EP0230818B1 - Photo cathode with internal amplification - Google Patents

Photo cathode with internal amplification Download PDF

Info

Publication number
EP0230818B1
EP0230818B1 EP86402820A EP86402820A EP0230818B1 EP 0230818 B1 EP0230818 B1 EP 0230818B1 EP 86402820 A EP86402820 A EP 86402820A EP 86402820 A EP86402820 A EP 86402820A EP 0230818 B1 EP0230818 B1 EP 0230818B1
Authority
EP
European Patent Office
Prior art keywords
layer
photocathode
electrons
multiplication
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP86402820A
Other languages
German (de)
French (fr)
Other versions
EP0230818A1 (en
Inventor
Claude Weisbuch
Bernard Munier
Paul De Groot
Guy Moiroud
Yves Henry
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Publication of EP0230818A1 publication Critical patent/EP0230818A1/en
Application granted granted Critical
Publication of EP0230818B1 publication Critical patent/EP0230818B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/34Photo-emissive cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/34Photoemissive electrodes
    • H01J2201/342Cathodes
    • H01J2201/3421Composition of the emitting surface
    • H01J2201/3423Semiconductors, e.g. GaAs, NEA emitters

Definitions

  • the invention relates to a photocathode for a picture tube and an image intensifier tube.
  • the maximum detectable wavelength is limited by the width of the forbidden band of the material constituting the absorption layer.
  • a polarization of the absorption layer can be applied by means of a connection with this layer, or by a very thin metal electrode interposed between this layer and the layer resignation.
  • a photocathode is described in the article by: JJ ESCHER et al, IEEE-EDL2, 123-125 (1981).
  • the object of the invention is to produce a photocathode with internal amplification making it possible to use a microchannel wafer having a lower gain, and therefore imposing less technological constraints, or even to eliminate the microchannel wafer.
  • the object of the invention is a photocathode comprising an absorption layer of particular structure providing a multiplication of the electrons without notably multiplying the current of holes, the latter causing a dark current which constitutes a noise.
  • an internally amplified photocathode comprising a so-called absorption layer made of a P + type semiconductor material, the forbidden band of which is sufficiently narrow to convert the photons of the photons into electron-hole pairs.
  • light to be detected is characterized in that it further comprises at least one so-called electron multiplication layer by ionization, consisting of two sublayers of N-type semiconductor material having respectively two different compositions at the interface of two so-called sublayers, and such that, when this multiplication layer is polarized, the electrons are accelerated in the direction in which they are to be removed and the holes are less accelerated than the electrons; and comprises means making it possible to polarize the multiplication layer.
  • FIG. 1 given by way of illustration represents an embodiment of a photocathode, which is not part of the invention, and two diagrams of the energy levels E of charge carriers inside this photocathode, respectively without polarization and with polarization.
  • FIGS. 2 to 4 each represent an exemplary embodiment of a photocathode according to the invention and two diagrams of the energy levels E of the charge carriers inside these exemplary embodiments, on the one hand without polarization and, on the other hand, with polarization.
  • FIG. 1b represents a diagram of the energy levels E of the charge carriers inside this exemplary embodiment when it is not polarized.
  • the curve E c represents the minimum level of energy of the conduction band
  • E v represents the maximum level of energy of the valence band
  • E F1 represents the Fermi level of layer 1
  • E F5 represents the Fermi level of the metal electrode 5
  • E c6 represents the minimum level of energy of the conduction band of the last layer 6
  • E vi represents the potential of the vacuum.
  • layer 1 has a large forbidden bandwidth, corresponding to the transparency of this layer for the light to be detected.
  • Layer 2 has a smaller forbidden bandwidth than the previous one and makes it possible to detect all the wavelengths of the light to be detected.
  • Layer 3 has a conduction band and a valence band whose energy levels are respectively lower than those of the conduction band and the valence band of the two preceding layers and whose forbidden bandwidth varies linearly with decreasing from layer 2 to layer 4, that is to say in the direction where the electrons are to be removed.
  • layer 3, on the side of layer 2 has a width of the forbidden band equal to that of layer 1 whereas on the side of layer 4 this width is equal to that of layer 4.
  • the slope of the curve E c is almost zero, while the slope of the curve E v is positive in the direction of layer 4.
  • Layer 4 has the same energy levels as layer 2, for its conduction band and its valence band, because in this example layers 2 and 4 are made with the same material and the same doping. In the absence of polarization, the Fermi E F1 level of layer 1 and the Fermi E F5 level of layer 5 are aligned and there are two potential steps in the conduction band and in the valence band, in the diagram area corresponding to layer 3.
  • FIG. 1c represents a diagram of the energy levels of the carriers in the same exemplary embodiment but when a polarization is applied.
  • V is the value of the voltage applied between the metal electrode 5 and the first layer 1
  • the Fermi E F5 level of the electrode 5 is lowered by a value qV with respect to at the Fermi E F1 level of the first layer, q being the value of the charge of an electron.
  • the energy level curves of the conduction band and the valence band of layers 3, 4, and 5 are lowered.
  • the curve of the minimum energy level of the conduction band of layer 3 presents a strong negative slope in the direction of layer 4, corresponding to an acceleration of the electrons in the direction of layer 4. When this acceleration is sufficiently significant the electrons are multiplied by impact ionization.
  • the curve of the maximum energy level of the valence band of layer 3 has a much smaller negative slope, because the gradual variation of the composition of the material gives it a strong positive slope in the absence of polarization .
  • This much lower slope gives the holes an acceleration in the direction of layers 2 and 1, much lower than that provided to the electrons. The holes are therefore multiplied in a much lower ratio than the electrons, which avoids increasing the noise of the photocathode.
  • the curves of the extrema of the energy levels of the conduction band and the valence band of layer 4 are connected to the curves of the extrema of the energy levels of the conduction band and of the valence band of the third layer 3 with a threshold which is practically zero, which allows an easy passage of electrons and holes between layers 3 and 4.
  • the electrons then pass through layer 5 and layer 6 and are ejected in vacuum, their acceleration being sufficient to tunnel through the potential well located at layer 5 and the potential step located at layer 6, layers 5 and 6 being extremely thin.
  • layer 1 consists of Ga 0.6 Al 0.4 As with doping of 5.10 5.1 zinc atoms per cm3 and has a thickness of the order of 1 micron.
  • Layer 2 consists of GaAs with a doping of 1019 zinc atoms per cm3, and has a thickness of 2 microns.
  • Layer 3 consists of Ga 1-x Al x As in which x varies from 0.6 to 0 from layer 3 to layer 4 and whose doping consists of 1015 zinc atoms per cm3. The thickness of layer 3 is 1 micron. It is chosen so as to be a little less than the diffusion length of the carriers.
  • Layer 4 is made of the same material as layer 2 and has a thickness of 0.1 microns.
  • An alternative embodiment may consist in eliminating the metal electrode 5 and in applying the polarization by connecting the positive terminal of the generator V to the layer 4.
  • bias voltage V is chosen such that the slope of the curve E v of the minimum level of energy of the conduction band of layer 3 is negative in the direction of layer 4 in order to accelerate the electrons.
  • this bias voltage is of the order of 15 volts.
  • the 10 electron multiplication layers are identical and each has two sublayers.
  • the layer multiplication 32-33 comprises a first sublayer 32 and a second sublayer 33 which are made of two semiconductor materials of type N type having respectively two different compositions corresponding to two different widths for the band gap, and these two widths being greater than that of the material of the absorption layer 31.
  • FIG. 2b represents a diagram of the energy levels of the carriers at the various points of this exemplary embodiment, in the absence of polarization. It appears that the curves E c and E v of the extrema of the energy levels of the conduction band and of the valence band in the layers 32 to 40 comprise steps of potential, corresponding to the sublayers 33, 35,. .., 37, 39 which have a prohibited bandwidth greater than that of the sublayers 32, 34, ..., 36, 38, 40.
  • FIG. 2c represents a diagram of the energy levels of the charge carriers at different points of this exemplary embodiment, when a polarization of value V is applied to the layer 41 relative to the layer 30.
  • the curves E c and E v of the extrema of the energy levels of the conduction band and of the valence band have a negative slope corresponding to an acceleration of the electrons in the direction of layer 41, that is to say say in the direction where the electrons are to be evacuated, and an acceleration of the holes in the direction of the layer 31. This acceleration is sufficient for the electrons to tunnel through the steps of potential located at the limit between the sublayers 32 and 33, 34 and 35, ..., 38 and 39.
  • the holes undergo a much less effective multiplication because the tunnel effect is weaker because of their effective mass more higher than that of electrons.
  • the materials constituting the sub-layers 32, 33, ..., 39, 40 are chosen such that the potential steps in the valence band are lower than in the conduction band to communicate to the holes a weaker acceleration than with electrons.
  • the number of electrons can be multiplied up to twice, each time a potential step is crossed, if the polarization is sufficient.
  • the multiplication factor can theoretically reach 103 for 10 multiplication layers, each comprising two sublayers.
  • the polarization V is of the order of 20 volts
  • each sublayer 32, 34, ..., 36, 38, 40 consists of Ga 0.9 Al 0.1 As having a width band gap of 1.56 ev and a thickness of 0.05 micron
  • each sublayer 33, 35, ..., 37, 39 consists of Ga 0.7 Al 0.3 As having a band width prohibited of 1.8 ev and a thickness of 0.05 micron.
  • the thickness of a set of two successive sublayers has a value which is chosen to be of the same order of magnitude as the mean free path of ionization by impact of electrons.
  • the ideal composition of the materials constituting these two types of sub-layers would be such that the difference in level of their conduction bands is greater than the ionization energy of the material having the smallest prohibited bandwidth among these two materials.
  • a composition is chosen such that the potential discontinuity in the conduction band is greater than in the valence band, so that the impact ionization of the electrons is more effective than that of the holes.
  • the energy missing from the hot electrons produced by the tunnel effect, to effect impact ionization, is supplied to the electrons by the polarization field.
  • the choice of the composition of materials and the choice of polarization are within the reach of ordinary skill in the art.
  • FIG. 3b represents a diagram of the energy levels of the carriers in this exemplary embodiment, in the absence of polarization.
  • the curves E c and E v of the energy level extrema have a sawtooth shape consisting of a slope and a steep flank. Each sawtooth has a positive slope for the conduction band and a negative band for the valence band, in the direction where the electrons are evacuated.
  • each electron multiplication layer, 52 to 55 is 0.03 micron and its composition is Ga 1-x Al x As with x varying linearly from 0 to 0.3 to 0 in the direction from layer 51 to layer 56, that is to say in the direction where the electrons are to be removed.
  • FIG. 3c represents a diagram of the energy levels of the carriers in this exemplary embodiment, when the polarization V is applied.
  • the reduction qV of the Fermi E F56 energy of the layer 56 compared to the Fermi E F50 level of the layer 50 modifies the slope of the saw teeth, this slope becoming negative for the conduction band.
  • the electrons descend along the slopes of the saw teeth without colliding with the vertical flanks whereas in the valence band, the holes meet the flanks of the saw teeth which constitute potential markets.
  • the ideal composition of the materials would be such that the height of the potential steps would be greater than the ionization energy of the material with the smallest band gap, that is to say Ga 0.7 Al 0.3 As in this example.
  • a composition is chosen such that the potential discontinuity in the conduction band is as large as possible.
  • the energy missing from an electron that has just crossed a potential discontinuity, to effect impact ionization, is supplied by the polarization field.
  • the choice of materials and the choice of polarization fulfilling these conditions are within the reach of ordinary skill in the art. For 20 multiplication layers thus produced, the multiplication factor is theoretically of the order of 106.
  • This variant embodiment may include other materials.
  • the difference in bandwidth prohibited is 0.8 eV and the bias voltage is approximately 20 V for 20 multiplication layers 52, 53, ... having a thickness of the order of 0.03 microns.
  • This alternative embodiment may include other materials: Ga Al As for layer 50, Ga As for layer 51, Ga 1-x Al x As with x varying from 0 to 1 for the layers 52, ..., 55, and Ga As for layer 56.
  • FIG. 4a shows a section of a portion of another exemplary embodiment of the photocathode according to the invention.
  • This example differs only from the previous example by an additional layer 60 inserted inside the layer 56.
  • the additional layer 60 consists of a P+ type semiconductor material having a band gap greater than that of the material layers 56 and 51 to create a potential barrier in the valence band, to stop most of the holes. This barrier makes it possible to reduce the current of holes which is the source of unnecessary electrical consumption and of a dark current, since it creates electron-hole pairs by ionization.
  • This additional layer may consist, for example, of Ga 0.6 Al 0.4 As having a thickness of 0.003 microns and doped with 1019 zinc atoms per cm3.
  • Such a layer 60 can also be provided in layers 4 and 41 of the first and second embodiments of the photocathode according to the invention.
  • the invention is not limited to the exemplary embodiments described above. Many variants are within the reach of those skilled in the art, in particular as regards the number of electron multiplication layers and the materials constituting them.
  • the invention can be applied in particular to shooting tubes for television cameras and to image intensifier tubes, for shooting at low light levels.

