of the grid increases the collection efficiency at level of the first Rajkman dynode, i.e. the ratio between the number of electrons received by said dynode and the number of electrons emitted by the second dynode.
  • ia grid locally generates an electric field substantially parallel to the path between the second dynode and Rajkman's first dynode, which accelerates the electrons to its neighborhood and directs them to the first dynode of Rajkman.
  • EP-A-0 671 757 describes a photomultiplier comprising a set of box dynodes and grids, a set of dynodes in line and, between cases together, a dynode of connection.
  • FIG. 1 schematically represents a sectional view of a photomultiplier tube according to the invention.
  • the cutting plane is parallel to a TAX axis, called the tube axis, and perpendicular to a plane called the plane of the dynodes, whose intersection with the section plane is represented here by a DP axis.
  • the photomultiplier tube has an envelope outside in TU glass, which can for example have a symmetry of revolution by relative to the axis of the TU tube and one face of which, perpendicular to the axis of the TAX tube, carries a PK photocathode intended to be placed at a first electrical potential and having a semi-transparent photo-sensitive layer.
  • This photomultiplier tube also has a focusing optics comprising a first dynode D1 intended to be brought to a second electrical potential whose value is greater than that of the first, having a so-called re-emitting surface made of a material promoting emission phenomena secondary, which surface is concave on the side of the PK photocathode.
  • optics focusing device further comprises a second dynode D2 intended to be brought to a potential whose value is greater than that of the second potential, and having a re-emitting surface concave on the side of the re-emitting surface of the first dynode D1.
  • the tube photomultiplier further comprises a plurality of Rajkman dynodes D3, ...
  • D8 intended to receive and amplify the flow of electrons coming from the focusing optics, and arranged on either side of the plane of the dynodes, dynodes of which the first, D3, is the most close to the second D2 dynode and is intended to be brought to a third potential electric whose value is greater than that of the potential of the second dynode D2.
  • the concavity of the first dynode of Rajkman D3 is directed towards the re-emitting surface of the second D2 dynode.
  • Each of the following dynodes D4, ... D8 is intended to be brought to an electrical potential whose value is greater than that of the potential of the dynode which above.
  • the axis DP has an angle ⁇ close to 90 ° relative to the axis of the TAX tube.
  • the photomultiplier tube finally comprises a grid Gd, for example made up of bars conductors, and disposed between the second D2 dynode and the first Rajkman dynode D3, and intended to be brought to an electrical potential close to that to which the second dynode of Rajkman D4.
  • the photo-sensitive layer When the PK photocathode is subjected to an illumination, and the photons received have sufficient energy, the photo-sensitive layer emits towards inside the tube a flow of electrons, the density of which thus depends on the intensity of illuminance. These electrons are collected by the first dynode D1, due to the potential difference between the first D1 dynode and the PK photocathode which creates an electric field directed from the first dynode D1 to the photo-cathode PK.
  • the first D1 dynode re-emits, thanks to the well-known secondary emission phenomena of the specialist, a greater number of electrons than the number of electrons collected, and Thus performs a first amplification of the density of the electron flow. Electrons re-emitted by the first dynode D1 are collected by the second dynode D2, due to the potential difference existing between the second dynode D2 and the first dynode D1 which creates an electric field directed from the second dynode D2 to the first dynode D1.
  • the electrons re-emitted by the second dynode D2 are accelerated by the electric field reigning locally around the grid Gd, which makes it possible to direct them towards the first Rajkman D3 dynode, which thus presents a great collection efficiency.
  • the flow of electrons is subjected to successive amplifications carried out by the dynodes of Rajkman according to a process known to those skilled in the art that it is useless to develop here, before reaching an AN anode which constitutes the exit of the tube and restores information electronic representative of the illumination received by the PK photocathode.
  • the structure of the focusing optics D1, D2, therefore makes it possible to re-direct the flow of electrons to the first Rajkman dynode when the dynode plane presents with respect to the axis of the TAX tube a significant angle.
  • the usefulness of this provision is clearly visible in this example, where the angle ⁇ is close to 90 °, which makes it possible to reduce maximum congestion due to the succession of dynodes of Rajkman D3, ... D8, and therefore the total length of the tube.

