EP0228323A1 - Hightly efficient photocathode - Google Patents

Hightly efficient photocathode Download PDF

Info

Publication number
EP0228323A1
EP0228323A1 EP86402618A EP86402618A EP0228323A1 EP 0228323 A1 EP0228323 A1 EP 0228323A1 EP 86402618 A EP86402618 A EP 86402618A EP 86402618 A EP86402618 A EP 86402618A EP 0228323 A1 EP0228323 A1 EP 0228323A1
Authority
EP
European Patent Office
Prior art keywords
sublayers
layer
layers
photons
electrons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP86402618A
Other languages
German (de)
French (fr)
Other versions
EP0228323B1 (en
Inventor
Bernard Munier
Paul De Groot
Claude Weisbuch
Yves Henry
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Publication of EP0228323A1 publication Critical patent/EP0228323A1/en
Application granted granted Critical
Publication of EP0228323B1 publication Critical patent/EP0228323B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/34Photo-emissive cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/34Photoemissive electrodes
    • H01J2201/342Cathodes
    • H01J2201/3421Composition of the emitting surface
    • H01J2201/3423Semiconductors, e.g. GaAs, NEA emitters

Definitions

  • the invention relates to a high-efficiency photocathode for picture tubes, such as television camera tubes and image intensifier tubes.
  • a photocathode comprising mainly: a layer, called a window layer, consisting of P+ type semiconductor, the band gap of which is sufficiently wide for this layer to be transparent for the wavelengths of the light to be detected, and which is bonded to a wall of glass receiving the light to be detected; - A layer, called absorption layer, consisting of a P+ type semiconductor whose band gap has a sufficiently small width to convert into photon-hole pairs the photons of the light to be detected; - A layer, called the emission layer, made of a material giving the end of the absorption layer a negative electronic affinity to emit in a vacuum the electrons released in the absorption layer.
  • the maximum detectable wavelength is limited by the width of the forbidden band of the material constituting the absorption layer.
  • a polarization of the absorption layer can be applied by means of a connection with this layer, or by a very thin metal electrode interposed between this layer and the emission layer. Such a photocathode is described in the article by: J.J. ESCHER et al, IEEE-EDL2, 123-125 (1981).
  • Such a photocathode has a yield which is limited in particular by the characteristics of the absorption layer. Indeed, the thickness of this layer is determined by achieving a compromise between, on the one hand, a high absorption of the photons of the light to be detected, which requires a thickness as large as possible, and, on the other hand, a high efficiency of the transmission of electrons as well as a low dark current, which require as little thickness as possible of the absorption layer and to obtain a two-dimensional quantification of the energy levels of the electrons and of the holes in the plane of the sublayers.
  • the thickness of this layer is of the order of 1 micron, which allows good electron transmission efficiency but is insufficient to absorb all the photons of the light to be detected, in particular the photons corresponding to the wavelengths bigger.
  • the object of the invention is to produce a photocathode having a better efficiency than the photocathode of known type.
  • the object of the invention is a photocathode comprising an absorption layer consisting of a plurality of particular sub-layers providing both very good absorption of photons, good transmission efficiency of the electrons released by the photons, and a weak current of darkness.
  • a high efficiency photocathode is characterized in that it comprises a so-called absorption layer comprising a plurality of first sub-layers made of a semiconductor material having a sufficiently small band gap width and having a thickness large enough to convert photons of the light to be detected into electron-hole pairs, alternated with a plurality of second sublayers made of a semiconductor material having a band gap greater than that of the first sublayers, having a thickness sufficiently small for the electrons to be able to pass through them by tunnel effect, the first and second sublayers having a doping making it possible to obtain a two-dimensional quantification of the energy levels of the electrons and of the holes in the plane of the first sublayers and adjusting the Fermi level near the valence level of the first sublayers.
  • the figure shows, in its upper part, a section of a portion of an exemplary embodiment of the photocathode according to the invention and, in its lower part, a diagram of the energy levels E of the carriers in this exemplary embodiment.