Landscapes

  • Common Detailed Techniques For Electron Tubes Or Discharge Tubes (AREA)
  • Image-Pickup Tubes, Image-Amplification Tubes, And Storage Tubes (AREA)

Description

L'invention concerne une photocathode pour tube de prise de vues et pour tube intensificateur d'image.The invention relates to a photocathode for a picture tube and an image intensifier tube.

Il est connu de réaliser une photocathode comportant principalement :

  • une couche, dite couche fenêtre, constituée de semi-conducteur de type P⁺ dont la bande interdite est suffisamment large pour que cette couche soit transparente pour les longueurs d'onde de la lumière à détecter, et qui est collée sur une paroi de verre recevant la lumière à détecter ;
  • une couche, dite couche d'absorption, constituée d'un semi-conducteur de type P⁺ dont la bande interdite a une largeur suffisamment faible pour convertir en paires électron-trou les photons de la lumière à détecter ;
  • une couche, dite couche d'émission, constituée d'un matériau donnant à l'extrémité de la couche d'absorption une affinité électronique négative pour émettre dans le vide les électrons libérés dans la couche d'absorption.
It is known to produce a photocathode comprising mainly:
  • a layer, called window layer, made of P⁺ type semiconductor whose band gap is wide enough for this layer to be transparent for the wavelengths of light to be detected, and which is bonded to a glass wall receiving the light to be detected;
  • a layer, called absorption layer, consisting of a P⁺ type semiconductor whose forbidden band has a sufficiently small width to convert into photon-hole pairs the photons of the light to be detected;
  • a layer, called the emission layer, made of a material giving the end of the absorption layer a negative electronic affinity for emitting in a vacuum the electrons released in the absorption layer.

La longueur d'onde maximale détectable est limitée par la largeur de la bande interdite du matériau constituant la couche d'absorption. En appliquant une polarisation positive à l'extrémité de cette couche opposée à la couche fenêtre, il est possible d'utiliser des matériaux ayant une faible largeur de bande interdite tout en conservant un bon rendement d'émission et donc il est possible de détecter de la lumière de longueur d'onde plus grande.The maximum detectable wavelength is limited by the width of the forbidden band of the material constituting the absorption layer. By applying a positive polarization at the end of this layer opposite to the window layer, it is possible to use materials having a small prohibited bandwidth while retaining a good emission efficiency and therefore it is possible to detect longer wavelength light.

Une polarisation de la couche d'absorption peut être appliquée au moyen d'une connexion avec cette couche, ou par une électrode métallique très mince intercalée entre cette couche et la couche d'émission. Une telle photocathode est décrite dans l'article de : J.J. ESCHER et al, IEEE-EDL2, 123-125 (1981).A polarization of the absorption layer can be applied by means of a connection with this layer, or by a very thin metal electrode interposed between this layer and the layer resignation. Such a photocathode is described in the article by: JJ ESCHER et al, IEEE-EDL2, 123-125 (1981).