Landscapes

  • Electron Tubes For Measurement (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Image-Pickup Tubes, Image-Amplification Tubes, And Storage Tubes (AREA)

Description

La présente invention concerne un tube photomultiplicateur comportant :

  • une photocathode destinée à être placée à un premier potentiel électrique et présentant une couche photo-sensible semi-transparente destinée à recevoir depuis l'extérieur du tube un éclairement et à émettre vers l'intérieur du tube un flux d'électrons dont la densité dépend de l'intensité de l'éclairement reçu par la photocathode
  • une optique focalisatrice comprenant une première dynode destinée à être portée à un deuxième potentiel électrique dont la valeur est supérieure à celle du premier, présentant une surface dite ré-émettrice constituée d'un matériau favorisant les phénomènes d'émission secondaire, laquelle surface est concave du côté de la photocathode, et
  • une pluralité de dynodes de Rajkman disposées de part et d'autre d'un plan appelé plan des dynodes, dynodes dont la première est la plus proche de la sortie de l'optique focalisatrice et est destinée à être portée à un troisième potentiel électrique dont la valeur est supérieure à celle du deuxième, chacune des dynodes suivantes étant destinée à être portée à un potentiel électrique dont la valeur est supérieure à celle du potentiel de la dynode qui la précède, pluralité de dynodes qui est destinée à recevoir et à amplifier le flux d'électrons provenant de l'optique focalisatrice.
The present invention relates to a photomultiplier tube comprising:
  • a photocathode intended to be placed at a first electrical potential and having a semi-transparent photo-sensitive layer intended to receive from the outside of the tube an illumination and to emit towards the inside of the tube a flow of electrons whose density depends of the intensity of the illumination received by the photocathode
  • a focusing optic comprising a first dynode intended to be brought to a second electrical potential whose value is greater than that of the first, having a so-called re-emitting surface made of a material promoting secondary emission phenomena, which surface is concave on the photocathode side, and
  • a plurality of Rajkman dynodes arranged on either side of a plane called the plane of the dynodes, dynodes the first of which is closest to the output of the focusing optics and is intended to be brought to a third electrical potential of which the value is greater than that of the second, each of the following dynodes being intended to be brought to an electrical potential whose value is greater than that of the potential of the dynode which precedes it, plurality of dynodes which is intended to receive and to amplify the flow of electrons from the focusing optics.

Dans la plupart des tubes photomultiplicateurs mettant en oeuvre des dynodes de Rajkman suivant le principe décrit ci-dessus, le plan des dynodes est parallèle à l'axe du tube. La dimension du tube suivant cet axe, appelée longueur du tube, est donc importante. Ceci peut être prohibitif dans de nombreuses applications, par exemple lorsque le tube est utilisé au sein d'une gamma-caméra pour la détection de rayonnements, on souhaite disposer de tubes de longueur réduite afin de diminuer l'encombrement du dispositif dans lequel ils sont intégrés.In most photomultiplier tubes using Rajkman dynodes following the principle described above, the plane of the dynodes is parallel to the axis of the tube. The dimension of the tube along this axis, called the length of the tube, is therefore important. This can be prohibitive in many applications, for example when the tube is used within a gamma-camera for the detection of radiation, we wish have tubes of reduced length in order to reduce the size of the device in which they are integrated into.

L'invention a pour but de remédier à cet inconvénient en proposant un tube photomultiplicateur dans lequel le plan des dynodes n'est pas parallèle à l'axe du tube.The object of the invention is to remedy this drawback by proposing a photomultiplier tube in which the plane of the dynodes is not parallel to the axis of the tube.