  • This embodiment example includes: - A first layer 1, bonded to a glass wall (not shown) and through which it receives photons 29, this layer 1 being transparent for all the wavelengths of light to be detected and having the function of allowing the bonding of the photocathode on the glass wall; - An absorption layer consisting of twelve first sublayers 2 to 13 and twelve second sublayers 16 to 27 alternating with the first; - A layer 14 called the transport layer, having the function of transmitting to the vacuum electrons released in the absorption layer; - A last layer 15 made of a material which reduces the electronic affinity of the surface of layer 14 to allow it to emit electrons 28 in a vacuum.
  • the lower part of the figure represents the curves Ec and Ev of the energy levels of the conduction band and the valence band in the semiconductor layers, the Fermi E F level of these layers, and the potential of the empty E vi .
  • Layer 1 is made of a P+ type semiconductor material consisting of Ga 0.6 Al 0.4 As doped with 5.1017 zinc atoms per cm3, whose prohibited bandwidth is equal to 2e.V and which is therefore transparent for all the wavelengths of light to be detected.
  • the first sublayers 2 to 13 and the layer 14 consist of a P+ type semiconductor having a band gap less than that of the material of layer 1, for example 1.4 eV, to absorb all the photons to be converted into electron-hole pairs.
  • the sublayers 2 to 13 consist of Ga As doped with 1019 zinc atoms per cm3 and each have a thickness of 0.025 microns.
  • Layer 14 consists of Ga As doped with 1019 zinc atoms per cm3 and has a thickness of 0.1 micron. Its thickness must be greater than that of the space charge zone due to the presence of the surface of the semiconductor, the width of this zone being less than 0.05 micron.
  • the second sub-layers 16 to 27 are made of the same material as the layer 1, in this embodiment, and therefore have the same forbidden bandwidth. They are little or not doped so that the curves of the energy levels make it possible to obtain in the sublayers 2 to 13 a two-dimensional quantification of the energy levels of the electrons and of the holes. This two-dimensional quantification provides an increase in the absorption coefficient of photons.
  • the sublayers 16 to 27 each have a thickness of 0.003 microns which allows the electrons to pass through them by tunnel effect and which provides a good efficiency of transmission of the electrons released by the photons in the sublayers 2 to 13.
  • the thickness sublayers 16 to 27 must be less than 0.0045 microns for there to be a good transmission efficiency.
  • the thickness of the sublayers 2 to 13 must be less than 0.03 micron to obtain the increase in the absorption coefficient due to the two-dimensional quantification of the energy levels of the electrons and the holes in the plane of the sublayers -layers 2 to 13, but must be large enough not to raise the photon absorption threshold too much by quantum confinement effect to allow absorption of long wavelength photons.
  • the energy level E c of the conduction band and the energy level Ev of the valence band comprise steps of potential, corresponding to the sublayers 16 to 27. It is possible to demonstrate by calculation that this alternation of sub-layers provides a higher photon absorption coefficient than an absorption layer made of a homogeneous semiconductor material. In this exemplary embodiment, the absorption coefficient is multiplied by a factor of 3 compared to a photocathode of known type.
  • the layer 15 consists of a very thin layer of Cs + O having the effect of lowering the potential of the vacuum E vi below the level of the conduction band of the sublayers 2 to 13 to facilitate the emission of electrons 28 in a vacuum. As the layer 15 is extremely thin, the electrons pass through it by tunnel effect.
  • the scope of the invention is not limited to the embodiment described above. Many variants are within the reach of those skilled in the art, in particular as regards the number of sub-layers and the materials that make them up.
  • the material constituting the sublayers 16 to 27 may be different from the material of the window layer 1, with little or no doping, of type P or N.
  • the doping of the sublayers 2 to 13 must be chosen accordingly in order to that the Fermi E F level of all of the sublayers 2 to 13 and 16 to 27 is close to the level of the valence band of the sublayers 2 to 13 and that there is a two-dimensional quantification of the levels of energy of the carriers in the plane of the sub-layers 2 to 13. It is within the reach of the skilled person to choose the materials fulfilling these two conditions.
  • the sublayers 2 to 13 can consist of Ga y As 1-x In x P 1-y and the sublayers 16 to 27 can then consist of In P.
  • the sublayers layers 2 to 13 can consist of Ga Sb and the sublayers 16 to 27 then consist of Ga Al As Sb.
  • the semiconductor material used to make the sublayers 16 to 27 may have a mesh parameter close to that of the material for the sublayers 2 to 13 so as not to increase the dark current of the photocathode.
  • the Fermi E F level of the different semiconductor layers is identical, there is no provision for polarization.
  • the invention can be applied to picture camera tubes and image intensifier tubes.

Landscapes

  • Common Detailed Techniques For Electron Tubes Or Discharge Tubes (AREA)