Pour réaliser un tube de prise de vues à très bas niveau d'éclairement, notamment pour réaliser un tube intensificateur d'image, il est connu de placer, en aval de la photocathode, une galette de microcanaux alimentés par un générateur de haute tension et permettant une multiplication des électrons émis dans le vide par la photocathode. Une telle galette de microcanaux est très efficace pour multiplier ces électrons mais impose de nombreuses contraintes technologiques, notamment impose d'utiliser un générateur de haute tension. Le but de l'invention est de réaliser une photocathode à amplification interne permettant d'utiliser une galette de microcanaux ayant un gain moins élevé, et donc imposant moins de contraintes technologiques, voire même de supprimer la galette de microcanaux. L'objet de l'invention est une photocathode comportant une couche d'absorption de structure particulière procurant une multiplication des électrons sans multiplier notablement le courant de trous, ce dernier provoquant un courant d'obscurité qui constitue un bruit.To make a shooting tube with a very low level of illumination, in particular to make an image intensifier tube, it is known to place, downstream of the photocathode, a wafer of microchannels supplied by a high voltage generator and allowing a multiplication of the electrons emitted in the vacuum by the photocathode. Such a microchannel wafer is very effective in multiplying these electrons but imposes numerous technological constraints, in particular imposes the use of a high voltage generator. The object of the invention is to produce a photocathode with internal amplification making it possible to use a microchannel wafer having a lower gain, and therefore imposing less technological constraints, or even to eliminate the microchannel wafer. The object of the invention is a photocathode comprising an absorption layer of particular structure providing a multiplication of the electrons without notably multiplying the current of holes, the latter causing a dark current which constitutes a noise.

Selon l'invention une photocathode à amplification interne, comportant une couche dite d'absorption constituée d'un matériau semi-conducteur de type P+, dont la bande interdite a une largeur suffisamment faible pour convertir en paires électron-trou les photons de la lumière à détecter, est caractérisée en ce qu'elle comporte en outre au moins une couche dite de multiplication des électrons par ionisation, constituée de deux sous-couches de matériau semi- conducteur de type N ayant respectivement deux compositions différentes à l'interface des deux dites sous-couches, et telle que, lorsque cette couche de multiplication est polarisée, les électrons sont accélérés dans la direction où ils sont à évacuer et les trous sont moins accélérés que les électrons; et comporte des moyens permettant de polariser la couche de multiplication.According to the invention, an internally amplified photocathode, comprising a so-called absorption layer made of a P + type semiconductor material, the forbidden band of which is sufficiently narrow to convert the photons of the photons into electron-hole pairs. light to be detected, is characterized in that it further comprises at least one so-called electron multiplication layer by ionization, consisting of two sublayers of N-type semiconductor material having respectively two different compositions at the interface of two so-called sublayers, and such that, when this multiplication layer is polarized, the electrons are accelerated in the direction in which they are to be removed and the holes are less accelerated than the electrons; and comprises means making it possible to polarize the multiplication layer.

L'invention sera mieux comprise et d'autres détails apparaîtront à l'aide de la description ci-dessus et des figures l'accompagnant:
      La figure 1 donnée à titre illustratif représente un exemple de réalisation d'une photocathode, qui ne fait pas partie de l'invention, et deux diagrammes des niveaux d'énergie E de porteurs de charge à l'intérieur de cette photocathode, respectivement sans polarisation et avec polarisation.
The invention will be better understood and other details will appear from the above description and the accompanying figures:
FIG. 1 given by way of illustration represents an embodiment of a photocathode, which is not part of the invention, and two diagrams of the energy levels E of charge carriers inside this photocathode, respectively without polarization and with polarization.

Les figures 2 à 4 représentent chacune un exemple de réalisation d'une photocathode selon l'invention et deux diagrammes des niveaux d'énergie E des porteurs de charge à l'intérieur de ces exemples de réalisation, d'une part sans polarisation et, d'autre part, avec polarisation.FIGS. 2 to 4 each represent an exemplary embodiment of a photocathode according to the invention and two diagrams of the energy levels E of the charge carriers inside these exemplary embodiments, on the one hand without polarization and, on the other hand, with polarization.

La figure 1a montre une coupe d'une portion d'un premier exemple de réalisation d'une photocathode donné à titre illustratif. Ce premier exemple comporte:

  • Une première couche 1, transparente pour toutes les longueurs d'onde de la lumière à détecter, constituée d'un matériau semi-conducteur de type P⁺ collé sur une paroi de verre non représentée, et recevant à travers cette paroi des photons 8;
  • Une seconde couche 2, dite couche d'absorption, constituée d'un matériau semi-conducteur de type P⁺, pour convertir chaque photon 8 en une paire électron-trou;
  • Une troisième couche 3, dite couche de multiplication des électrons, constituée d'un matériau semi-conducteur du type N⁻ dont la composition varie continument;
  • Une quatrième couche 4, dite couche de transport, constituée d'un matériau semi-conducteur de type P⁺, et qui ne fait que transmettre les électrons libérés par les photons 8 dans la couche 3 ;
  • Une électrode métallique 5, reliée à la borne positive d'un générateur de tension V dont la borne négative est reliée à la première couche 1, afin de polariser les quatre couches 1, 2, 3, 4 pour accélérer les électrons libérés par la lumière à détecter;
  • Une dernière couche 6, donnant à la surface de la quatrième couche 4 la propriété d'affinité électronique négative permettant d'émettre dans le vide les électrons 7 transmis par la couche 4.
Figure 1a shows a section of a portion of a first embodiment of a photocathode given by way of illustration. This first example includes:
  • A first layer 1, transparent for all the wavelengths of the light to be detected, consisting of a P⁺ type semiconductor material bonded to a wall of glass not shown, and receiving through this wall photons 8;
  • A second layer 2, called absorption layer, made of a P⁺ type semiconductor material, for converting each photon 8 into an electron-hole pair;
  • A third layer 3, called the electron multiplication layer, consisting of a N⁻ type semiconductor material whose composition varies continuously;
  • A fourth layer 4, called the transport layer, made of a P⁺ type semiconductor material, which only transmits the electrons released by the photons 8 in the layer 3;
  • A metal electrode 5, connected to the positive terminal of a voltage generator V, the negative terminal of which is connected to the first layer 1, in order to polarize the four layers 1, 2, 3, 4 to accelerate the electrons released by the light to detect;
  • A last layer 6, giving the surface of the fourth layer 4 the property of negative electronic affinity enabling the electrons 7 transmitted by layer 4 to be emitted in a vacuum.

La figure 1b représente un diagramme des niveaux d'énergie E des porteurs de charge à l'intérieur de cet exemple de réalisation lorsqu'il n'est pas polarisé. Sur cette figure, la courbe Ec représente le niveau minimal de l'énergie de la bande de conduction, Ev représente le niveau maximal de l'énergie de la bande de valence, EF1 représente le niveau de Fermi de la couche 1, EF5 représente le niveau de Fermi de l'électrode métallique 5, Ec6 représente le niveau minimal de l'énergie de la bande de conduction de la dernière couche 6, et Evi représente le potentiel du vide. Les niveaux d'énergie des bandes de valence de l'électrode métallique 5 et de la dernière couche 6 et sont pas représentés car ils sont très bas.FIG. 1b represents a diagram of the energy levels E of the charge carriers inside this exemplary embodiment when it is not polarized. In this figure, the curve E c represents the minimum level of energy of the conduction band, E v represents the maximum level of energy of the valence band, E F1 represents the Fermi level of layer 1, E F5 represents the Fermi level of the metal electrode 5, E c6 represents the minimum level of energy of the conduction band of the last layer 6, and E vi represents the potential of the vacuum. The energy levels of the valence bands of the metal electrode 5 and of the last layer 6 and are not shown because they are very low.