En effet, un tube photomultiplicateur tel que décrit dans le paragraphe introductif est caractérisé selon la présente invention en ce que l'optique focalisatrice comporte en outre une deuxième dynode destinée à être portée à un potentiel dont la valeur est intermédiaire entre celles des deuxième et troisième potentiels, la deuxième dynode présentant une surface ré-émettrice concave du côté de la surface ré-émettrice de la première dynode, et en ce que le plan des dynodes présente par rapport à l'axe du tube, défini comme étant un axe qui est perpendiculaire à la photocathode en son milieu, un angle supérieur à 45°, la concavité de la première dynode de Rajkman étant dirigée vers la surface ré-émettrice de la deuxième dynode.Indeed, a photomultiplier tube as described in the paragraph introductory is characterized according to the present invention in that the focusing optics further comprises a second dynode intended to be brought to a potential whose value is intermediate between those of the second and third potentials, the second dynode having a concave re-emitting surface on the side of the re-emitting surface of the first dynode, and in that the plane of the dynodes presents with respect to the axis of the tube, defined as being an axis which is perpendicular to the photocathode in its middle, an angle greater than 45 °, the concavity of the first Rajkman dynode being directed towards the re-emitting surface of the second dynode.

Dans un tel tube photomultiplicateur, l'encombrement, considéré dans le sens de la longueur, du à la succession des dynodes de Rajkman est d'autant plus réduit que l'angle entre le plan des dynodes et l'axe du tube est important. La deuxième dynode permet de re-diriger le flux d'électrons issu de la première dynode vers la première dynode de Rajkman. La deuxième dynode peut avantageusement être munie d'une grille conductrice placée en travers du trajet suivi par le fiux d'électrons entre la première et la deuxième dynode, laquelle grille est alors portée à un potentiel voisin de celui de la deuxième dynode.In such a photomultiplier tube, the size, considered in the sense of length, due to the succession of Rajkman dynodes is all the more reduced as the angle between the plane of the dynodes and the axis of the tube is large. The second dynode allows to re-direct the flow of electrons from the first dynode to the first dynode of Rajkman. The second dynode can advantageously be provided with a conductive grid placed across the path followed by the electron stream between the first and second dynode, which grid is then brought to a potential close to that of the second dynode.

Dans un mode de réalisation particulier de l'invention, le plan des cynodes présente par rapport à l'axe du tube un angle voisin de 90°.In a particular embodiment of the invention, the plane of cynodes has an angle close to 90 ° relative to the axis of the tube.

Une telle configuration permet une réduction maximale de l'influence de la succession de dynodes de Rajkman sur la longueur totale du tube.Such a configuration allows a maximum reduction of the influence of the succession of Rajkman dynodes over the total length of the tube.

Dans un mode de réalisation préféré de l'invention, un tube photomultiplicateur tel que décrit ci-dessus est caractérisé en ce qu'il comporte une grille, disposée entre la deuxième dynode et la première dynode de Rajkman, et destinée à être portée à un potentiel électrique voisin de celui auquel est portée la deuxième dynode de Rajkman.In a preferred embodiment of the invention, a tube photomultiplier as described above is characterized in that it comprises a grid, disposed between the second dynode and the first dynode of Rajkman, and intended to be brought to an electrical potential close to that to which the second dynode of Rajkman.

La présence de la grille permet d'augmenter l'efficacité de collection au niveau de la première dynode de Rajkman, c'est-à-dire le rapport entre le nombre d'électrons reçus par la dite dynode et le nombre d'électrons émis par la deuxième dynode. En effet, ia grille génère localement un champ électrique sensiblement parallèle au trajet entre la deuxième dynode et la première dynode de Rajkman, qui accélère les électrons à son voisinage et les dirige vers la première dynode de Rajkman.The presence of the grid increases the collection efficiency at level of the first Rajkman dynode, i.e. the ratio between the number of electrons received by said dynode and the number of electrons emitted by the second dynode. Indeed, ia grid locally generates an electric field substantially parallel to the path between the second dynode and Rajkman's first dynode, which accelerates the electrons to its neighborhood and directs them to the first dynode of Rajkman.