Abstract

Un exemple de réalisation comporte :
- Une couche transparente (1) constituée d'un matériau semi-­conducteur de type P⁺ dans la largeur de bande interdite est suffisamment grande pour que cette couche soit transparente pour les photons (29) de la lumière à détecter ;
- Une couche d'absorption constituée de dix premières sous-­couches (2 à 13) constituées d'un matériau semi-conducteur de type P⁺ ayant une largeur de bande interdite suffisamment petite pour posséder des propriétés électroniques bi-dimensionnelles afin de convertir efficace­ment les photons (29) en paires électron-trou et dix secondes sous-couches (16 à 27) intercalées entre les premières et constituées du même matériau que la couche transparente (1), ces secondes sous-couches (16 à 27) étant suffisamment minces pour permettre la traversée des électrons par effet tunnel, et les premières sous-couches (2 à 13) ayant une épaisseur suffisante pour permettre l'absorption des photons (29) de toutes les longueurs d'onde de la lumière à détecter ;
- Une couche de transport (14) constituée du même matériau que les premières sous-couches (2 à 13) ;
- Une couche (15) de Cs + O permettant d'abaisser le potentiel du vide pour permettre l'émission d'électrons (28) dans le vide.
An exemplary embodiment includes:
- A transparent layer (1) made of a P⁺ type semiconductor material in the forbidden bandwidth is large enough for this layer to be transparent for the photons (29) of the light to be detected;
- An absorption layer made up of ten first sublayers (2 to 13) made of a P⁺-type semiconductor material having a band gap that is small enough to have two-dimensional electronic properties in order to efficiently convert the photons (29) in electron-hole pairs and ten second sublayers (16 to 27) inserted between the first and made of the same material as the transparent layer (1), these second sublayers (16 to 27) being sufficiently thin to allow the passage of electrons by tunnel effect, and the first sub-layers (2 to 13) having a thickness sufficient to allow the absorption of photons (29) of all wavelengths of the light to be detected;
- A transport layer (14) made of the same material as the first sub-layers (2 to 13);
- A layer (15) of Cs + O making it possible to lower the potential of the vacuum to allow the emission of electrons (28) in the vacuum.

Application aux tubes de prise de vues de télévision et aux tubes intensificateurs d'image.

Figure imgaf001
Application to television picture tubes and image intensifier tubes.
Figure imgaf001

Description

L'invention concerne une photocathode à rendement élevé pour tubes de prise de vues, tels que les tubes de caméra de télévision et les tubes intensificateurs d'image.The invention relates to a high-efficiency photocathode for picture tubes, such as television camera tubes and image intensifier tubes.

Il est connu de réaliser une photocathode comportant principa­lement :
- une couche, dite couche fenêtre, constituée de semi-conducteur de type P⁺ dont la bande interdite est suffisamment large pour que cette couche soit transparente pour les longueurs d'onde de la lumière à détecter, et qui est collée sur une paroi de verre recevant la lumière à détecter ;
- une couche, dite couche d'absorption, constituée d'un semi-­conducteur de type P⁺ dont la bande interdite a une largeur suffisamment faible pour convertir en paires d'électron-trou les photons de la lumière à détecter ;
- une couche, dite couche d'émission, constituée d'un matériau donnant à l'extrémité de la couche d'absorption une affinité électronique négative pour émettre dans le vide les électrons libérés dans la couche d'absorption.
It is known to produce a photocathode comprising mainly:
a layer, called a window layer, consisting of P⁺ type semiconductor, the band gap of which is sufficiently wide for this layer to be transparent for the wavelengths of the light to be detected, and which is bonded to a wall of glass receiving the light to be detected;
- A layer, called absorption layer, consisting of a P⁺ type semiconductor whose band gap has a sufficiently small width to convert into photon-hole pairs the photons of the light to be detected;
- A layer, called the emission layer, made of a material giving the end of the absorption layer a negative electronic affinity to emit in a vacuum the electrons released in the absorption layer.

La longueur d'onde maximale détectable est limitée par la largeur de la bande interdite du matériau constituant la couche d'absorption. En appliquant une polarisation positive à l'extrémité de cette couche opposée à la couche fenêtre, il est posible d'utiliser des matériaux ayant une faible largeur de bande interdite tout en conservant un bon rendement d'émis­sion, et donc il est possible de détecter de la lumière de longueur d'onde plus grande. Une polarisation de la couche d'absorption peut être appli­quée au moyen d'une connexion avec cette couche, ou par une électrode métallique très mince intercalée entre cette couche et la couche d'émis­sion. Une telle photocathode est décrite dans l'article de : J.J. ESCHER et al, IEEE-EDL2, 123-125 (1981).The maximum detectable wavelength is limited by the width of the forbidden band of the material constituting the absorption layer. By applying a positive polarization at the end of this layer opposite to the window layer, it is possible to use materials having a small prohibited bandwidth while retaining a good emission efficiency, and therefore it is possible to detect longer wavelength light. A polarization of the absorption layer can be applied by means of a connection with this layer, or by a very thin metal electrode interposed between this layer and the emission layer. Such a photocathode is described in the article by: J.J. ESCHER et al, IEEE-EDL2, 123-125 (1981).