Sur cette figure, il apparaît que la couche 1 a une grande largeur de bande interdite, correspondant à la transparence de cette couche pour la lumière à détecter. La couche 2 a une largeur de bande interdite plus réduite que la précédente et permettant de détecter toutes les longueurs d'onde de la lumière à détecter. La couche 3 a une bande de conduction et une bande de valence dont les niveaux d'énergie sont respectivement inférieurs à ceux de la bande de conduction et de la bande de valence des deux couches précédentes et dont la largeur de bande interdite varie linéairement en diminuant de la couche 2 vers la couche 4, c'est-à-dire dans la direction où les électrons sont à évacuer. Dans cet exemple, la couche 3, du côté de la couche 2, a une largeur de la bande interdite égale à celle de la couche 1 alors que du côté de la couche 4 cette largeur est égale à celle de la couche 4. Dans la couche 3, la pente de la courbe Ec est à peu près nulle, alors que la pente de la courbe Ev est positive dans la direction de la couche 4.In this figure, it appears that layer 1 has a large forbidden bandwidth, corresponding to the transparency of this layer for the light to be detected. Layer 2 has a smaller forbidden bandwidth than the previous one and makes it possible to detect all the wavelengths of the light to be detected. Layer 3 has a conduction band and a valence band whose energy levels are respectively lower than those of the conduction band and the valence band of the two preceding layers and whose forbidden bandwidth varies linearly with decreasing from layer 2 to layer 4, that is to say in the direction where the electrons are to be removed. In this example, layer 3, on the side of layer 2, has a width of the forbidden band equal to that of layer 1 whereas on the side of layer 4 this width is equal to that of layer 4. In the layer 3, the slope of the curve E c is almost zero, while the slope of the curve E v is positive in the direction of layer 4.

La couche 4 possède les mêmes niveaux d'énergie que la couche 2, pour sa bande de conduction et sa bande de valence, car dans cet exemple les couches 2 et 4 sont réalisées avec le même matériau et le même dopage. En l'absence de polarisation, le niveau de Fermi EF1 de la couche 1 et le niveau de Fermi EF5 de la couche 5 sont alignés et il existe deux marches de potentiel dans la bande de conduction et dans la bande de valence, dans la zone du diagramme correspondant à la couche 3.Layer 4 has the same energy levels as layer 2, for its conduction band and its valence band, because in this example layers 2 and 4 are made with the same material and the same doping. In the absence of polarization, the Fermi E F1 level of layer 1 and the Fermi E F5 level of layer 5 are aligned and there are two potential steps in the conduction band and in the valence band, in the diagram area corresponding to layer 3.

La figure 1c représente un diagramme des niveaux d'énergie des porteurs dans le même exemple de réalisation mais lorsque une polarisation est appliquée. Si V est la valeur de la tension appliquée entre l'électrode métallique 5 et la première couche 1, le niveau de Fermi EF5 de l'électrode 5 est abaissé d'une valeur q.V par rapport au niveau de Fermi EF1 de la première couche, q étant la valeur de la charge d'un électron. Les courbes des niveaux d'énergie de la bande de conduction et de la bande de valence des couches 3, 4, et 5 sont abaissés. La courbe du niveau d'énergie minimal de la bande de conduction de la couche 3 présente une forte pente négative dans la direction de la couche 4, correspondant à une accélération des électrons en direction de la couche 4. Lorsque cette accélération est suffisamment importante les électrons sont multipliés par ionisation par impact. Par contre, la courbe du niveau maximal de l'énergie de la bande de valence de la couche 3 présente une pente négative beaucoup plus faible, car la variation graduelle de la composition du matériau lui donne une forte pente positive en l'absence de polarisation. Cette pente beaucoup plus faible procure aux trous une accélération,en direction des couches 2 et 1, beaucoup plus faible que celle procurée aux électrons. Les trous sont donc multipliés dans un rapport beaucoup plus faible que les électrons, ce qui évite d'augmenter le bruit de la photocathode.FIG. 1c represents a diagram of the energy levels of the carriers in the same exemplary embodiment but when a polarization is applied. If V is the value of the voltage applied between the metal electrode 5 and the first layer 1, the Fermi E F5 level of the electrode 5 is lowered by a value qV with respect to at the Fermi E F1 level of the first layer, q being the value of the charge of an electron. The energy level curves of the conduction band and the valence band of layers 3, 4, and 5 are lowered. The curve of the minimum energy level of the conduction band of layer 3 presents a strong negative slope in the direction of layer 4, corresponding to an acceleration of the electrons in the direction of layer 4. When this acceleration is sufficiently significant the electrons are multiplied by impact ionization. On the other hand, the curve of the maximum energy level of the valence band of layer 3 has a much smaller negative slope, because the gradual variation of the composition of the material gives it a strong positive slope in the absence of polarization . This much lower slope gives the holes an acceleration in the direction of layers 2 and 1, much lower than that provided to the electrons. The holes are therefore multiplied in a much lower ratio than the electrons, which avoids increasing the noise of the photocathode.

Les courbes des extrema des niveaux d'énergie de la bande de conduction et de la bande de valence de la couche 4 se raccordent aux courbes des extrema des niveaux d'énergie de la bande de conduction et de la bande de valence de la troisième couche 3 avec un seuil qui est pratiquement nul, ce qui permet un passage facile des électrons et des trous entre les couches 3 et 4. Les électrons traversent ensuite la couche 5 et la couche 6 et sont éjectés dans le vide, leur accélération étant suffisante pour franchir par effet tunnel le puits de potentiel situé au niveau de la couche 5 et la marche de potentiel située au niveau de la couche 6, les couches 5 et 6 étant extrèmement minces.The curves of the extrema of the energy levels of the conduction band and the valence band of layer 4 are connected to the curves of the extrema of the energy levels of the conduction band and of the valence band of the third layer 3 with a threshold which is practically zero, which allows an easy passage of electrons and holes between layers 3 and 4. The electrons then pass through layer 5 and layer 6 and are ejected in vacuum, their acceleration being sufficient to tunnel through the potential well located at layer 5 and the potential step located at layer 6, layers 5 and 6 being extremely thin.

Dans cet exemple de réalisation, la couche 1 est constituée de Ga0,6 Al0,4 As avec un dopage de 5.10⁷ atomes de zinc par cm³ et a une épaisseur de l'ordre de 1 micron. La couche 2 est constituée de GaAs avec un dopage de 10¹⁹ atomes de zinc par cm³, et a une épaisseur de 2 microns. La couche 3 est constituée de Ga1-x Alx As dans lequel x varie de 0,6 à 0 de la couche 3 à la couche 4 et dont le dopage est constitué de 10¹⁵ atomes de zinc par cm³. L'épaisseur de la couche 3 est de 1 micron. Elle est choisie de façon à être un peu inférieure à la longueur de diffusion des porteurs. La couche 4 est constituée du même matériau que la couche 2 et a une épaisseur de 0,1 micron. Sa surface est recouverte d'une très mince couche d'argent ou d'un maillage en argent pour constituer l'électrode métallique 5, puis est recouverte d'une couche de Cs + O pour lui donner une affinité électronique négative. Une variante de réalisation peut consister à supprimer l'électrode métallique 5 et à appliquer la polarisation en reliant la borne positive du générateur V à la couche 4.In this exemplary embodiment, layer 1 consists of Ga 0.6 Al 0.4 As with doping of 5.10 5.1 zinc atoms per cm³ and has a thickness of the order of 1 micron. Layer 2 consists of GaAs with a doping of 10¹⁹ zinc atoms per cm³, and has a thickness of 2 microns. Layer 3 consists of Ga 1-x Al x As in which x varies from 0.6 to 0 from layer 3 to layer 4 and whose doping consists of 10¹⁵ zinc atoms per cm³. The thickness of layer 3 is 1 micron. It is chosen so as to be a little less than the diffusion length of the carriers. Layer 4 is made of the same material as layer 2 and has a thickness of 0.1 microns. Its surface is covered with a very thin layer of silver or a silver mesh to constitute the metal electrode 5, then is covered with a layer of Cs + O to give it a negative electronic affinity. An alternative embodiment may consist in eliminating the metal electrode 5 and in applying the polarization by connecting the positive terminal of the generator V to the layer 4.

La valeur la tension de polarisation V est choisie telle que la pente de la courbe Ev du niveau minimal de l'énergie de la bande de conduction de la couche 3 soit négative dans la direction de la couche 4 afin d'accélérer les électrons. Dans un exemple de réalisation cette tension de polarisation est de l'ordre de 15 volts.The value of the bias voltage V is chosen such that the slope of the curve E v of the minimum level of energy of the conduction band of layer 3 is negative in the direction of layer 4 in order to accelerate the electrons. In an exemplary embodiment, this bias voltage is of the order of 15 volts.

La figure 2a représente une coupe d'une portion d'un exemple de réalisation d'une photocathode selon l'invention. Cet exemple comporte :

  • une première couche 30 semblable à la première couche 1 du premier exemple de réalisation, transparente à la lumière à détecter ;
  • Une seconde couche 31, qui est une couche d'absorption semblable à la couche 2 du second exemple de réalisation ;
  • Dix couches de multiplication des électrons, constituée de 20 sous-couches : 32, 33, 34, 35,..., 36, 37, 38, 39, 40 ;
  • Une couche de transport 41, semblable à la couche 4 du premier exemple de réalisation mais qui est reliée à la borne positive du générateur de tension V car il n'y a pas d'électrode métallique dans cet exemple de réalisation ;
  • Une dernière couche 42 procurant une affinité électronique négative à la couche 41.
FIG. 2a represents a section of a portion of an exemplary embodiment of a photocathode according to the invention. This example includes:
  • a first layer 30 similar to the first layer 1 of the first embodiment, transparent to the light to be detected;
  • A second layer 31, which is an absorption layer similar to layer 2 of the second embodiment;
  • Ten electron multiplication layers, consisting of 20 sublayers: 32, 33, 34, 35, ..., 36, 37, 38, 39, 40;
  • A transport layer 41, similar to layer 4 of the first exemplary embodiment but which is connected to the positive terminal of the voltage generator V since there is no metal electrode in this exemplary embodiment;
  • A last layer 42 providing a negative electronic affinity to layer 41.

Les 10 couches de multiplication des électrons sont identiques et comportent chacune deux sous-couches. Par exemple, la couche de multiplication 32-33 comporte une première sous-couche 32 et une seconde sous-couche 33 qui sont constituées de deux matériaux semi-conducteurs du type N⁻ ayant respectivement deux compositions différentes correspondant à deux largeurs différentes pour la bande interdite, et ces deux largeurs étant supérieures à celle du matériau de la couche d'absorption 31.The 10 electron multiplication layers are identical and each has two sublayers. For example, the layer multiplication 32-33 comprises a first sublayer 32 and a second sublayer 33 which are made of two semiconductor materials of type N type having respectively two different compositions corresponding to two different widths for the band gap, and these two widths being greater than that of the material of the absorption layer 31.

La figure 2b représente un diagramme des niveaux d'énergie des porteurs aux différents points de cet exemple de réalisation, en l'absence de polarisation. Il apparaît que les courbes Ec et Ev des extrema des niveaux d'énergie de la bande de conduction et de la bande de valence dans les couches 32 à 40 comportent des marches de potentiel, correspondant aux sous-couches 33, 35,..., 37, 39 qui ont une largeur de bande interdite supérieure à celle des sous-couches 32, 34,...,36, 38, 40.FIG. 2b represents a diagram of the energy levels of the carriers at the various points of this exemplary embodiment, in the absence of polarization. It appears that the curves E c and E v of the extrema of the energy levels of the conduction band and of the valence band in the layers 32 to 40 comprise steps of potential, corresponding to the sublayers 33, 35,. .., 37, 39 which have a prohibited bandwidth greater than that of the sublayers 32, 34, ..., 36, 38, 40.

La figure 2c représente un diagramme des niveaux d'énergie des porteurs de charge en différents points de cet exemple de réalisation, lorsque une polarisation de valeur V est appliquée à la couche 41 par rapport à la couche 30. Dans la zone correspondant aux couches 32 à 40 les courbes Ec et Ev des extrema des niveaux d'énergie de la bande de conduction et de la bande de valence ont une pente négative correspondant à une accélération des électrons en direction de la couche 41, c'est-à-dire dans la direction où les électrons sont à évacuer, et une accélération des trous en direction de la couche 31. Cette accélération est suffisante pour que les électrons franchissent par effet tunnel les marches de potentiel situées à la limite entre les sous-couches 32 et 33, 34 et 35,...,38 et 39. Chaque fois qu'un électron franchit l'une des marches de potentiel descendante situées à la limite des sous-couches 33 et 34, 35 et 36, ..., 39 et 40, il subit, à la descente, une accélération brutale qui lui permet de libérer un électron supplémentaire par ionisation par impact, et ces deux électrons franchissent ensuite la marche suivante en créant deux autres électrons supplémentaires.FIG. 2c represents a diagram of the energy levels of the charge carriers at different points of this exemplary embodiment, when a polarization of value V is applied to the layer 41 relative to the layer 30. In the zone corresponding to the layers 32 at 40 the curves E c and E v of the extrema of the energy levels of the conduction band and of the valence band have a negative slope corresponding to an acceleration of the electrons in the direction of layer 41, that is to say say in the direction where the electrons are to be evacuated, and an acceleration of the holes in the direction of the layer 31. This acceleration is sufficient for the electrons to tunnel through the steps of potential located at the limit between the sublayers 32 and 33, 34 and 35, ..., 38 and 39. Each time an electron crosses one of the descending potential steps located at the limit of the sublayers 33 and 34, 35 and 36, ..., 39 and 40, he suffers, on the descent , a brutal acceleration which allows it to release an additional electron by impact ionization, and these two electrons then cross the next step by creating two other additional electrons.

Les trous subissent une multiplication beaucoup moins efficace car l'effet tunnel est plus faible à cause de leur masse effective plus élevée que celle des électrons. D'autre part, les matériaux constituant les sous-couches 32, 33, ..., 39, 40 sont choisis tel que les marches de potentiel dans la bande de valence sont moins hautes que dans la bande de conduction pour communiquer aux trous une accélération plus faible qu'aux électrons.The holes undergo a much less effective multiplication because the tunnel effect is weaker because of their effective mass more higher than that of electrons. On the other hand, the materials constituting the sub-layers 32, 33, ..., 39, 40 are chosen such that the potential steps in the valence band are lower than in the conduction band to communicate to the holes a weaker acceleration than with electrons.

Théoriquement le nombre d'électrons peut être multiplié jusqu'à deux fois, à chaque franchissement d'une marche de potentiel, si la polarisation est suffisante. Le facteur de multiplication peut théoriquement atteindre 10³ pour 10 couches de multiplication comportant chacune deux sous-couches. Dans un exemple de réalisation, la polarisation V est de l'ordre de 20 volts, chaque sous-couche 32, 34,...,36, 38, 40 est constituée de Ga0,9 Al0,1 As ayant une largeur de bande interdite de 1,56 e.v et une épaisseur de 0,05 micron, et chaque sous-couche 33, 35,..., 37, 39 est constituée de Ga0,7 Al0,3 As ayant une largeur de bande interdite de 1,8 e.v et une épaisseur de 0,05 micron.Theoretically, the number of electrons can be multiplied up to twice, each time a potential step is crossed, if the polarization is sufficient. The multiplication factor can theoretically reach 10³ for 10 multiplication layers, each comprising two sublayers. In an exemplary embodiment, the polarization V is of the order of 20 volts, each sublayer 32, 34, ..., 36, 38, 40 consists of Ga 0.9 Al 0.1 As having a width band gap of 1.56 ev and a thickness of 0.05 micron, and each sublayer 33, 35, ..., 37, 39 consists of Ga 0.7 Al 0.3 As having a band width prohibited of 1.8 ev and a thickness of 0.05 micron.

L'épaisseur d'un ensemble de deux sous-couches successives a une valeur qui est choisie du même ordre de grandeur que le libre parcours moyen d'ionisation par impact des électrons.The thickness of a set of two successive sublayers has a value which is chosen to be of the same order of magnitude as the mean free path of ionization by impact of electrons.

La composition idéale des matériaux constituant ces deux types de sous-couches serait telle que la différence de niveau de leurs bandes de conduction soit supérieure à l'énergie d'ionisation du matériau ayant la plus faible largeur de bande interdite parmi ces deux matériaux.The ideal composition of the materials constituting these two types of sub-layers would be such that the difference in level of their conduction bands is greater than the ionization energy of the material having the smallest prohibited bandwidth among these two materials.

A défaut d'une composition idéale, on choisit une composition telle que la discontinuité de potentiel dans la bande de conduction soit plus grande que dans la bande de valence, afin que l'ionisation par impact des électrons soit plus efficace que celle des trous. L'énergie manquant aux électrons chauds produits par l'effet tunnel, pour effectuer l'ionisation par impact, est fournie aux électrons par le champ de polarisation. Le choix de la composition des matériaux et le choix de la polarisation sont à la portée de l'homme de l'Art.In the absence of an ideal composition, a composition is chosen such that the potential discontinuity in the conduction band is greater than in the valence band, so that the impact ionization of the electrons is more effective than that of the holes. The energy missing from the hot electrons produced by the tunnel effect, to effect impact ionization, is supplied to the electrons by the polarization field. The choice of the composition of materials and the choice of polarization are within the reach of ordinary skill in the art.

La figure 3a représente un autre exemple de réalisation de la photocathode selon l'invention. Cet exemple comporte :

  • Deux premières couches 50 et 51 semblables aux couches 30 et 31 du second exemple de réalisation ;
  • Deux dernière couches 56 et 57 semblables aux deux dernières couches 41 et 42 du second exemple de réalisation, la couche 56 étant polarisées par un générateur de tension V par rapport à la première couche 50 ;
  • Dix couches 52, 53,...,54, 55, chacune de ces couches étant constituées d'un matériau semi-conducteur de type N⁻ ayant une composition variant graduellement pour procurer une largeur de bande interdite croissante en direction de la couche 56, c'est-à-dire dans la direction où les électrons sont à évacuer; chaque couple de couches 52+53,...,54+55 constitue une couche de multiplication des électrons.
FIG. 3a represents another exemplary embodiment of the photocathode according to the invention. This example includes:
  • First two layers 50 and 51 similar to layers 30 and 31 of the second embodiment;
  • Two last layers 56 and 57 similar to the last two layers 41 and 42 of the second embodiment, the layer 56 being polarized by a voltage generator V with respect to the first layer 50;
  • Ten layers 52, 53, ..., 54, 55, each of these layers being made of an N⁻ type semiconductor material having a composition varying gradually to provide an increasing band gap towards the layer 56 , that is to say in the direction where the electrons are to be removed; each pair of layers 52 + 53, ..., 54 + 55 constitutes an electron multiplication layer.

La figure 3b représente un diagramme des niveaux d'énergie des porteurs dans cet exemple de réalisation, en l'absence de polarisation. Dans la zone correspondant aux couches de multiplication des électrons, 52 à 55, les courbes Ec et Ev des extrema des niveaux d'énergie ont une forme en dents de scie constituées d'une pente et d'un flanc raide. Chaque dent de scie a une pente positive pour la bande de conduction et une bande négative pour la bande de valence, dans la direction où les électrons sont évacués.FIG. 3b represents a diagram of the energy levels of the carriers in this exemplary embodiment, in the absence of polarization. In the zone corresponding to the electron multiplication layers, 52 to 55, the curves E c and E v of the energy level extrema have a sawtooth shape consisting of a slope and a steep flank. Each sawtooth has a positive slope for the conduction band and a negative band for the valence band, in the direction where the electrons are evacuated.

Dans cet exemple de réalisation l'épaisseur de chaque couche de multiplication des électrons, 52 à 55, est 0,03 micron et sa composition est Ga1-x Alx As avec x variant linéairement de 0 à 0,3 à 0 dans la direction de la couche 51 à la couche 56, c'est-à-dire dans la direction où les électrons sont à évacuer.In this embodiment the thickness of each electron multiplication layer, 52 to 55, is 0.03 micron and its composition is Ga 1-x Al x As with x varying linearly from 0 to 0.3 to 0 in the direction from layer 51 to layer 56, that is to say in the direction where the electrons are to be removed.

La figure 3c représente une diagramme des niveaux d'énergie des porteurs dans cet exemple de réalisation, lorsque la polarisation V est appliquée. L'abaissement q.V de l'énergie de Fermi EF56 de la couche 56 par rapport au niveau de Fermi EF50 de la couche 50 modifie la pente des dents de scie, cette pente devenant négative pour la bande de conduction. Dans la bande de conduction les électrons descendent le long des pentes des dents de scie sans se heurter aux flancs verticaux alors que, dans la bande de valence, les trous rencontrent les flancs des dents de scie qui constituent des marches de potentiel. Chaque fois qu'un électron saute d'une dent de scie à la suivante, il subit une accélération brutale qui lui permet de libérer un autre électron par ionisation.FIG. 3c represents a diagram of the energy levels of the carriers in this exemplary embodiment, when the polarization V is applied. The reduction qV of the Fermi E F56 energy of the layer 56 compared to the Fermi E F50 level of the layer 50 modifies the slope of the saw teeth, this slope becoming negative for the conduction band. In the conduction band the electrons descend along the slopes of the saw teeth without colliding with the vertical flanks whereas in the valence band, the holes meet the flanks of the saw teeth which constitute potential markets. Each time an electron jumps from one sawtooth to the next, it undergoes a sudden acceleration which allows it to release another electron by ionization.

La composition idéale des matériaux serait telle que la hauteur des marches de potentiel serait supérieure à l'énergie d'ionisation du matériau ayant la largeur de bande interdite la plus petite, c'est-à-dire Ga0,7 Al0,3 As dans cet exemple. A défaut d'une composition idéale, on choisit une composition telle que la discontinuité de potentiel dans la bande de conduction soit la plus grande possible. L'énergie manquant à un électrons qui vient de franchir une discontinuité de potentiel, pour effecter une ionisation par impact, est fournie par le champ de polarisation. Le choix des matériaux et le choix de la polarisation remplissant ces conditions sont à la portée de l'homme de l'Art. Pour 20 couches de multiplication ainsi réalisées le facteur de multiplication est théoriquement de l'ordre de 10⁶.The ideal composition of the materials would be such that the height of the potential steps would be greater than the ionization energy of the material with the smallest band gap, that is to say Ga 0.7 Al 0.3 As in this example. In the absence of an ideal composition, a composition is chosen such that the potential discontinuity in the conduction band is as large as possible. The energy missing from an electron that has just crossed a potential discontinuity, to effect impact ionization, is supplied by the polarization field. The choice of materials and the choice of polarization fulfilling these conditions are within the reach of ordinary skill in the art. For 20 multiplication layers thus produced, the multiplication factor is theoretically of the order of 10⁶.

Cette variante de réalisation peut comporter d'autres matériaux. Par exemple, du In Al As pour la couche 50, du In P ou In Ga As pour la couche 51, du Inx Ga1-x As1-y Py pour les couches 52 à 55, de préférence avec x et y variant suivant l'art connu de telle manière que le matériau des couches 52 à 55 soit adapté en maille avec le matériau de la couche d'absorption 51, et du In P pour la couche 56. Dans cet exemple la différence de largeur de bande interdite est de 0,8 e.V et la tension de polarisation est de 20 V environ pour 20 couches de multiplication 52, 53,... ayant une épaisseur de l'ordre de 0,03 micron.This variant embodiment may include other materials. For example, In Al As for layer 50, In P or In Ga As for layer 51, In x Ga 1-x As 1-y P y for layers 52 to 55, preferably with x and y varying according to the known art in such a way that the material of the layers 52 to 55 is adapted in mesh with the material of the absorption layer 51, and of In P for the layer 56. In this example the difference in bandwidth prohibited is 0.8 eV and the bias voltage is approximately 20 V for 20 multiplication layers 52, 53, ... having a thickness of the order of 0.03 microns.

La tension de polarisation V à appliquer entre les couches 56 et 50 de cette variante de réalisation est de l'ordre de : V = n. Eg, où n est le nombre le couches de multiplication 52, 53,..., 55 et où Eg est la largeur de bande interdite nécessaire pour libérer un électron par impact dans l'une de ces couches de multiplication.The bias voltage V to be applied between the layers 56 and 50 of this variant embodiment is of the order of: V = n. E g , where n is the number the multiplication layers 52, 53, ..., 55 and where E g is the forbidden bandwidth necessary to release an electron by impact in one of these multiplication layers.

Cette variante de réalisation peut comporter d'autres matériaux : du Ga Al As pour la couche 50, du Ga As pour la couche 51, du Ga1-x Alx As avec x variant de 0 à 1 pour les couches 52,...,55, et du Ga As pour la couche 56.This alternative embodiment may include other materials: Ga Al As for layer 50, Ga As for layer 51, Ga 1-x Al x As with x varying from 0 to 1 for the layers 52, ..., 55, and Ga As for layer 56.

La figure 4a montre une coupe d'une portion d'un autre exemple de réalisation de la photocathode selon l'invention. Cet exemple diffère seulement du precedent exemple par une couche supplémentaire 60 insérée à l'intérieur de la couche 56. La couche supplémentaire 60 est constituée d'un matériau semi-conducteur du type P⁺ ayant une largeur de bande interdite supérieure à celle du matériau des couches 56 et 51 afin de créer une barrière de potentiel dans la bande de valence, pour arrêter la plupart des trous. Cette barrière permet de diminuer le courant de trous qui est l'origine d'une consommation électrique inutile et d'un courant d'obscurité, car il crée des paires électron-trou par ionisation.FIG. 4a shows a section of a portion of another exemplary embodiment of the photocathode according to the invention. This example differs only from the previous example by an additional layer 60 inserted inside the layer 56. The additional layer 60 consists of a P⁺ type semiconductor material having a band gap greater than that of the material layers 56 and 51 to create a potential barrier in the valence band, to stop most of the holes. This barrier makes it possible to reduce the current of holes which is the source of unnecessary electrical consumption and of a dark current, since it creates electron-hole pairs by ionization.

L'épaisseur de cette couche 60 doit être suffisamment importante pour arrêter les trous et, par contre elle doit être suffisamment faible pour que cette couche 60 soit pratiquement transparente aux électrons, ceux-ci la franchissant par effet tunnel. Cette différence de transparence est obtenue grâce à la grande différence de masse effective entre les électrons et les trous. Cette couche supplémentaire peut être constituée, par exemple, de Ga0,6 Al0,4 As ayant une épaisseur de 0,003 micron et dopé de 10¹⁹ atomes de zinc par cm³.The thickness of this layer 60 must be large enough to stop the holes and, on the other hand, it must be sufficiently small so that this layer 60 is practically transparent to the electrons, the latter passing through it by tunnel effect. This difference in transparency is obtained thanks to the large difference in effective mass between the electrons and the holes. This additional layer may consist, for example, of Ga 0.6 Al 0.4 As having a thickness of 0.003 microns and doped with 10¹⁹ zinc atoms per cm³.

Une telle couche 60 peut être prévue aussi dans les couches 4 et 41 du premier et du second exemples de réalisation de la photocathode selon l'invention.Such a layer 60 can also be provided in layers 4 and 41 of the first and second embodiments of the photocathode according to the invention.

L'invention ne se limite pas aux exemples de réalisation décrits ci-dessus. De nombreuses variantes sont à la portée de l'homme de l'art, notamment en ce qui concerne le nombre de couches de multiplication des électrons et les matériaux les constituant.The invention is not limited to the exemplary embodiments described above. Many variants are within the reach of those skilled in the art, in particular as regards the number of electron multiplication layers and the materials constituting them.

L'invention peut être appliquée notamment aux tubes de prise de vues pour caméra de télévision et aux tubes intensificateurs d'image, pour les prises de vues à bas niveau de lumière.The invention can be applied in particular to shooting tubes for television cameras and to image intensifier tubes, for shooting at low light levels.

Claims (8)

  1. An internal amplification photocathode, comprising: a layer (2 and 31) termed the absorption layer, constituted by a semiconductor material of the P type, whose forbidden band has a width sufficient to convert the photons of the light to be detected into electron-hole pairs; means (5 or 41) making possible the polarization of the photocathode; and a layer (6 and 42) endowing the surface of the photocathode with a negative affinity property in order to facilitate the emission into the vacuum of the electrons furnished by the photocathode; characterized in that it furthermore comprises at least one layer (32 + 33 and 52 + 53), termed the layer for the multiplication of electrons by ionization, constituted by two sub-layers (32, 33, 52 and 53) of an N type semiconductor material respectively having two compositions different to the interface of the two said sub-layers, and in that, when this multiplication layer (32, 33, 52 and 53) is polarized, the electrons are polarized in the direction whither they are to be evacuated and the holes are accelerated less than the electrons.
  2. The photocathode as claimed in claim 1, characterized in that the said sub-layers (32 and 33) of semiconductor materials of the N type respectively have two different and homogeneous compositions.
  3. The photocathode as claimed in claim 2 characterized in that the said multiplication layer (32 and 33) is constituted by a first 0.05 micron sub-layer (32) of Ga0.9Al0.1As and of a second 0.05 micron sub-layer (33) of Ga0.7Al0.3As.
  4. The photocathode as claimed in claim 1, characterized in that the said sub-layers (52 and 53) of the said layer for the multiplication of electrons by ionization are each constituted by a semiconductor material of the N type having a composition varying continuously in such a manner that the width of its forbidden band increase in the direction whither the electrons are to be evacuated.
  5. The photocathode as claimed in claim 4, characterized in that each multiplication sub-layer (52 and 53) is constituted by Ga1 - xAlx with x varying linearly between 0.3 and 0 in the direction whither the electrons are to be evacuated and having a thickness of 0.03 micron.
  6. The photocathode as claimed in claim 4, characterized in that each multiplication sub-layer (52 and 53) is constituted by InxGa1 - xAs1 - yPy with x and y varying in such a manner that the semiconductor material of the N type of the multiplication (52 and 53) is lattice adapted to the material of the absorption sub-layer (31), and has a thickness of 0.03 micron.
  7. The photocathode as claimed in claim 1, characterized in that it furthermore comprises a layer (60) in order to diminish the hole current, constituted by a material of the p+ type having a forbidden band width greater than that of the absorption layer (51) and whose thickness is sufficiently small in order to permit the passage through it of the electrons (7) by the tunnel effect with an increased probability and sufficiently thick to halt a major fraction of the hole current.
  8. The photocathode as claimed in claim 7, characterized in that the layer (60) in order to diminish the hole current is constituted by a layer of Ga0.6.Al0.4As with a thickness of less than 0.0045 micron.
EP86402820A 1985-12-20 1986-12-16 Photo cathode with internal amplification Expired - Lifetime EP0230818B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8518983 1985-12-20
FR8518983A FR2592217B1 (en) 1985-12-20 1985-12-20 INTERNAL AMPLIFICATION PHOTOCATHODE

Publications (2)

Publication Number Publication Date
EP0230818A1 EP0230818A1 (en) 1987-08-05
EP0230818B1 true EP0230818B1 (en) 1991-06-12

Family

ID=9326040

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86402820A Expired - Lifetime EP0230818B1 (en) 1985-12-20 1986-12-16 Photo cathode with internal amplification

Country Status (5)

Country Link
US (1) US4829355A (en)
EP (1) EP0230818B1 (en)
JP (1) JPS62157631A (en)
DE (1) DE3679803D1 (en)
FR (1) FR2592217B1 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2612334B1 (en) * 1986-12-12 1989-04-21 Thomson Csf DEVICE FOR MULTIPLYING CHARGE CARRIERS BY AN AVALANCHE PHENOMENON AND ITS APPLICATION TO PHOTODETECTORS, PHOTOCATHODES, AND INFRARED VIEWERS
US5001532A (en) * 1989-09-06 1991-03-19 Rockwell International Corporation Impurity band conduction detector having photoluminescent layer
JPH0447629A (en) * 1990-06-11 1992-02-17 Hamamatsu Photonics Kk Semiconductive photoelectron emission surface
US5268570A (en) * 1991-12-20 1993-12-07 Litton Systems, Inc. Transmission mode InGaAs photocathode for night vision system
FR2688343A1 (en) * 1992-03-06 1993-09-10 Thomson Tubes Electroniques INTENSIFYING IMAGE TUBE, IN PARTICULAR RADIOLOGICAL, OF THE TYPE A GALETTE OF MICROCHANNELS.
FR2698482B1 (en) * 1992-11-20 1994-12-23 Thomson Tubes Electroniques Device for generating images by luminescence effect.
US5404026A (en) * 1993-01-14 1995-04-04 Regents Of The University Of California Infrared-sensitive photocathode
US5349177A (en) * 1993-02-22 1994-09-20 Itt Corporation Image intensifier tube having a solid state electron amplifier
US5680007A (en) * 1994-12-21 1997-10-21 Hamamatsu Photonics K.K. Photomultiplier having a photocathode comprised of a compound semiconductor material
US5680008A (en) * 1995-04-05 1997-10-21 Advanced Technology Materials, Inc. Compact low-noise dynodes incorporating semiconductor secondary electron emitting materials
US5684360A (en) * 1995-07-10 1997-11-04 Intevac, Inc. Electron sources utilizing negative electron affinity photocathodes with ultra-small emission areas
US6005257A (en) * 1995-09-13 1999-12-21 Litton Systems, Inc. Transmission mode photocathode with multilayer active layer for night vision and method
JP3565529B2 (en) * 1996-05-28 2004-09-15 浜松ホトニクス株式会社 Semiconductor photocathode and semiconductor photocathode device using the same
FR2758888B1 (en) * 1997-01-27 1999-04-23 Thomson Csf PROCESS FOR FINE MODELING OF CLOUD GROUND RECEIVED BY RADAR
US6121612A (en) * 1997-10-22 2000-09-19 Litton Systems, Inc. Night vision device, image intensifier and photomultiplier tube, transfer-electron photocathode for such, and method of making
US6054718A (en) * 1998-03-31 2000-04-25 Lockheed Martin Corporation Quantum well infrared photocathode having negative electron affinity surface
FR2777112B1 (en) 1998-04-07 2000-06-16 Thomson Tubes Electroniques IMAGE CONVERSION DEVICE
US6878975B2 (en) * 2002-02-08 2005-04-12 Agilent Technologies, Inc. Polarization field enhanced tunnel structures
US20100025796A1 (en) * 2008-08-04 2010-02-04 Amir Massoud Dabiran Microchannel plate photocathode
US10692683B2 (en) * 2017-09-12 2020-06-23 Intevac, Inc. Thermally assisted negative electron affinity photocathode

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1023257A (en) * 1963-08-30 1966-03-23 Rauland Corp Photoemissive device
US3631303A (en) * 1970-01-19 1971-12-28 Varian Associates Iii-v cathodes having a built-in gradient of potential energy for increasing the emission efficiency
FR2225207B1 (en) * 1973-04-16 1978-04-21 Ibm
JPS5220222B2 (en) * 1973-06-28 1977-06-02
JPS5516479A (en) * 1978-07-21 1980-02-05 Sumitomo Electric Ind Ltd Heterojunction light receiving diode
US4286275A (en) * 1980-02-04 1981-08-25 International Business Machines Corporation Semiconductor device
US4383269A (en) * 1980-09-19 1983-05-10 Bell Telephone Laboratories, Incorporated Graded bandgap photodetector
US4390889A (en) * 1980-10-09 1983-06-28 Bell Telephone Laboratories, Incorporated Photodiode having an InGaAs layer with an adjacent InGaAsP p-n junction
JPS5861679A (en) * 1981-10-07 1983-04-12 Kokusai Denshin Denwa Co Ltd <Kdd> Avalanche photo diode with quantum well
US4599632A (en) * 1982-08-30 1986-07-08 At&T Bell Laboratories Photodetector with graded bandgap region
JPS60785A (en) * 1983-06-16 1985-01-05 Nippon Telegr & Teleph Corp <Ntt> Semiconductor photo detecting device
US4597004A (en) * 1985-03-04 1986-06-24 Rca Corporation Photodetector

Also Published As

Publication number Publication date
EP0230818A1 (en) 1987-08-05
DE3679803D1 (en) 1991-07-18
JPS62157631A (en) 1987-07-13
FR2592217B1 (en) 1988-02-05
US4829355A (en) 1989-05-09
FR2592217A1 (en) 1987-06-26

Similar Documents

Publication Publication Date Title
EP0230818B1 (en) Photo cathode with internal amplification
EP0186225B1 (en) Image sensor for a dual-mode &#34;day-night&#34; camera
EP2184788B1 (en) Photodetector with internal gain and detector comprising an array of such photodetectors
EP3465725B1 (en) Method of producing a nanowire photocathode
EP0566494B1 (en) Electron beam pumped asymmetric laser cavity with semiconductor heterostructure
EP2750203B1 (en) Avalanche-photodiode semiconductor structure with low response time and method for manufacturing such a photodiode
EP1903612A1 (en) Avalanche photodiode
EP3353818A1 (en) Photodetector comprising a stack of vertically adjacent layers
JP3524249B2 (en) Electron tube
EP0228323B1 (en) Hightly efficient photocathode
EP0226503B1 (en) Low dark current photocathode
FR3053837A1 (en) STRUCTURE OF THE PHOTODIODE TYPE AT AVALANCHE AND METHOD OF MANUFACTURING SUCH A STRUCTURE
FR2573574A1 (en) PHOTOCATHODE FOR THE INFRARED DOMAIN
EP0557186B1 (en) Quantumwell photoelectric detector with enhanced detectivity
EP0274940A1 (en) Device with avalanche charge carrier multiplication, and its use in photodetectors, photocathodes and infrared imagers
EP0082787A2 (en) Photodiode with separated absorption and avalanche regions
EP0351263B1 (en) Electron source structure and its use in tubes emitting electromagnetic waves
EP0142891B1 (en) Infrared-sensitive charge-coupled device and method of manufacturing the same
FR2827709A1 (en) Quantum cascade photovoltaic detector incorporating a multi-pit quantum structure allowing the cascade of a sequence of decreasing energy levels involved in the absorption of photons
WO2020234518A1 (en) Photocathode with improved quantum yield
EP2948988B1 (en) Semiconductor structure and method for manufacturing a semiconductor structure
WO2009115466A1 (en) Device for detecting ultraviolet radiation of the hybrid ebcmos type, comprising a membrane insensitive to solar radiation
FR2941564A1 (en) PHOTODIODE AND ELECTROMAGNETIC RADIATION DETECTOR
FR2574602A1 (en) Semiconductor laser allowing stimulated emission of light in the ultraviolet and the visible

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB NL

17P Request for examination filed

Effective date: 19880115

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THOMSON-CSF

17Q First examination report despatched

Effective date: 19890816

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB NL

REF Corresponds to:

Ref document number: 3679803

Country of ref document: DE

Date of ref document: 19910718

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19911122

Year of fee payment: 6

Ref country code: DE

Payment date: 19911122

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19911231

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19921216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19930701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19921216

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19930901