EP-A-0 671 757 décrit un photomultiplicateur comprenant un ensemble de dynodes à boítes et grilles, un ensemble de dynodes en ligne et, entre cas ensembles, une dynode de connexion.EP-A-0 671 757 describes a photomultiplier comprising a set of box dynodes and grids, a set of dynodes in line and, between cases together, a dynode of connection.

L'invention sera mieux comprise à l'aide de la description suivante d'un mode de réalisation, faite à titre d'exemple non-limitatif et en regard de la figure 1 qui représente schématiquement une vue en coupe d'un tube photomultiplicateur selon l'invention. Le plan de coupe est parallèle à un axe TAX, appelé axe du tube, et perpendiculaire à un plan appelé plan des dynodes, dont l'intersection avec le plan de coupe est représentée ici par un axe DP. Le tube photomultiplicateur présente une enveloppe extérieure en verre TU, qui peut par exemple présenter une symétrie de révolution par rapport à l'axe du tube TU et dont une face, perpendiculaire à l'axe du tube TAX, porte une photocathode PK destinée à être placée à un premier potentiel électrique et présentant une couche photo-sensible semi-transparente. Ce tube photomultiplicateur comporte de plus une optique focalisatrice comprenant une première dynode D1 destinée à être portée à un deuxième potentiel électrique dont la valeur est supérieure à celle du premier, présentant une surface dite ré-émettrice constituée d'un matériau favorisant les phénomènes d'émission secondaire, laquelle surface est concave du côté de la photocathode PK. L'optique focalisatrice comporte en outre une deuxième dynode D2 destinée à être portée à un potentiel dont la valeur est supérieure à celle du deuxième potentiel, et présentant une surface ré-émettrice concave du côté de la surface ré-émettrice de la première dynode D1. Le tube photomultiplicateur comporte encore une pluralité de dynodes de Rajkman D3,...D8, destinées à recevoir et à amplifier le flux d'électrons provenant de l'optique focalisatrice, et disposées de part et d'autre du plan des dynodes, dynodes dont la première, D3, est la plus proche de la deuxième dynode D2 et est destinée à être portée à un troisième potentiel électrique dont la valeur est supérieure à celle du potentiel de la deuxième dynode D2. La concavité de la première dynode de Rajkman D3 est dirigée vers la surface ré-émettrice de la deuxième dynode D2. Chacune des dynodes suivantes D4,...D8 est destinée à être portée à un potentiel électrique dont la valeur est supérieure à celle du potentiel de la dynode qui la précède. L'axe DP présente par rapport à l'axe du tube TAX un angle β voisin de 90°. Le tube photomultiplicateur comporte enfin une grille Gd, par exemple constituée de barreaux conducteurs, et disposée entre la deuxième dynode D2 et la première dynode de Rajkman D3, et destinée à être portée à un potentiel électrique voisin de celui auquel est portée la deuxième dynode de Rajkman D4.The invention will be better understood using the following description of a embodiment, made by way of non-limiting example and with reference to FIG. 1 which schematically represents a sectional view of a photomultiplier tube according to the invention. The cutting plane is parallel to a TAX axis, called the tube axis, and perpendicular to a plane called the plane of the dynodes, whose intersection with the section plane is represented here by a DP axis. The photomultiplier tube has an envelope outside in TU glass, which can for example have a symmetry of revolution by relative to the axis of the TU tube and one face of which, perpendicular to the axis of the TAX tube, carries a PK photocathode intended to be placed at a first electrical potential and having a semi-transparent photo-sensitive layer. This photomultiplier tube also has a focusing optics comprising a first dynode D1 intended to be brought to a second electrical potential whose value is greater than that of the first, having a so-called re-emitting surface made of a material promoting emission phenomena secondary, which surface is concave on the side of the PK photocathode. optics focusing device further comprises a second dynode D2 intended to be brought to a potential whose value is greater than that of the second potential, and having a re-emitting surface concave on the side of the re-emitting surface of the first dynode D1. The tube photomultiplier further comprises a plurality of Rajkman dynodes D3, ... D8, intended to receive and amplify the flow of electrons coming from the focusing optics, and arranged on either side of the plane of the dynodes, dynodes of which the first, D3, is the most close to the second D2 dynode and is intended to be brought to a third potential electric whose value is greater than that of the potential of the second dynode D2. The concavity of the first dynode of Rajkman D3 is directed towards the re-emitting surface of the second D2 dynode. Each of the following dynodes D4, ... D8 is intended to be brought to an electrical potential whose value is greater than that of the potential of the dynode which above. The axis DP has an angle β close to 90 ° relative to the axis of the TAX tube. The photomultiplier tube finally comprises a grid Gd, for example made up of bars conductors, and disposed between the second D2 dynode and the first Rajkman dynode D3, and intended to be brought to an electrical potential close to that to which the second dynode of Rajkman D4.