Une telle photocathode a un rendement qui est limité notamment par les caractéristiques de la couche d'absorption. En effet, l'épaisseur de cette couche est déterminée en réalisant un compromis entre, d'une part, une absorption élevée des photons de la lumière à détecter, qui nécessite une épaisseur aussi grande que possible, et, d'autre part, un rendement élevé de la transmission des électrons ainsi qu'un faible courant d'obscu­rité, qui nécessitent une épaisseur aussi faible que possible de la couche d'absorption et pour obtenir une quantification bi-dimensionnelle des niveaux d'énergie des électrons et des trous dans le plan des sous-couches.Such a photocathode has a yield which is limited in particular by the characteristics of the absorption layer. Indeed, the thickness of this layer is determined by achieving a compromise between, on the one hand, a high absorption of the photons of the light to be detected, which requires a thickness as large as possible, and, on the other hand, a high efficiency of the transmission of electrons as well as a low dark current, which require as little thickness as possible of the absorption layer and to obtain a two-dimensional quantification of the energy levels of the electrons and of the holes in the plane of the sublayers.

Habituellement l'épaisseur de cette couche est de l'ordre de 1 micron, ce qui permet une bonne efficacité de transmission des élec­trons mais est insuffisant pour absorber tous les photons de la lumière à détecter, notamment les photons correspondant aux longueurs d'onde les plus grandes. Le but de l'invention est de réaliser une photocathode ayant un meilleur rendement que la photocathode de type connu. L'objet de l'invention est une photocathode comportant une couche d'absorption constituée d'une pluralité de sous-couches particulières procurant à la fois une très bonne absorption des photons, une bonne efficacité de transmis­sion des électrons libérés par les photons, et un faible courant d'obscu­rité.Usually the thickness of this layer is of the order of 1 micron, which allows good electron transmission efficiency but is insufficient to absorb all the photons of the light to be detected, in particular the photons corresponding to the wavelengths bigger. The object of the invention is to produce a photocathode having a better efficiency than the photocathode of known type. The object of the invention is a photocathode comprising an absorption layer consisting of a plurality of particular sub-layers providing both very good absorption of photons, good transmission efficiency of the electrons released by the photons, and a weak current of darkness.

Selon l'invention une photocathode à rendement élevé, est carac­térisée en ce qu'elle comporte une couche dite d'absorption comportant une pluralité de premières sous-couches constituées d'un matériau semi­conducteur ayant une largeur de bande interdite suffisamment petite et ayant une épaisseur suffisamment grande pour convertir en paires élec­tron-trou les photons de la lumière à détecter, alternées avec une pluralité de secondes sous-couches constituées d'un matériau semi-con­ducteur ayant une largeur de bande interdite supérieure à celle des premières sous-couches, ayant une épaisseur suffisamment faible pour que les électrons puissent les traverser par effet tunnel, les premières et les secondes sous-couches ayant un dopage permettant d'obtenir une quantifi­cation bi-dimensionnelle des niveaux d'énergie des électrons et des trous dans le plan des premières sous-couches et ajustant le niveau de Fermi près du niveau de valence des premières sous-couches.According to the invention a high efficiency photocathode, is characterized in that it comprises a so-called absorption layer comprising a plurality of first sub-layers made of a semiconductor material having a sufficiently small band gap width and having a thickness large enough to convert photons of the light to be detected into electron-hole pairs, alternated with a plurality of second sublayers made of a semiconductor material having a band gap greater than that of the first sublayers, having a thickness sufficiently small for the electrons to be able to pass through them by tunnel effect, the first and second sublayers having a doping making it possible to obtain a two-dimensional quantification of the energy levels of the electrons and of the holes in the plane of the first sublayers and adjusting the Fermi level near the valence level of the first sublayers.

La figure représente, dans sa partie supérieure, une coupe d'une portion d'un exemple de réalisation de la photocathode selon l'invention et, dans sa partie inférieure, un diagramme des niveaux d'énergie E des porteurs dans cet exemple de réalisation.The figure shows, in its upper part, a section of a portion of an exemplary embodiment of the photocathode according to the invention and, in its lower part, a diagram of the energy levels E of the carriers in this exemplary embodiment.

Cet exemple de réalisation comporte :
- Une première couche 1, collée sur une paroi de verre non représentée et à travers laquelle elle reçoit des photons 29, cette couche 1 étant transparente pour toutes les longueurs d'onde de la lumière à détecter et ayant pour fonction de permettre le collage de la photoca­thode sur la paroi de verre ;
- Une couche d'absorption constituée de douze premières sous-­couches 2 à 13 et de douze secondes sous-couches 16 à 27 alternées avec les premières ;
- Une couche 14 dite couche de transport, ayant pour fonction de transmettre vers le vide des électrons libérés dans la couche d'absorption ;
- Une dernière couche 15 constituée d'un matériau qui diminue l'affinité électronique de la surface de la couche 14 pour lui permettre d'émettre dans le vide des électrons 28.
This embodiment example includes:
- A first layer 1, bonded to a glass wall (not shown) and through which it receives photons 29, this layer 1 being transparent for all the wavelengths of light to be detected and having the function of allowing the bonding of the photocathode on the glass wall;
- An absorption layer consisting of twelve first sublayers 2 to 13 and twelve second sublayers 16 to 27 alternating with the first;
- A layer 14 called the transport layer, having the function of transmitting to the vacuum electrons released in the absorption layer;
- A last layer 15 made of a material which reduces the electronic affinity of the surface of layer 14 to allow it to emit electrons 28 in a vacuum.