Lorsque la photocathode PK est soumise à un éclairement, et que les photons reçus sont dotés d'une énergie suffisante, la couche photo-sensible émet vers l'intérieur du tube un flux d'électrons, dont la densité dépend ainsi de l'intensité de l'éclairement. Ces électrons sont collectés par la première dynode D1, du fait de la différence de potentiel existant entre la première dynode D1 et la photocathode PK qui crée un champ électrique dirigé depuis la première dynode D1 vers la photo-cathode PK. La première dynode D1 ré-émet, grâce aux phénomènes d'émission secondaire bien connus du spécialiste, un nombre d'électrons plus important que le nombre d'électrons collectés, et réalise ainsi une première amplification de la densité du flux d'électrons. Les électrons ré-émis par la première dynode D1 sont collectés par la deuxième dynode D2, du fait de la différence de potentiel existant entre la deuxième dynode D2 et la première dynode D1 qui crée un champ électrique dirigé depuis la deuxième dynode D2 vers la première dynode D1. Les électrons ré-émis par la deuxième dynode D2 sont accélérés par le champ électrique régnant localement autour de la grille Gd, ce qui permet de les diriger vers la première dynode de Rajkman D3, qui présente ainsi une grande efficacité de collection. Enfin, le flux d'électrons est soumis à des amplifications successives effectuées par les dynodes de Rajkman selon un processus connu de l'homme du métier qu'il est inutile de développer ici, avant de parvenir à une anode AN qui constitue la sortie du tube et restitue une information électronique représentative de l'éclairement reçu par la photocathode PK.When the PK photocathode is subjected to an illumination, and the photons received have sufficient energy, the photo-sensitive layer emits towards inside the tube a flow of electrons, the density of which thus depends on the intensity of illuminance. These electrons are collected by the first dynode D1, due to the potential difference between the first D1 dynode and the PK photocathode which creates an electric field directed from the first dynode D1 to the photo-cathode PK. The first D1 dynode re-emits, thanks to the well-known secondary emission phenomena of the specialist, a greater number of electrons than the number of electrons collected, and Thus performs a first amplification of the density of the electron flow. Electrons re-emitted by the first dynode D1 are collected by the second dynode D2, due to the potential difference existing between the second dynode D2 and the first dynode D1 which creates an electric field directed from the second dynode D2 to the first dynode D1. The electrons re-emitted by the second dynode D2 are accelerated by the electric field reigning locally around the grid Gd, which makes it possible to direct them towards the first Rajkman D3 dynode, which thus presents a great collection efficiency. Finally, the flow of electrons is subjected to successive amplifications carried out by the dynodes of Rajkman according to a process known to those skilled in the art that it is useless to develop here, before reaching an AN anode which constitutes the exit of the tube and restores information electronic representative of the illumination received by the PK photocathode.