La partie inférieure de la figure représente les courbes Ec et Ev des niveaux d'énergie de la bande de conduction et de la bande de valence dans les couches de semi-conducteur, le niveau de Fermi EF de ces couches, et le potentiel du vide Evi.The lower part of the figure represents the curves Ec and Ev of the energy levels of the conduction band and the valence band in the semiconductor layers, the Fermi E F level of these layers, and the potential of the empty E vi .

La couche 1 est constituée d'un matériau semi-conducteur de type P⁺ constitué de Ga0,6 Al0,4 As dopé avec 5.10¹⁷ atomes de zinc par cm³, dont la largeur de bande interdite est égale à 2e.V et qui est donc transparent pour toutes les longueurs d'onde de la lumière à détecter. Les premières sous-couches 2 à 13 et la couche 14 sont constituées d'un semi-­conducteur de type P⁺ ayant une largeur de bande interdite inférieure à celle du matériau de la couche 1, par exemple 1,4 e.V, pour absorber tous les photons à convertir en paires électron-trou. Dans cet exemple, les sous-couches 2 à 13 sont constituées de Ga As dopé avec 10¹⁹ atomes de zinc par cm³ et ont chacune une épaisseur de 0,025 microns. La couche 14 est constituée de Ga As dopé avec 10¹⁹ atomes de zinc par cm³ et a une épaisseur de 0,1 micron. Son épaisseur doit être supérieure à celle de la zone de charge d'espace due à la présence de la surface du semi-­conducteur, la largeur de cette zone étant inférieure à 0,05 micron.Layer 1 is made of a P⁺ type semiconductor material consisting of Ga 0.6 Al 0.4 As doped with 5.10¹⁷ zinc atoms per cm³, whose prohibited bandwidth is equal to 2e.V and which is therefore transparent for all the wavelengths of light to be detected. The first sublayers 2 to 13 and the layer 14 consist of a P⁺ type semiconductor having a band gap less than that of the material of layer 1, for example 1.4 eV, to absorb all the photons to be converted into electron-hole pairs. In this example, the sublayers 2 to 13 consist of Ga As doped with 10¹⁹ zinc atoms per cm³ and each have a thickness of 0.025 microns. Layer 14 consists of Ga As doped with 10¹⁹ zinc atoms per cm³ and has a thickness of 0.1 micron. Its thickness must be greater than that of the space charge zone due to the presence of the surface of the semiconductor, the width of this zone being less than 0.05 micron.

Les secondes sous-couches 16 à 27 sont constituées du même matériau que la couche 1, dans cet exemple de réalisation, et ont donc la même largeur de bande interdite. Elles sont peu ou non dopées de manière à ce que les courbes des niveaux d'énergie permettent d'obtenir dans les sous-couches 2 à 13 une quantification bi-dimensionnelle des niveaux d'énergie des électrons et des trous. Cette quantification bi-dimension­nelle procure une augmentation du coefficient d'absorption des photons. Les sous-couches 16 à 27 ont chacune une épaisseur de 0,003 micron qui permet aux électrons de les traverser par effet tunnel et qui procure un bon rendement de transmission des électrons libérés par les photons dans les sous-couches 2 à 13. L'épaisseur des sous-couches 16 à 27 doit être inférieure à 0,0045 micron pour qu'il y ait un bon rendement de transmis­sion. L'épaisseur des sous-couches 2 à 13 doit être inférieure à 0,03 micron pour obtenir l'augmentation du coefficient d'absorption due à la quantification bi-dimensionnelle des niveaux d'énergie des électrons et des trous dans le plan des sous-couches 2 à 13, mais doit être suffisamment grande pour ne pas trop élever le seuil d'absorption des photons par effet de confinement quantique pour permettre l'absorption des photons de grande longueur d'onde.The second sub-layers 16 to 27 are made of the same material as the layer 1, in this embodiment, and therefore have the same forbidden bandwidth. They are little or not doped so that the curves of the energy levels make it possible to obtain in the sublayers 2 to 13 a two-dimensional quantification of the energy levels of the electrons and of the holes. This two-dimensional quantification provides an increase in the absorption coefficient of photons. The sublayers 16 to 27 each have a thickness of 0.003 microns which allows the electrons to pass through them by tunnel effect and which provides a good efficiency of transmission of the electrons released by the photons in the sublayers 2 to 13. The thickness sublayers 16 to 27 must be less than 0.0045 microns for there to be a good transmission efficiency. The thickness of the sublayers 2 to 13 must be less than 0.03 micron to obtain the increase in the absorption coefficient due to the two-dimensional quantification of the energy levels of the electrons and the holes in the plane of the sublayers -layers 2 to 13, but must be large enough not to raise the photon absorption threshold too much by quantum confinement effect to allow absorption of long wavelength photons.

Le niveau d'énergie Ec de la bande de conduction et le niveau d'énergie Ev de la bande de valence comportent des marches de potentiel, correspondant aux sous-couches 16 à 27. Il est possible de démontrer par le calcul que cette alternance de sous-couches procure un coefficient d'absorption des photons plus élevée qu'une couche d'absorption constituée d'un matériau semi-conducteur homogène. Dans cet exemple de réalisa­tion le coefficient d'absorption est multiplié par un facteur 3 par rapport à une photocathode de type connu.The energy level E c of the conduction band and the energy level Ev of the valence band comprise steps of potential, corresponding to the sublayers 16 to 27. It is possible to demonstrate by calculation that this alternation of sub-layers provides a higher photon absorption coefficient than an absorption layer made of a homogeneous semiconductor material. In this exemplary embodiment, the absorption coefficient is multiplied by a factor of 3 compared to a photocathode of known type.

La couche 15 est constituée d'une couche très mince de Cs + O ayant pour effet d'abaisser le potentiel du vide Evi en dessous du niveau de la bande de conduction des sous-couches 2 à 13 pour faciliter l'émission des électrons 28 dans le vide. La couche 15 étant extrémement mince, les électrons la traversent par effet tunnel.The layer 15 consists of a very thin layer of Cs + O having the effect of lowering the potential of the vacuum E vi below the level of the conduction band of the sublayers 2 to 13 to facilitate the emission of electrons 28 in a vacuum. As the layer 15 is extremely thin, the electrons pass through it by tunnel effect.

La portée de l'invention ne se limite pas à l'exemple de réalisation décrit ci-dessus. De nombreuses variantes sont à la portée de l'homme de l'art, notamment en ce qui concerne le nombre des sous-couches et les matériaux qui les constituent. Le matériau constituant les sous-couches 16 à 27 peut-être différent du matériau de la couche fenêtre 1, avec peu ou pas de dopage, de type P ou N. Le dopage des sous-couches 2 à 13 doit être choisi en conséquence afin que le niveau de Fermi EF de l'ensemble des sous-couches 2 à 13 et 16 à 27 soit proche du niveau de la bande de valence des sous-couches 2 à 13 et qu'il y ait quantification bi-dimension­nelle des niveaux d'énergie des porteurs dans le plan des sous-couches 2 à 13. Il est à la portée de l'homme de l'art de choisir les matériaux réalisant ces deux conditions. Par exemple, les sous-couches 2 à 13 peuvent être constituées de Gay As1-x Inx P1-y et les sous-couches 16 à 27 peuvent être constituées alors de In P. Dans une autre variante, les sous-couches 2 à 13 peuvent être constituées de Ga Sb et les sous-couches 16 à 27 sont alors constituées de Ga Al As Sb. Cependant il peut être souhaitable que le matériau semi-conducteur utilisé pour réaliser les sous-couches 16 à 27 ait un paramètre de maille proche de celui du matériau des sous-couches 2 à 13 afin de ne pas augmenter le courant d'obscurité de la photocathode.The scope of the invention is not limited to the embodiment described above. Many variants are within the reach of those skilled in the art, in particular as regards the number of sub-layers and the materials that make them up. The material constituting the sublayers 16 to 27 may be different from the material of the window layer 1, with little or no doping, of type P or N. The doping of the sublayers 2 to 13 must be chosen accordingly in order to that the Fermi E F level of all of the sublayers 2 to 13 and 16 to 27 is close to the level of the valence band of the sublayers 2 to 13 and that there is a two-dimensional quantification of the levels of energy of the carriers in the plane of the sub-layers 2 to 13. It is within the reach of the skilled person to choose the materials fulfilling these two conditions. For example, the sublayers 2 to 13 can consist of Ga y As 1-x In x P 1-y and the sublayers 16 to 27 can then consist of In P. In another variant, the sublayers layers 2 to 13 can consist of Ga Sb and the sublayers 16 to 27 then consist of Ga Al As Sb. However, it may be desirable for the semiconductor material used to make the sublayers 16 to 27 to have a mesh parameter close to that of the material for the sublayers 2 to 13 so as not to increase the dark current of the photocathode.