La structure de l'optique focalisatrice D1, D2, permet donc de re-diriger le flux d'électrons vers la première dynode de Rajkman lorsque le plan des dynodes présente par rapport à l'axe du tube TAX un angle important. L'utilité de cette disposition est clairement visible dans cet exemple, où l'angle β est voisin de 90°, ce qui permet de réduire au maximum l'encombrement dû à la succession des dynodes de Rajkman D3,...D8, et donc la longueur totale du tube.The structure of the focusing optics D1, D2, therefore makes it possible to re-direct the flow of electrons to the first Rajkman dynode when the dynode plane presents with respect to the axis of the TAX tube a significant angle. The usefulness of this provision is clearly visible in this example, where the angle β is close to 90 °, which makes it possible to reduce maximum congestion due to the succession of dynodes of Rajkman D3, ... D8, and therefore the total length of the tube.

Claims (4)

  1. Photomultiplier tube comprising:
    a photocathode (PK) designed to be raised to a first electrical potential and with a semi-transparent photo-sensitive layer designed to receive an illumination from outside the tube and to transmit an electron flux into the tube, the density of the flux depending on the intensity of the illumination received by the photocathode,
    focussing optics comprising a first dynode (D1) that will be raised to a second electrical potential, the value of which is higher than the first potential, that is provided with a "re-emitting" surface composed of a material encouraging secondary emission phenomena, the said surface being concave on the side of the photocathode, and,
    several Rajkman dynodes (D3 to D8) laid out on each side of a plane (DP) called the dynodes plane and the first (D3) of the dynodes closest to the output from the focussing optics will be raised to a third electrical potential, the value of which is higher than the potential of the second dynode, each of the subsequent dynodes will be raised to an electrical potential higher than the potential of the preceding dynode, this series of dynodes being designed to receive and amplify the electron flux from the focussing optics,
    the focussing optics also comprise a second dynode (D2) that will be raised to a potential which is intermediate between the potential of the second and third dynodes, the second dynode having a concave re-emitting surface on the side of the re-emitting surface of the first dynode (D1), the angle between the plane (DP) of the dynodes and the centre line (TAX) of the tube, defined as being a centre line perpendicular to the photocathode at its midpoint, exceeds 45°, characterized in that the concave side of the first Rajkman dynode (D3) faces the re-emitting surface of the second dynode (D2).
  2. Photomultiplier tube according to claim 1, characterized in that the angle between the plane (DP) of the dynodes and the centre line (TAX) of the tube is close to 90°.
  3. Photomultiplier tube according to one of claims 1 or 2, characterized in that it comprises a grid (Gd) located between the second dynode (D2) and the first Rajkman dynode (D3), and the electrical potential of the tube will be made similar to the electrical potential of the second Rajkman dynode (D4).
  4. Photomultiplier tube according to claim 3, wherein the grid (Gd) is constituted by conductor bars.
EP98900630A 1997-01-28 1998-01-26 Photoelectric multiplier tube of reduced length Expired - Lifetime EP0956581B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9700898 1997-01-28
FR9700898 1997-01-28
PCT/IB1998/000097 WO1998033202A1 (en) 1997-01-28 1998-01-26 Photoelectric multiplier tube of reduced length

Publications (2)

Publication Number Publication Date
EP0956581A1 EP0956581A1 (en) 1999-11-17
EP0956581B1 true EP0956581B1 (en) 2003-12-03

Family

ID=9503047

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98900630A Expired - Lifetime EP0956581B1 (en) 1997-01-28 1998-01-26 Photoelectric multiplier tube of reduced length

Country Status (6)