Dans l'exemple de réalisation décrit précédemment le niveau de Fermi EF des différentes couches de semi-conducteur est identique, il n'est pas prévu de polarisation. Pour permettre la détection de photons de longueur d'onde supérieure, il peut être prévu une polarisation réalisée d'une manière analogue à celle de l'art antérieur, au moyen d'une électrode métallique mince située entre la couche 14 et la couche 15 ou au moyen d'une connexion reliant la couche 14 à la borne positive d'un générateur dont la borne négative est connectée à la couche 1.In the example of embodiment described above, the Fermi E F level of the different semiconductor layers is identical, there is no provision for polarization. To allow the detection of photons of longer wavelength, provision may be made for polarization carried out in a manner analogous to that of the prior art, by means of a thin metal electrode situated between layer 14 and layer 15. or by means of a connection connecting layer 14 to the positive terminal of a generator whose negative terminal is connected to layer 1.

L'invention peut être appliquée aux tubes de prise de vues pour caméra de télévision et aux tubes intensificateurs d'image.The invention can be applied to picture camera tubes and image intensifier tubes.

Claims (2)

1. Photocathode à rendement élevé, caractérisé en ce qu'elle comporte une couche dite d'absorption comportant une pluralité de premières sous-couches (2 à 13) constituées d'un matériau semi-conduc­teur ayant une largeur de bande interdite suffisamment petite et ayant une épaisseur suffisamment grande pour convertir en paires électron-trou les photons (29) de la lumière à détecter, alternées avec une pluralité de secondes sous-couches (16 à 27) constituées d'un matériau semi-conduc­teur ayant une largeur de bande interdite supérieure à celle des premières sous-couches (2 à 13), ayant une épaisseur suffisamment faible pour que les électrons puissent les traverser par effet tunnel, les premières et les secondes sous-couches (2 à 13 et 16 à 27) ayant un dopage permettant d'obtenir une quantification bi-dimensionnelle des niveaux d'énergie des électrons et des trous dans le plan des premières sous-couches (2 à 13) et ajustant le niveau de Fermi près du niveau de valence des premières sous-­couches (2 à 13).1. High efficiency photocathode, characterized in that it comprises a so-called absorption layer comprising a plurality of first sub-layers (2 to 13) made of a semiconductor material having a sufficiently small band gap prohibited and having a thickness large enough to convert the photons (29) of the light to be detected into electron-hole pairs, alternated with a plurality of second sublayers (16 to 27) made of a semiconductor material having a bandwidth prohibited higher than that of the first sublayers (2 to 13), having a thickness sufficiently small so that the electrons can cross them by tunnel effect, the first and the second sublayers (2 to 13 and 16 to 27) having a doping to obtain a two-dimensional quantification of the energy levels of the electrons and holes in the plane of the first sublayers (2 to 13) and adjusting the Fermi level near the valence level of the first sublayers layers (2 to 13). 2. Photocathode selon la revendication 1, caractérisée en ce que les premières sous-couches (2 à 13) composant la couche d'absorption sont constituées de Ga As et ont une épaisseur inférieure à 0,03 micron chacune ; et en ce que les secondes sous-couches (16 à 27) sont consti­tuées de Ga0,6 Al0,4 As et ont une épaisseur inférieure à 0,0045 micron.2. Photocathode according to claim 1, characterized in that the first sub-layers (2 to 13) making up the absorption layer consist of Ga As and have a thickness of less than 0.03 micron each; and in that the second sub-layers (16 to 27) consist of Ga 0.6 Al 0.4 As and have a thickness less than 0.0045 microns.
EP86402618A 1985-11-29 1986-11-25 Hightly efficient photocathode Expired - Lifetime EP0228323B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8517719A FR2591033B1 (en) 1985-11-29 1985-11-29 HIGH YIELD PHOTOCATHODE
FR8517719 1985-11-29

Publications (2)

Publication Number Publication Date
EP0228323A1 true EP0228323A1 (en) 1987-07-08
EP0228323B1 EP0228323B1 (en) 1990-04-04

Family

ID=9325295

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86402618A Expired - Lifetime EP0228323B1 (en) 1985-11-29 1986-11-25 Hightly efficient photocathode

Country Status (5)

Country Link
US (1) US4749903A (en)
EP (1) EP0228323B1 (en)
JP (1) JPS62133634A (en)
DE (1) DE3670176D1 (en)
FR (1) FR2591033B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0810621A1 (en) * 1996-05-28 1997-12-03 Hamamatsu Photonics K.K. Semiconductor photocathode and semiconductor photocathode apparatus using the same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05234501A (en) * 1992-02-25 1993-09-10 Hamamatsu Photonics Kk Photoelectron emitting surface and electron tube using the same
FR2688343A1 (en) * 1992-03-06 1993-09-10 Thomson Tubes Electroniques INTENSIFYING IMAGE TUBE, IN PARTICULAR RADIOLOGICAL, OF THE TYPE A GALETTE OF MICROCHANNELS.
FR2698482B1 (en) * 1992-11-20 1994-12-23 Thomson Tubes Electroniques Device for generating images by luminescence effect.
US5404026A (en) * 1993-01-14 1995-04-04 Regents Of The University Of California Infrared-sensitive photocathode
FR2758888B1 (en) * 1997-01-27 1999-04-23 Thomson Csf PROCESS FOR FINE MODELING OF CLOUD GROUND RECEIVED BY RADAR
FR2777112B1 (en) 1998-04-07 2000-06-16 Thomson Tubes Electroniques IMAGE CONVERSION DEVICE
CN107895681A (en) * 2017-12-06 2018-04-10 中国电子科技集团公司第十二研究所 A kind of photocathode and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2075693A5 (en) * 1970-01-19 1971-10-08 Varian Associates
US4063269A (en) * 1976-01-09 1977-12-13 Hamamatsu Terebi Kabushiki Kaisha Semiconductor photoelectron emission device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2116866A5 (en) * 1970-12-10 1972-07-21 Electronique & Physique HETEROJUNCTION IMAGE ANALYZER DEVICE
US3958143A (en) * 1973-01-15 1976-05-18 Varian Associates Long-wavelength photoemission cathode
US4587456A (en) * 1984-01-17 1986-05-06 Hitachi, Ltd. Image pickup tube target

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2075693A5 (en) * 1970-01-19 1971-10-08 Varian Associates
US4063269A (en) * 1976-01-09 1977-12-13 Hamamatsu Terebi Kabushiki Kaisha Semiconductor photoelectron emission device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
IEEE ELECTRON DEVICE LETTERS, vol. EDL-2, no. 5, mai 1981, pages 123-125, IEEE, New York, US; J.S. ESCHER et al.: "Photoelectric imaging in the 0.9-1.6 micron range" *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0810621A1 (en) * 1996-05-28 1997-12-03 Hamamatsu Photonics K.K. Semiconductor photocathode and semiconductor photocathode apparatus using the same
US5923045A (en) * 1996-05-28 1999-07-13 Hamamatsu Photonics K.K. Semiconductor photocathode and semiconductor photocathode apparatus using the same

Also Published As

Publication number Publication date
FR2591033B1 (en) 1988-01-08
EP0228323B1 (en) 1990-04-04
FR2591033A1 (en) 1987-06-05
US4749903A (en) 1988-06-07
DE3670176D1 (en) 1990-05-10
JPS62133634A (en) 1987-06-16

Similar Documents

Publication Publication Date Title
EP0230818B1 (en) Photo cathode with internal amplification
EP0186225B1 (en) Image sensor for a dual-mode "day-night" camera
EP0228323B1 (en) Hightly efficient photocathode
EP0566494B1 (en) Electron beam pumped asymmetric laser cavity with semiconductor heterostructure
FR2757685A1 (en) HIGH RESISTIVITY SEMICONDUCTOR IONIZING RADIATION DETECTION DEVICE
EP0960441B1 (en) Method for tight sealing of a radiation detector and detector obtained by this method
EP3465725B1 (en) Method of producing a nanowire photocathode
EP1903612A1 (en) Avalanche photodiode
JP3524249B2 (en) Electron tube
EP0226503B1 (en) Low dark current photocathode
EP3281217B1 (en) Multi-band photocathode
Liu et al. Theoretical study on photoemission of two-dimensional variable-Al composition AlxGa1-xN nanorod array photocathode
EP0319080B1 (en) X-ray image intensifier tube
FR2573574A1 (en) PHOTOCATHODE FOR THE INFRARED DOMAIN
EP0062553B1 (en) Image intensifier tube target and image intensifier tube with video output comprising such a target
EP3399559A1 (en) Light-emitting diode comprising wavelength conversion layers and method of manufacturing the same
Cao et al. InGaN nanowire array photocathode with high electron harvesting capability
FR2518817A1 (en) PHOTODIODE WITH SEPARATE ABSORPTION AND AVALANCHE ZONES
EP0011021B1 (en) Process for making semiconductor components with optoelectronic conversion properties
EP0274940A1 (en) Device with avalanche charge carrier multiplication, and its use in photodetectors, photocathodes and infrared imagers
WO2015063314A1 (en) Digital detector possessing a generator of light enabling optical wiping
EP2382672B1 (en) Method of making a photodiode and corresponding photodiode and electromagnetic radiation detector
EP2948988B1 (en) Semiconductor structure and method for manufacturing a semiconductor structure
FR2738080A1 (en) SEMICONDUCTOR-BASED X-RAY DETECTION DEVICE
WO2017032955A1 (en) Photodiode matrix with isolated cathodes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB NL

17P Request for examination filed

Effective date: 19871210

17Q First examination report despatched

Effective date: 19890113

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THOMSON-CSF

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB NL

REF Corresponds to:

Ref document number: 3670176

Country of ref document: DE

Date of ref document: 19900510

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19911019

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19911022

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19911130

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19921125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19930601

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19921125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19930803