Country Link
US (1) US6232715B1 (en)
EP (1) EP0956581B1 (en)
JP (1) JP2001508917A (en)
DE (1) DE69820228T2 (en)
DK (1) DK0956581T3 (en)
WO (1) WO1998033202A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5914561A (en) * 1997-08-21 1999-06-22 Burle Technologies, Inc. Shortened profile photomultiplier tube with focusing electrode
JP4640881B2 (en) * 2000-07-27 2011-03-02 浜松ホトニクス株式会社 Photomultiplier tube
US7492097B2 (en) 2005-01-25 2009-02-17 Hamamatsu Photonics K.K. Electron multiplier unit including first and second support members and photomultiplier including the same
EP1907924B1 (en) 2005-06-30 2011-01-05 Datacard Corporation Method and machine for opening a book at a particular page
CN110828276B (en) * 2019-11-19 2022-02-11 金陵科技学院 Large-area photomultiplier with hybrid electron multiplication system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4575657A (en) * 1984-05-18 1986-03-11 Rca Corporation Photomultiplier tube having an improved centering and cathode contacting structure
JPH04315758A (en) * 1991-01-14 1992-11-06 Hamamatsu Photonics Kk Photomultiplier
US5510674A (en) * 1993-04-28 1996-04-23 Hamamatsu Photonics K.K. Photomultiplier
JPH07245078A (en) * 1994-03-07 1995-09-19 Hamamatsu Photonics Kk Photomultiplier
US5914561A (en) * 1997-08-21 1999-06-22 Burle Technologies, Inc. Shortened profile photomultiplier tube with focusing electrode

Also Published As

Publication number Publication date
DE69820228T2 (en) 2004-11-25
EP0956581A1 (en) 1999-11-17
US6232715B1 (en) 2001-05-15
DE69820228D1 (en) 2004-01-15
DK0956581T3 (en) 2004-04-05
WO1998033202A1 (en) 1998-07-30
JP2001508917A (en) 2001-07-03

Similar Documents

Publication Publication Date Title
US6285018B1 (en) Electron bombarded active pixel sensor
EP0230818B1 (en) Photo cathode with internal amplification
US5602397A (en) Optical imaging system utilizing a charge amplification device
EP0956581B1 (en) Photoelectric multiplier tube of reduced length
EP0230694A1 (en) Multiplying element with high collection efficiency, multiplying device equipped with such an element and application to a photomultiplier
JP3524249B2 (en) Electron tube
FR2604824A1 (en) SEGMENTED PHOTOMULTIPLIER TUBE
US4868380A (en) Optical waveguide photocathode
EP0368729A1 (en) Vacuum-tight window for a microwave tube, and microwave tube with a window
EP0044239B1 (en) Microchannels image intensifier tube and image pick-up assembly comprising such a tube
EP0389051B1 (en) Photomultiplier tube with a large collection homogeneity
EP0039103B1 (en) Scintillation camera using a scintillation light amplifying system
EP0228323A1 (en) Hightly efficient photocathode
FR2546663A1 (en) PHOTOMULTIPLIER TUBE HAS AN INSENSITIVE DYNODE AT HIGH MAGNETIC FIELDS
EP0423886A1 (en) Multi-path photomultiplier with high inter-signal resolution
EP0379243A1 (en) Photomultiplier tube provided with a big first dynode and a stacked dynodes multiplier
FR2899015A1 (en) TANDEM CONTINUOUS CHANNEL ELECTRONIC MULTIPLIER
FR2504728A1 (en) Electron multiplier for photomultiplier tube - has electron deflecting grid assembly having elements repeated at same or sub-multiple of dynode structure spacing
EP0018253A2 (en) Particles detection device
FR2875331A1 (en) Multiple section photoelectric electron-multiplier tube, has transparent window with cavities provided as hollow parts with surfaces receiving photo-emissive layer to form photocathode, where each surface forms photocathode zone
JP2000011945A (en) Taper-type microchannel plate
EP0678218B1 (en) Method for visualising the intensity profile of a laser pulse
FR2597254A1 (en) Device for high-sensitivity imagery of a particle beam
FR2658361A1 (en) Device for detecting and amplifying weak positive and negative ion currents
JPH11102658A (en) Photo-detecting tube

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990709

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE DK FR GB NL

17Q First examination report despatched

Effective date: 20020725

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE DK FR GB NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20040115

Year of fee payment: 7

REF Corresponds to:

Ref document number: 69820228

Country of ref document: DE

Date of ref document: 20040115

Kind code of ref document: P

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20040121

Year of fee payment: 7

Ref country code: GB

Payment date: 20040121

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20040123

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20040126

Year of fee payment: 7

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040218

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050802

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20050126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050930

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20050801

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST