EP0319080B1 - X-ray image intensifier tube - Google Patents

X-ray image intensifier tube Download PDF

Info

Publication number
EP0319080B1
EP0319080B1 EP88202638A EP88202638A EP0319080B1 EP 0319080 B1 EP0319080 B1 EP 0319080B1 EP 88202638 A EP88202638 A EP 88202638A EP 88202638 A EP88202638 A EP 88202638A EP 0319080 B1 EP0319080 B1 EP 0319080B1
Authority
EP
European Patent Office
Prior art keywords
tube
scintillator
photocathode
layer
chosen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88202638A
Other languages
German (de)
French (fr)
Other versions
EP0319080A1 (en
Inventor
Pierre Marie-André Dolizy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Laboratoires dElectronique Philips SAS
Koninklijke Philips NV
Original Assignee
Laboratoires dElectronique Philips SAS
Philips Gloeilampenfabrieken NV
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Laboratoires dElectronique Philips SAS, Philips Gloeilampenfabrieken NV, Koninklijke Philips Electronics NV filed Critical Laboratoires dElectronique Philips SAS
Publication of EP0319080A1 publication Critical patent/EP0319080A1/en
Application granted granted Critical
Publication of EP0319080B1 publication Critical patent/EP0319080B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/02Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
    • H01J29/10Screens on or from which an image or pattern is formed, picked up, converted or stored
    • H01J29/36Photoelectric screens; Charge-storage screens
    • H01J29/38Photoelectric screens; Charge-storage screens not using charge storage, e.g. photo-emissive screen, extended cathode
    • H01J29/385Photocathodes comprising a layer which modified the wave length of impinging radiation

Definitions

  • the invention relates to an X-ray image intensifier tube comprising an entrance window provided with an aluminum substrate which supports a scintillator which transforms, into visible or near visible light radiation, the X-ray which reaches the scintillator through the substrate, the light radiation being converted by a photocathode into a flow of electrons which, using electronic optics, provides a visible image on an output screen, and between the aluminum substrate and the scintillator is interposed a layer absorbing the light radiation emitted by the scintillator towards the aluminum substrate.
  • Document FR-A-2 515 423 which describes an input screen suitable for use in an image intensifier tube with increased resolution power.
  • the colomnial crystals of cesium iodide which constitute the scintillator come from particles of impurities on the surface of the aluminum substrate.
  • a side effect of these surface impurities is to promote the absorption of the light emitted towards the substrate.
  • the guiding action of the light obtained by the columnar crystals being imperfect, this mechanism of absorption of the light by the particles of impurities improves the contrast of the restored image.
  • These particles of impurities must constitute germs for the growth of the columnar crystals. They therefore form islands scattered on the surface of the aluminum substrate made visible by an appropriate chemical treatment. The light emitted by the scintillator towards the substrate is therefore only incidentally absorbed by these particles of impurities whose presence and nature are random.
  • the problem is therefore to have a tube provided with an input window having a high resolution for the entire surface of the restored image.
  • the performance of the tube must be reproducible and reliable.
  • an invention of the kind described in the preamble is known from document EP-A-0 240 951. It relates to an X-ray image intensifier which notably comprises a film absorbing light. This film is placed on the surface of the aluminum substrate. The characteristics are not exposed in this document but reference is made to document JP-A-56-165251 which indicates that this layer is formed by evaporation of a layer of blackened Al after anodic oxidation of the aluminum substrate. However, this layer is not properly adapted to absorb the green luminescence radiation from cesium iodide. Indeed, its transmission as a function of the wavelength as well as its optical indices are not well suited to solve this problem.
  • the absorbent layer consists of a material chosen from the following materials: titanium nitride, cadmium sulfide, (Cu, PbI2).
  • the invention places a low index layer between the scintillator and the photocathode having a refractive index lower than that of the photocathode.
  • the material of this layer can be chosen from the following materials: MgF2, cryolite (Na3AlF6).
  • the scintillator is chosen from the following materials: CsI (Na), NaI (Tl), CsI (Tl), CdWO4, Bi4Ge3O12, CaWO4.
  • a secondary problem is to have a high brightness while retaining the resolution of the tube.
  • a chemical barrier consisting of a layer chosen from the following materials: Al2O3, Si3N4, SiO2. This chemical barrier prevents the sodium contained in the scintillator from migrating to the photocathode.
  • This layer is chosen from the following materials: palladium, aluminum, In2O3, SnO2, ITO (mixture of In2O3 at 90% and SnO2 at 10%).
  • FIG. 1A represents an X-ray image intensifier tube which comprises, at the input, a separation sheet 23 with the vacuum formed of a suitable material, for example titanium.
  • the separation sheet is followed by an entry window 21.
  • the assembly is mounted in a vacuum envelope which further comprises a cylindrical surface 43 with a conical part 45, a terminal anode support 49 and a window outlet tube 20.
  • the tube is provided at its inlet with a mounting ring 22 to which the separation sheet 23 is connected as well as a support 24 for the inlet screen 21.
  • the photoelectron beams 52 coming from a photocathode 13 form an image on a luminescent layer 46 which is preferably deposited on an output screen 20 formed of a plate of optical fibers.
  • the electronic image projected onto the output screen generates an optical image in the layer of luminescent material. This optical image is then used in the usual way to be viewed.
  • the entrance window 21 comprises in order an aluminum substrate 10, an absorbent layer 11, a scintillator 12 and a photocathode 13.
  • the incident X-rays arrive on the structure through the substrate 10 and electrons e- are emitted by photocathode 13.
  • the ray 51 penetrates the photocathode 13 which emits electrons 52.
  • the same point 50 can emit rays such as the ray 53 in the direction of the substrate 10.
  • the ray 53 is reflected according to the radius 54 and electrons 55 are emitted by the photocathode.
  • the same point 50 produces several emissions of electrons 52, 55 and this results in a resolution defect in the tube.
  • the rays 53 which are emitted in direction of the substrate are absorbed.
  • absorption must occur in a continuous and homogeneous manner over the entire surface of the entry window in order to restore an image of homogeneous quality.
  • the absorption must be as high as possible for the wavelength of the light emitted by the scintillator.
  • the scintillators can be chosen from the following materials: CsI (Na), NaI (Tl), CsI (Tl), CdWO4, Bi4Ge3O12, CaWO4.
  • the wavelength of the light emitted is close to 430 nm.
  • the absorbent layer must allow this radiation to be absorbed.
  • the material can be chosen from the following materials: TiN, CdS, (Cu, PbI2).
  • FIG. 2 represents the reflection rate of a TiN layer deposited on an aluminum substrate for light emitted at 430 nm by a CsI (Na) scintillator. This rate is represented as a function of the thickness of the absorbent layer. It is noted that the reflection rate becomes less than 10% as soon as the TiN layer reaches a thickness of approximately 50 nm.
  • FIG. 3 represents the reflection rate of a layer of CdS deposited on an aluminum substrate for a wavelength of 430 nm as a function of the thickness of the layer.
  • the thicknesses of CdS can be chosen in substantially the following ranges: 115 nm to 135 nm, 185 nm at 235 nm, greater than 260 nm for a light emission at 430 nm.
  • Each scintillator will have a light spectrum centered on its own central wavelength. These light spectra are distributed between substantially 400 nm and substantially 600 nm.
  • the thicknesses of CdS layers are therefore to be determined both according to a predetermined admissible value for the reflection rate and according to the central emission wavelength of the scintillator used. Those skilled in the art by preliminary measurements of the reflection rate as a function of the thickness for the wavelength and the material chosen can thus easily choose the thickness according to the tolerated reflection rate.
  • FIG. 4 represents an embodiment of the invention which includes an additional layer 19 with a low refractive index placed between the scintillator 12 and the photocathode 13.
  • an additional layer 19 with a low refractive index placed between the scintillator 12 and the photocathode 13.
  • point 63 can be quite distant from the radial direction coming from point 50 perpendicular to the curved surface of the photocathode, a direction which is substantially the axial direction of the columnar crystals.
  • the electrons which come from ray 61 will thus contribute to decrease the resolution of the image of the tube.
  • This second cause of a decrease in resolution is corrected using a low index layer 19 having a refractive index lower than that of the scintillator 12, placed between the scintillator 12 and the photocathode 13.
  • the radius 60 strikes the surface of this layer at point 64 and undergoes a total reflection along the radius 62.
  • the light rays which are substantially distant from the axial direction of the columnar crystals are returned and do not participate in the creation of electrons.
  • This layer 19 must have a low absorption so as not to disturb the luminosity.
  • the material of this layer can be chosen from the following materials: MgF2, cryolite (Na3AlF6). In the useful wavelength range which is between approximately 400 nm and 600 nm, the refractive index of MgF2 is between 1.33 and 1.37 approximately with an extinction index practically zero. The values are substantially similar for the cryolite.
  • This chemical barrier consists of a layer chosen from the following materials: Al2O3, Si3N4, SiO2.
  • the photocathode material is generally not very conductive, it is possible to ensure a homogeneous distribution of the electrical potential by placing a conductive layer on the photocathode on the side of the scintillator. This conductive layer must also be transparent to allow pass the radiation emitted by the scintillator. If a chemical barrier exists, the conductive and transparent layer is placed between the photocathode and the chemical barrier.
  • the following materials can be used: palladium, aluminum, In2O3, SnO2 or the ITO material which a mixture of In2O3 (90%) and SnO2 (10%).
  • the entry window produced with an absorbent layer, for example made of TiN, and a photocathode with a high photoelectric efficiency, for example made of K2CsSb, will generally be able to have a photoelectric yield higher than an entry window made without these materials.
  • FIG. 6 represents the variations in the photoelectric efficiency Y of a photocathode as a function of the thickness of the scintillator.
  • the thickness of the photocathode is such that the photoelectric efficiency is at its maximum.
  • Curve 31 relates to the Al / TiN / CsI, Na / Al2O3 / K2CsSb structure. Its reflection rate of light emitted by the scintillator and reflected by the substrate is less than 10%.
  • Curve 32 relates to the Al / CsI, Na / Al2O3 / K2CsSb structure. Its reflection rate is around 70%. Curve 31 is below curve 32 because indeed, the absorbed light is lost and does not can generate electrons.
  • Curve 33 relates to the Al / CsI, Na / Cs3Sb structure. Curve 31 is located above curve 33. This means that an entrance window with an absorbent layer and a photocathode with high photoelectric efficiency can exhibit increased performance compared to a usual structure. Likewise, it can be seen that an input window corresponding to curve 31 can have performances equal to those obtained with an input window corresponding to curve 33, and this with a much smaller scintillator thickness.
  • this thickness can be reduced from 0.4 to 0.2 mm approximately.
  • This reduction in the thickness of the scintillator also contributes to improving the resolution of the tube.
  • the crystals which constitute the scintillator generally have, over a certain thickness (ten micrometers), dislocations which cause a diffusion of light.
  • the proposed thickness reduction retains a sufficient scintillator thickness so that this dislocated zone only slightly disturbs the mechanisms.
  • this reduction in thickness is very advantageous since these X-ray detection tubes require crystals to grow on entry window surfaces of several square decimetres. Such a reduction in thickness results in a significant saving of material and an increased manufacturing yield.

Description

L'invention concerne un tube intensificateur d'images à rayons X comprenant une fenêtre d'entrée munie d'un substrat d'aluminium qui supporte un scintillateur qui transforme, en un rayonnement lumineux visible ou proche du visible, le rayonnement X qui atteint le scintillateur à travers le substrat, le rayonnement lumineux étant converti par une photocathode en un flux d'électrons qui, à l'aide de moyens d'optique électronique, fournit une image visible sur un écran de sortie, et entre le substrat d'aluminium et le scintillateur est interposée une couche absorbant le rayonnement lumineux émis par le scintillateur en direction du substrat d'aluminium.The invention relates to an X-ray image intensifier tube comprising an entrance window provided with an aluminum substrate which supports a scintillator which transforms, into visible or near visible light radiation, the X-ray which reaches the scintillator through the substrate, the light radiation being converted by a photocathode into a flow of electrons which, using electronic optics, provides a visible image on an output screen, and between the aluminum substrate and the scintillator is interposed a layer absorbing the light radiation emitted by the scintillator towards the aluminum substrate.

On connaît le document FR-A-2 515 423 qui décrit un écran d'entrée adapté pour être utilisé dans un tube amplificateur de brillance avec un pouvoir de résolution accru. Pour cela les cristaux colomnaires d'iodure de césium qui constituent le scintillateur sont issus de particules d'impuretés de surface du substrat d'aluminium. Un effet secondaire de ces impuretés de surface est de favoriser l'absorption de la lumière émise en direction du substrat. L'action de guidage de la lumière obtenue par les cristaux colomnaires étant imparfaite, ce mécanisme d'absorption de la lumière par les particules d'impuretés améliore le contraste de l'image restituée. Ces particules d'impuretés doivent constituer des germes pour la croissance des cristaux colomnaires. Elles forment donc des ilots disséminés en surface du substrat d'aluminium rendus apparents par un traitement chimique approprié. La lumière émise par le scintillateur en direction du substrat n'est donc qu'accessoirement absorbée par ces particules d'impuretés dont la présence et la nature sont aléatoires.Document FR-A-2 515 423 is known which describes an input screen suitable for use in an image intensifier tube with increased resolution power. For this, the colomnial crystals of cesium iodide which constitute the scintillator come from particles of impurities on the surface of the aluminum substrate. A side effect of these surface impurities is to promote the absorption of the light emitted towards the substrate. The guiding action of the light obtained by the columnar crystals being imperfect, this mechanism of absorption of the light by the particles of impurities improves the contrast of the restored image. These particles of impurities must constitute germs for the growth of the columnar crystals. They therefore form islands scattered on the surface of the aluminum substrate made visible by an appropriate chemical treatment. The light emitted by the scintillator towards the substrate is therefore only incidentally absorbed by these particles of impurities whose presence and nature are random.

Le problème posé est donc de disposer d'un tube muni d'une fenêtre d'entrée ayant une haute résolution pour la totalité de la surface de l'image restituée. Les performances du tube doivent être reproductibles et fiables.The problem is therefore to have a tube provided with an input window having a high resolution for the entire surface of the restored image. The performance of the tube must be reproducible and reliable.

Dans ce sens, une invention du genre décrit dans le préambule est connue du document EP-A-0 240 951. Il concerne un intensificateur d'image à rayons X qui comprend notamment un film absorbant la lumière. Ce film est disposé sur la surface du substrat d'aluminium. Les caractéristiques ne sont pas exposées dans ce document mais référence est faite au document JP-A-56-165251 qui indique que cette couche est formée par évaporation d'une couche d'Al noirci après oxydation anodique du substrat d'aluminium. Mais cette couche n'est pas correctement adaptée pour absorber le rayonnement vert de luminescence de l'iodure de césium. En effet, sa transmission en fonction de la longueur d'onde ainsi que ses indices optiques ne sont pas bien adaptés pour résoudre ce problème.In this sense, an invention of the kind described in the preamble is known from document EP-A-0 240 951. It relates to an X-ray image intensifier which notably comprises a film absorbing light. This film is placed on the surface of the aluminum substrate. The characteristics are not exposed in this document but reference is made to document JP-A-56-165251 which indicates that this layer is formed by evaporation of a layer of blackened Al after anodic oxidation of the aluminum substrate. However, this layer is not properly adapted to absorb the green luminescence radiation from cesium iodide. Indeed, its transmission as a function of the wavelength as well as its optical indices are not well suited to solve this problem.

Il est donc nécessaire de mettre en oeuvre d'autres matériaux. La solution à ce problème technique consiste en ce que la couche absorbante soit constituée d'un matériau choisi parmi les matériaux suivants : nitrure de titane, sulfure de cadmium, (Cu, PbI₂). On dispose ainsi d'une sélection de matériaux ayant des indices optiques (réfraction et extinction) ainsi que des seuils de transmission en longueur d'ondes beaucoup mieux adaptés au problème posé.It is therefore necessary to use other materials. The solution to this technical problem consists in that the absorbent layer consists of a material chosen from the following materials: titanium nitride, cadmium sulfide, (Cu, PbI₂). We thus have a selection of materials with optical indices (refraction and extinction) as well as transmission thresholds in wavelength much better suited to the problem posed.

Mais compte tenu de l'indice de réfraction élevé du matériau de photocathode un autre mécanisme contribue à affaiblir la résolution. Il est dû aux rayons lumineux issus du scintillateur qui sont très écartés de la normale à la surface de la photocathode et qui peuvent pénétrer dans celle-ci. Pour éliminer ces rayons lumineux très écartés de la normale, l'invention place entre le scintillateur et la photocathode, une couche à bas indice ayant un indice de réfraction inférieur à celui de la photocathode. Le matériau de cette couche peut être choisi parmi les matériaux suivants : MgF₂, cryolithe (Na₃AlF₆).But given the high refractive index of the photocathode material another mechanism helps to weaken the resolution. It is due to the light rays coming from the scintillator which are very far from normal to the surface of the photocathode and which can penetrate into it. To eliminate these light rays which are very far from normal, the invention places a low index layer between the scintillator and the photocathode having a refractive index lower than that of the photocathode. The material of this layer can be chosen from the following materials: MgF₂, cryolite (Na₃AlF₆).

Le scintillateur est choisi parmi les matériaux suivants : CsI(Na), NaI(Tl), CsI(Tl), CdWO₄, Bi₄Ge₃O₁₂, CaWO₄.The scintillator is chosen from the following materials: CsI (Na), NaI (Tl), CsI (Tl), CdWO₄, Bi₄Ge₃O₁₂, CaWO₄.

Le rayonnement qui est dirigé vers le substrat étant absorbé, il peut en résulter une baisse de luminosité du tube avec une photocathode habituelle en Cs₃Sb.The radiation which is directed towards the substrate being absorbed, it can result therefrom a reduction in luminosity of the tube with a usual photocathode in Cs₃Sb.

Un problème secondaire est de disposer d'une luminosité élevée tout en conservant la résolution du tube.A secondary problem is to have a high brightness while retaining the resolution of the tube.

La solution à ce problème secondaire est de choisir la photocathode parmi les matériaux suivants : K₂CsSb, Rb₂CsSb, (SbNa₂K,Cs), ce dernier matériau pouvant être de type S20 ou S25 selon sa réponse spectrale. Ces appellations sont connues de l'homme du métier. Tous ces matériaux confèrent au tube une grande durée de vie.The solution to this secondary problem is to choose the photocathode from the following materials: K₂CsSb, Rb₂CsSb, (SbNa₂K, Cs), this latter material can be of type S20 or S25 according to its spectral response. These names are known to those skilled in the art. All these materials give the tube a long service life.

On obtient ainsi un tube disposant d'une résolution accrue et d'une grande luminosité.This produces a tube with increased resolution and high brightness.

Pour donner au tube toutes ses qualités de durée de vie, il est souhaitable de disposer, entre le scintillateur et la photocathode, une barrière chimique constituée d'une couche choisie parmi les matériaux suivants : Al₂O₃, Si₃N₄, SiO₂. Cette barrière chimique évite au sodium contenu dans le scintillateur de migrer vers la photocathode.To give the tube all its qualities of lifetime, it is desirable to have, between the scintillator and the photocathode, a chemical barrier consisting of a layer chosen from the following materials: Al₂O₃, Si₃N₄, SiO₂. This chemical barrier prevents the sodium contained in the scintillator from migrating to the photocathode.

Il est également possible d'améliorer la collection des charges en disposant une couche conductrice électriquement et transparente optiquement entre la photocathode et la barrière chimique. Cette couche est choisie parmi les matériaux suivants : palladium, aluminium, In₂O₃, SnO₂, ITO (mélange de In₂O₃ à 90% et de SnO₂ à 10%).It is also possible to improve the collection of charges by placing an electrically conductive and optically transparent layer between the photocathode and the chemical barrier. This layer is chosen from the following materials: palladium, aluminum, In₂O₃, SnO₂, ITO (mixture of In₂O₃ at 90% and SnO₂ at 10%).

L'invention sera mieux comprise à l'aide des figures suivantes, données à titre d'exemples non limitatifs, qui représentent :

  • figure 1A : un tube intensificateur d'images à rayons X selon l'invention.
  • figure 1B : un schéma d'une fenêtre d'entrée d'un tube d'intensificateur d'images à rayons X selon l'invention.
  • figure 2 : une courbe de variations du taux de réflexion d'une couche de TiN déposée sur un substrat d'aluminium en fonction de l'épaisseur de la couche de TiN.
  • figure 3 : une courbe analogue à celle de la figure 2 pour une couche de CdS.
  • figure 4 : un schéma analogue à celui de la figure 1 avec en supplément une couche à bas indice entre le scintillateur et la photocathode.
  • figure 5 : un schéma analogue à celui de la figure 1 avec en plus une barrière chimique et une couche conductrice et transparente placée entre le scintillateur et la photocathode.
  • figure 6 : trois courbes de variations du rendement photoélectrique pour différentes structures de fenêtre d'entrée en unités arbitraires.
The invention will be better understood using the following figures, given by way of nonlimiting examples, which represent:
  • FIG. 1A: an X-ray image intensifier tube according to the invention.
  • FIG. 1B: a diagram of an entrance window of an X-ray image intensifier tube according to the invention.
  • FIG. 2: a curve of variations in the reflection rate of a layer of TiN deposited on an aluminum substrate as a function of the thickness of the layer of TiN.
  • Figure 3: a curve similar to that of Figure 2 for a CdS layer.
  • Figure 4: a diagram similar to that of Figure 1 with an additional low index layer between the scintillator and the photocathode.
  • Figure 5: a diagram similar to that of Figure 1 with in addition a chemical barrier and a conductive and transparent layer placed between the scintillator and the photocathode.
  • FIG. 6: three curves of variations of the photoelectric efficiency for different structures of entry windows in arbitrary units.

Les schémas des figures 1, 4 et 5 ne sont pas représentés à l'échelle afin de mieux mettre en évidence les mécanismes mis en jeu.The diagrams in Figures 1, 4 and 5 are not represented to scale in order to better highlight the mechanisms involved.

La figure 1A représente un tube intensificateur d'images à rayons X qui comprend en entrée une feuille de séparation 23 avec le vide formée d'un matériau adapté, par exemple le titane. La feuille de séparation est suivie d'une fenêtre d'entrée 21. L'ensemble est monté dans une enveloppe sous vide qui comprend en outre, une surface cylindrique 43 avec une partie conique 45, un support d'anode terminale 49 et une fenêtre de sortie 20. Le tube est muni à son entrée d'un anneau de montage 22 auquel sont connectés la feuille de séparation 23 ainsi qu'un support 24 pour l'écran d'entrée 21. A travers une électrode d'entrée 26 et des électrodes 28, 40, 42 les faisceaux de photoélectrons 52 issus d'une photocathode 13 forment une image sur une couche luminescente 46 qui est préférentiellement déposée sur un écran de sortie 20 formé d'une plaque de fibres optiques. L'image électronique projetée sur l'écran de sortie génère une image optique dans la couche de matériau luminescent. Cette image optique est ensuite utilisée de manière habituelle pour être visualisée.FIG. 1A represents an X-ray image intensifier tube which comprises, at the input, a separation sheet 23 with the vacuum formed of a suitable material, for example titanium. The separation sheet is followed by an entry window 21. The assembly is mounted in a vacuum envelope which further comprises a cylindrical surface 43 with a conical part 45, a terminal anode support 49 and a window outlet tube 20. The tube is provided at its inlet with a mounting ring 22 to which the separation sheet 23 is connected as well as a support 24 for the inlet screen 21. Through an inlet electrode 26 and electrodes 28, 40, 42 the photoelectron beams 52 coming from a photocathode 13 form an image on a luminescent layer 46 which is preferably deposited on an output screen 20 formed of a plate of optical fibers. The electronic image projected onto the output screen generates an optical image in the layer of luminescent material. This optical image is then used in the usual way to be viewed.

Sur la figure 1B, la fenêtre d'entrée 21 comprend dans l'ordre un substrat d'aluminium 10, une couche absorbante 11, un scintillateur 12 et une photocathode 13. Les rayons X incidents arrivent sur la structure à travers le substrat 10 et des électrons e- sont émis par la photocathode 13. Lorsque les rayons X sont absorbés en un point 50 du scintillateur, un rayonnement visible est émis. Par exemple le rayon 51 pénêtre la photocathode 13 qui émet des électrons 52. Mais le même point 50 peut émettre des rayons tel que le rayon 53 en direction du substrat 10. En l'absence de la couche absorbante 11, le rayon 53 se réfléchit selon le rayon 54 et des électrons 55 sont émis par la photocathode. Ainsi un même point 50 produit plusieurs émissions d'électrons 52, 55 et il en résulte un défaut de résolution du tube.In FIG. 1B, the entrance window 21 comprises in order an aluminum substrate 10, an absorbent layer 11, a scintillator 12 and a photocathode 13. The incident X-rays arrive on the structure through the substrate 10 and electrons e- are emitted by photocathode 13. When X-rays are absorbed at a point 50 of the scintillator, visible radiation is emitted. For example, the ray 51 penetrates the photocathode 13 which emits electrons 52. But the same point 50 can emit rays such as the ray 53 in the direction of the substrate 10. In the absence of the absorbent layer 11, the ray 53 is reflected according to the radius 54 and electrons 55 are emitted by the photocathode. Thus the same point 50 produces several emissions of electrons 52, 55 and this results in a resolution defect in the tube.

Selon l'invention les rayons 53 qui sont émis en direction du substrat sont absorbés. Mais l'absorption doit se produire d'une manière continue et homogène sur toute la surface de la fenêtre d'entrée afin de restituer une image de qualité homogène. L'absorption doit être la plus élevée possible pour la longueur d'onde de la lumière émise par le scintillateur. Les scintillateurs peuvent être choisis parmi les matériaux suivants : CsI(Na), NaI(Tl), CsI(Tl), CdWO₄, Bi₄Ge₃O₁₂, CaWO₄. Par exemple pour un scintillateur en CsI(Na), la longueur d'onde de la lumière émise est voisine de 430 nm. La couche absorbante doit permettre d'absorber ce rayonnement. Selon l'invention le matériau peut être choisi parmi les matériaux suivants : TiN, CdS, (Cu,PbI₂). Les indices optiques n* = n-ik

Figure imgb0001
, avec n l'indice de réfraction et k l'indice d'extinction, sont respectivement pour TiN, n=1,65 et k=0,79 et pour CdS, n=2,5 et k=0,2. Ils sont donnés à titre d'exemple pour une longueur d'onde de 430 nm et varient peu avec la longueur d'onde.According to the invention the rays 53 which are emitted in direction of the substrate are absorbed. However, absorption must occur in a continuous and homogeneous manner over the entire surface of the entry window in order to restore an image of homogeneous quality. The absorption must be as high as possible for the wavelength of the light emitted by the scintillator. The scintillators can be chosen from the following materials: CsI (Na), NaI (Tl), CsI (Tl), CdWO₄, Bi₄Ge₃O₁₂, CaWO₄. For example, for a CsI (Na) scintillator, the wavelength of the light emitted is close to 430 nm. The absorbent layer must allow this radiation to be absorbed. According to the invention, the material can be chosen from the following materials: TiN, CdS, (Cu, PbI₂). Optical indices n * = n-ik
Figure imgb0001
, with n the refractive index and k the extinction index, are respectively for TiN, n = 1.65 and k = 0.79 and for CdS, n = 2.5 and k = 0.2. They are given by way of example for a wavelength of 430 nm and vary little with the wavelength.

La figure 2 représente le taux de réflexion d'une couche de TiN déposée sur un substrat d'aluminium pour une lumière émise à 430 nm par un scintillateur en CsI(Na). Ce taux est représenté en fonction de l'épaisseur de la couche absorbante. On constate que le taux de réflexion devient inférieur à 10% dès que la couche de TiN atteint une épaisseur d'environ 50 nm.FIG. 2 represents the reflection rate of a TiN layer deposited on an aluminum substrate for light emitted at 430 nm by a CsI (Na) scintillator. This rate is represented as a function of the thickness of the absorbent layer. It is noted that the reflection rate becomes less than 10% as soon as the TiN layer reaches a thickness of approximately 50 nm.

Une situation semblable apparaît pour d'autres matériaux tels que CdS ou (Cu,PbI₂). La figure 3 représente le taux de réflexion d'une couche de CdS déposée sur un substrat d'aluminium pour une longueur d'onde de 430 nm en fonction de l'épaisseur de la couche. Pour le sulfure de cadmium on a n=2,5 et k=0,2. Il apparaît donc des oscillations sur la courbe de la figure 3. Il est donc possible de déterminer des épaisseurs de couches de CdS pour lesquelles le taux de réflexion est suffisamment peu important. Ainsi si l'on choisi un taux inférieur à 10% les épaisseurs de CdS peuvent être choisies dans sensiblement les gammes suivantes : 115 nm à 135 nm, 185 nm à 235 nm, supérieur à 260 nm pour une émission lumineuse à 430 nm.A similar situation appears for other materials such as CdS or (Cu, PbI₂). FIG. 3 represents the reflection rate of a layer of CdS deposited on an aluminum substrate for a wavelength of 430 nm as a function of the thickness of the layer. For cadmium sulfide we have an = 2.5 and k = 0.2. Oscillations therefore appear on the curve of FIG. 3. It is therefore possible to determine thicknesses of CdS layers for which the reflection rate is sufficiently unimportant. Thus, if a rate lower than 10% is chosen, the thicknesses of CdS can be chosen in substantially the following ranges: 115 nm to 135 nm, 185 nm at 235 nm, greater than 260 nm for a light emission at 430 nm.

Chaque scintillateur aura un spectre de lumière centré sur une longueur d'onde centrale qui lui est propre. Ces spectres de lumière sont répartis entre sensiblement 400 nm et sensiblement 600 nm. Les épaisseurs de couches de CdS sont donc à déterminer à la fois selon une valeur prédéterminée admissible pour le taux de réflexion et selon la longueur d'onde centrale d'émission du scintillateur utilisé. L'homme du métier par des mesures préliminaires de taux de réflexion en fonction de l'épaisseur pour la longueur d'onde et le matériau choisis peut ainsi aisément choisir l'épaisseur selon le taux de réflexion toléré.Each scintillator will have a light spectrum centered on its own central wavelength. These light spectra are distributed between substantially 400 nm and substantially 600 nm. The thicknesses of CdS layers are therefore to be determined both according to a predetermined admissible value for the reflection rate and according to the central emission wavelength of the scintillator used. Those skilled in the art by preliminary measurements of the reflection rate as a function of the thickness for the wavelength and the material chosen can thus easily choose the thickness according to the tolerated reflection rate.

La figure 4 représente un mode de réalisation de l'invention qui comprend un supplément une couche 19 à bas indice de réfraction placée entre le scintillateur 12 et la photocathode 13. En effet, si l'on considère un rayon lumineux 60 issu du point 50, en l'absence de la couche 19 il arriverait au point 63 et pénêtrerait dans la photocathode 13 selon un rayon lumineux 61 où il produirait des électrons. Mais le point 63 peut être assez éloigné de la direction radiale issue du point 50 perpendiculaire à la surface courbe de la photocathode, direction qui est sensiblement la direction axiale des cristaux colomnaires. Les électrons qui sont issus du rayon 61 vont donc contribuer à diminuer la résolution de l'image du tube. Cette deuxième cause d'une diminution de la résolution est corrigée à l'aide d'une couche 19 à bas indice ayant un indice de réfraction inférieur à celui du scintillateur 12, placée entre le scintillateur 12 et la photocathode 13. Ainsi le rayon 60 frappe la surface de cette couche au point 64 et subit une réflexion totale selon le rayon 62. Les rayons lumineux éloignés sensiblement de la direction axiale des cristaux colomnaires sont renvoyés et ne participent pas à la création d'électrons. Cette couche 19 doit avoir une absorption faible pour ne pas perturber la luminosité. Le matériau de cette couche peut être choisi parmi les matériaux suivants : MgF₂, cryolithe (Na₃AlF₆). Dans la gamme de longueurs d'ondes utile qui se situe entre environ 400 nm et 600 nm, l'indice de réfraction de MgF₂ est compris entre 1,33 et 1,37 environ avec un indice d'extinction pratiquement nul. Les valeurs sont sensiblement analogues pour la cryolithe.FIG. 4 represents an embodiment of the invention which includes an additional layer 19 with a low refractive index placed between the scintillator 12 and the photocathode 13. In fact, if we consider a light ray 60 coming from point 50 , in the absence of the layer 19 it would arrive at point 63 and would enter the photocathode 13 according to a light ray 61 where it would produce electrons. However, point 63 can be quite distant from the radial direction coming from point 50 perpendicular to the curved surface of the photocathode, a direction which is substantially the axial direction of the columnar crystals. The electrons which come from ray 61 will thus contribute to decrease the resolution of the image of the tube. This second cause of a decrease in resolution is corrected using a low index layer 19 having a refractive index lower than that of the scintillator 12, placed between the scintillator 12 and the photocathode 13. Thus the radius 60 strikes the surface of this layer at point 64 and undergoes a total reflection along the radius 62. The light rays which are substantially distant from the axial direction of the columnar crystals are returned and do not participate in the creation of electrons. This layer 19 must have a low absorption so as not to disturb the luminosity. The material of this layer can be chosen from the following materials: MgF₂, cryolite (Na₃AlF₆). In the useful wavelength range which is between approximately 400 nm and 600 nm, the refractive index of MgF₂ is between 1.33 and 1.37 approximately with an extinction index practically zero. The values are substantially similar for the cryolite.

Cette absorption et cette réflexion de lumière qui se traduisent par un accroissement de résolution du tube, sont accompagnées d'une baisse de luminosité du tube. Il peut être souhaitable d'accroître cette luminosité. Pour cela il est possible d'utiliser d'autres matériaux de photocathode tels que : K₂CsSb, Rb₂CsSb, (SbNa₂K, Cs). Ils présentent un meilleur rendement photoélectrique que le matériau Cs₃Sb habituel.This absorption and this reflection of light which result in an increase in resolution of the tube, are accompanied by a decrease in luminosity of the tube. It may be desirable to increase this brightness. For this it is possible to use other photocathode materials such as: K₂CsSb, Rb₂CsSb, (SbNa₂K, Cs). They have a better photoelectric yield than the usual Cs₃Sb material.

En normalisant à 1 le rendement photoélectrique de la structure formée d'une photocathode Cs₃Sb associée à un scintillateur (CsI,Na), on obtient un rendement de 1,60 avec une photocathode (SbNa₂K,Cs) et un rendement de 2,32 avec une photocathode K₂CsSb. Les photocathodes formées des matériaux K₂CsSb, Rb₂CsSb, ou (SbNa₂K, Cs) sont donc bien adaptées pour accroître les performances en luminosité qui sont altérées par les couches absorbantes de TiN. D'autre part elles permettent de donner à la structure une grande durée de vie.By normalizing the photoelectric efficiency of the structure formed by a photocathode Cs₃Sb associated with a scintillator (CsI, Na) to 1, we obtain a yield of 1.60 with a photocathode (SbNa₂K, Cs) and a yield of 2.32 with a K₂CsSb photocathode. The photocathodes formed from materials K₂CsSb, Rb₂CsSb, or (SbNa₂K, Cs) are therefore well suited to increase the luminous performances which are altered by the absorbent layers of TiN. On the other hand, they make it possible to give the structure a long service life.

Mais pour donner à une telle structure toutes ses qualités potentielles de grande durée de vie, il est souhaitable d'interposer une barrière chimique entre le scintillateur et la photocathode afin d'éviter que l'élément Na migre vers la photocathode lors de la fabrication du tube. Cette barrière chimique est constituée d'une couche choisie parmi les matériaux suivants : Al₂O₃, Si₃N₄, SiO₂.But to give such a structure all its potential qualities of long life, it is desirable to interpose a chemical barrier between the scintillator and the photocathode in order to prevent the Na element migrating towards the photocathode during the manufacture of the tube. This chemical barrier consists of a layer chosen from the following materials: Al₂O₃, Si₃N₄, SiO₂.

Le matériau de la photocathode étant généralement peu conducteur, il est possible d'assurer une répartition homogène du potentiel électrique en disposant une couche conductrice sur la photocathode du côté du scintillateur. Cette couche conductrice doit également être transparente pour laisser passer le rayonnement émis par le scintillateur. Si une barrière chimique existe, la couche conductrice et transparente est disposée entre la photocathode et la barrière chimique. Les matériaux suivants peuvent être utilisés : palladium, aluminium, In₂O₃, SnO₂ ou le matériau ITO qui un mélange de In₂O₃ (90%) et SnO₂ (10%).Since the photocathode material is generally not very conductive, it is possible to ensure a homogeneous distribution of the electrical potential by placing a conductive layer on the photocathode on the side of the scintillator. This conductive layer must also be transparent to allow pass the radiation emitted by the scintillator. If a chemical barrier exists, the conductive and transparent layer is placed between the photocathode and the chemical barrier. The following materials can be used: palladium, aluminum, In₂O₃, SnO₂ or the ITO material which a mixture of In₂O₃ (90%) and SnO₂ (10%).

On obtient alors une fenêtre d'entrée représentée sur la figure 5. On y retrouve, comme sur la figure 1, le substrat d'aluminium 10, la couche absorbante 11, le scintillateur 12 et la photocathode 13 qui est préférentiellement constituée d'un matériau à rendement photoélectrique élevé. En supplément, en contact avec la photocathode, est disposée la couche conductrice et transparente 18, précédée de la barrière chimique 17. La couche à bas indice 19 représentée sur la figure 4 peut être associée à la couche conductrice et transparente 18 et à la barrière chimique 17 représentées sur la figure 5. Ainsi on peut disposer la couche à bas indice 19 entre le scintillateur 12 et la barrière chimique 17. On peut aussi la disposer entre la barrière chimique 17 et la couche conductrice et transparente 18.We then obtain an entry window shown in Figure 5. We find, as in Figure 1, the aluminum substrate 10, the absorbent layer 11, the scintillator 12 and the photocathode 13 which is preferably made of a material with high photoelectric yield. In addition, in contact with the photocathode, is arranged the conductive and transparent layer 18, preceded by the chemical barrier 17. The low index layer 19 shown in FIG. 4 can be associated with the conductive and transparent layer 18 and the barrier chemical 17 shown in FIG. 5. Thus, the low-index layer 19 can be placed between the scintillator 12 and the chemical barrier 17. It can also be placed between the chemical barrier 17 and the conductive and transparent layer 18.

La fenêtre d'entrée réalisée avec une couche absorbante, par exemple en TiN, et une photocathode à rendement photoélectrique élevé, par exemple en K₂CsSb, va pouvoir présenter globalement un rendement photoélectrique supérieur à une fenêtre d'entrée réalisée sans ces matériaux. Ceci est mis en évidence sur la figure 6 qui représente les variations du rendement photoélectrique Y d'une photocathode en fonction de l'épaisseur du scintillateur. L'épaisseur de la photocathode est telle que le rendement photoélectrique est au maximum. La courbe 31 concerne la structure Al/TiN/CsI,Na/Al₂O₃/K₂CsSb. Son taux de réflexion de lumière émise par le scintillateur et réfléchie par le substrat est inférieur à 10%. La courbe 32 concerne la structure Al/CsI,Na/Al₂O₃/K₂CsSb. Son taux de réflexion est de 70% environ. La courbe 31 est en dessous de la courbe 32 car en effet, la lumière absorbée est perdue et ne peut générer d'électrons. La courbe 33 concerne la structure Al/CsI,Na/Cs₃Sb. La courbe 31 est située au-dessus de la courbe 33. Ceci signifie qu'une fenêtre d'entrée avec une couche absorbante et une photocathode à rendement photoélectrique élevée peut présenter des performances accrues par rapport à une structure habituelle. De même on constate qu'une fenêtre d'entrée correspondant à la courbe 31 peut présenter des performances égales à celles obtenues avec une fenêtre d'entrée correspondant à la courbe 33, et ceci avec une épaisseur de scintillateur bien plus faible. Sur la figure 6 on constate que cette épaisseur peut être réduite de 0,4 à 0,2 mm environ. Cette réduction de l'épaisseur du scintillateur contribue aussi à l'amélioration de la résolution du tube. Les cristaux qui constituent le scintillateur présentent généralement sur une certaine épaisseur (une dizaine de micromètres) des dislocations qui provoque une diffusion de la lumière. La réduction d'épaisseur proposée conserve une épaisseur de scintillateur suffisante pour que cette zone disloquée ne pertube que faiblement les mécanismes. Mais cette réduction d'épaisseur est très intéressante car ces tubes de détection de rayons X nécessitent de faire croître des cristaux sur des surfaces de fenêtre d'entrée de plusieurs décimètres carrés. Une telle diminution d'épaisseur entraine une économie importante de matériau et un rendement de fabrication accru.The entry window produced with an absorbent layer, for example made of TiN, and a photocathode with a high photoelectric efficiency, for example made of K₂CsSb, will generally be able to have a photoelectric yield higher than an entry window made without these materials. This is highlighted in FIG. 6 which represents the variations in the photoelectric efficiency Y of a photocathode as a function of the thickness of the scintillator. The thickness of the photocathode is such that the photoelectric efficiency is at its maximum. Curve 31 relates to the Al / TiN / CsI, Na / Al₂O₃ / K₂CsSb structure. Its reflection rate of light emitted by the scintillator and reflected by the substrate is less than 10%. Curve 32 relates to the Al / CsI, Na / Al₂O₃ / K₂CsSb structure. Its reflection rate is around 70%. Curve 31 is below curve 32 because indeed, the absorbed light is lost and does not can generate electrons. Curve 33 relates to the Al / CsI, Na / Cs₃Sb structure. Curve 31 is located above curve 33. This means that an entrance window with an absorbent layer and a photocathode with high photoelectric efficiency can exhibit increased performance compared to a usual structure. Likewise, it can be seen that an input window corresponding to curve 31 can have performances equal to those obtained with an input window corresponding to curve 33, and this with a much smaller scintillator thickness. In Figure 6 we see that this thickness can be reduced from 0.4 to 0.2 mm approximately. This reduction in the thickness of the scintillator also contributes to improving the resolution of the tube. The crystals which constitute the scintillator generally have, over a certain thickness (ten micrometers), dislocations which cause a diffusion of light. The proposed thickness reduction retains a sufficient scintillator thickness so that this dislocated zone only slightly disturbs the mechanisms. However, this reduction in thickness is very advantageous since these X-ray detection tubes require crystals to grow on entry window surfaces of several square decimetres. Such a reduction in thickness results in a significant saving of material and an increased manufacturing yield.

Claims (11)

  1. An X-ray image intensifier tube, comprising an entrance window provided with an aluminium substrate which supports a scintillator which transforms X-rays reaching the scintillator through the substrate into visible or nearly visible light radiation which is converted, by way of a photocathode, into a flux of electrons to produce a visible image on an exit screen via electron-optical means, between the aluminium substrate and the scintillator there being provided a layer absorbing the light radiation emitted by the scintillator in the direction of the aluminium substrate, characterized in that the absorbing layer consists of a material chosen from the following materials:
    titanium nitride, cadmium sulphide, (Cu, PbI₂)
  2. A tube as claimed in Claim 1, characterized in that a low-index layer, having a refractive index which is lower than that of the photocathode, is inserted between the scintillator and the photocathode.
  3. A tube as claimed in Claim 2, characterized in that the material of the low-index layer is chosen from the following materials:
    MgF₂, cryolite (Na₃AlF₆).
  4. A tube as claimed in any one of the Claims 1 to 3, characterized in that the titanium nitride layer has a thickness of at least 50 nm.
  5. A tube as claimed in Claim 4, characterized in that the thickness is between 75 nm and 120 nm.
  6. A tube as claimed in any one of the Claims 1 to 3, characterized in that the cadmium sulphide layer has a thickness in one of the following ranges: between approximately 115 nm and 135 nm, between approximately 185 nm and 235 nm, and more than approximately 260 nm.
  7. A tube as claimed in any one of the Claims 1 to 6, characterized in that the photocathode is chosen from the following materials: K₂CsSb, Rb₂CsSb, SbCs₃, (SbNa₂K, Cs).
  8. A tube as claimed in any one of the Claims 1 to 7, characterized in that the scintillator is chosen from the following materials: CsI(Na), NaI(Tl), Csl(Tl), CdWO₄, Bi₄Ge₃,O₁₂, CaWO₄
  9. A tube as claimed in Claim 8, characterized in that the scintillator made of CsI(Na) has a thickness of between 100 and approximately 1000 micrometers.
  10. A tube as claimed in the Claims 7 and 9, characterized in that a chemical barrier is provided between the scintillator and the photocathode, the chemical barrier being chosen from the following materials: Al₂O₃, Si₃N₄, SiO₂.
  11. A tube as claimed in Claim 10, characterized in that an electrically conductive and optically transparent layer is deposited between the photocathode and the chemical barrier, which layer is chosen from the following materials: palladium, aluminium, In₂O₃, SnO₂, a mixture of In₂O₃ (90%) and SnO₂ (10%).
EP88202638A 1987-11-24 1988-11-23 X-ray image intensifier tube Expired - Lifetime EP0319080B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8716252A FR2623659B1 (en) 1987-11-24 1987-11-24 X-RAY IMAGE INTENSIFIER TUBE
FR8716252 1987-11-24

Publications (2)

Publication Number Publication Date
EP0319080A1 EP0319080A1 (en) 1989-06-07
EP0319080B1 true EP0319080B1 (en) 1993-09-29

Family

ID=9357091

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88202638A Expired - Lifetime EP0319080B1 (en) 1987-11-24 1988-11-23 X-ray image intensifier tube

Country Status (5)

Country Link
US (1) US4982136A (en)
EP (1) EP0319080B1 (en)
JP (1) JP2796320B2 (en)
DE (1) DE3884570T2 (en)
FR (1) FR2623659B1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2647955B1 (en) * 1989-05-30 1991-08-16 Thomson Tubes Electroniques RADIOLOGICAL IMAGE ENHANCER TUBE ENTRY SCREEN
US5029247A (en) * 1989-06-20 1991-07-02 Kabushiki Kaisha Toshiba X-ray image intensifier and method of manufacturing input screen
JPH0810584B2 (en) * 1989-11-07 1996-01-31 株式会社東芝 X-ray image tube and manufacturing method thereof
JP3297078B2 (en) * 1991-05-24 2002-07-02 株式会社東芝 X-ray image tube and method of manufacturing the same
FR2683388A1 (en) * 1991-10-31 1993-05-07 Thomson Tubes Electroniques RADIOLOGICAL IMAGE INTENSIFIER TUBE WITH IMPROVED RESOLUTION.
DE4342217C1 (en) * 1993-12-10 1995-03-30 Siemens Ag X-ray image intensifier and method for its production
US20030141814A1 (en) * 2002-01-29 2003-07-31 Leonid Gaber Light intensifier tube
JP5911274B2 (en) * 2011-11-28 2016-04-27 キヤノン株式会社 Radiation detection apparatus and radiation imaging system
WO2022060881A1 (en) 2020-09-16 2022-03-24 Amir Massoud Dabiran A multi-purpose high-energy particle sensor array and method of making the same for high-resolution imaging

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2681868A (en) * 1949-08-10 1954-06-22 Westinghouse Electric Corp Image amplifier
BE500727A (en) * 1950-01-20
US3693018A (en) * 1966-12-27 1972-09-19 Varian Associates X-ray image intensifier tubes having the photo-cathode formed directly on the pick-up screen
US3706885A (en) * 1971-01-29 1972-12-19 Gen Electric Photocathode-phosphor imaging system for x-ray camera tubes
DE2134762B2 (en) * 1971-07-12 1977-12-01 Siemens AG, 1000 Berlin und 8000 München PHOTOCATHOD
DE2307026C2 (en) * 1973-02-13 1983-01-20 Siemens AG, 1000 Berlin und 8000 München X-ray image intensifier input screen
JPS5026468A (en) * 1973-07-09 1975-03-19
JPS586260B2 (en) * 1976-08-30 1983-02-03 株式会社東芝 X-ray fluorescence multiplier tube and its manufacturing method
JPS5317266A (en) * 1976-07-31 1978-02-17 Toshiba Corp X-ray video multiplying tube and its production
JPS53122356A (en) * 1977-04-01 1978-10-25 Hitachi Ltd X-ray fluorescent film
JPS597679B2 (en) * 1979-03-28 1984-02-20 株式会社日立製作所 Scintillator crystal and its manufacturing method
US4447721A (en) * 1979-08-31 1984-05-08 Diagnostic Information, Inc. Panel type X-ray image intensifier tube and radiographic camera system
JPS56165251A (en) * 1980-05-23 1981-12-18 Toshiba Corp Input surface of x-ray image intensifier and its manufacturing method
EP0240951B1 (en) * 1986-04-04 1991-11-27 Kabushiki Kaisha Toshiba X-ray image intensifier

Also Published As

Publication number Publication date
JPH01166442A (en) 1989-06-30
DE3884570D1 (en) 1993-11-04
JP2796320B2 (en) 1998-09-10
DE3884570T2 (en) 1994-04-07
FR2623659A1 (en) 1989-05-26
US4982136A (en) 1991-01-01
EP0319080A1 (en) 1989-06-07
FR2623659B1 (en) 1990-03-09

Similar Documents

Publication Publication Date Title
JP2003521671A (en) Composite nanoluminescent screen for radiation detection
WO2003036329A1 (en) Solid-state x-ray detector
EP0319080B1 (en) X-ray image intensifier tube
EP0186225A1 (en) Image sensor for a dual-mode "day-night" camera
JPH06205768A (en) X-ray examination apparatus
FR2687007A1 (en) IMAGE INTENSIFIER TUBE, IN PARTICULAR OF THE FOCUS TYPE OF PROXIMITY.
EP0428667A1 (en) Input screen for radiological image intensifier tube.
US20020134937A1 (en) Scintillator for electron microscope and method of making
EP0553578B1 (en) Image intensifier tube with intensity distribution compensation
FR2492159A1 (en) Neutron conversion screen using gadolinium oxysulphide layer - which converts incident neutrons into light, and is used esp. in neutron image intensifier tube
EP0013241B1 (en) Radiological intensifier tube with video output and radiological network provided with such a tube
EP0062553B1 (en) Image intensifier tube target and image intensifier tube with video output comprising such a target
EP0056671B1 (en) Photoelectric detector device
WO1998053339A1 (en) Device for measuring exposure of a solid state image sensor subjected to an ionising radiation and detector equipped with same
EP0412887B1 (en) High efficiency cathodoluminescent screen for high luminance cathode ray tube
FR2545271A1 (en) IMAGE PRODUCTION DEVICE HAVING IMPROVED QUANTUM YIELD AND MANUFACTURING METHOD THEREOF
EP0324676B1 (en) Method to manufacture a photocathode for an image intensifier tube
JPH0729507A (en) Image pickup tube and operating method thereof
FR2530368A1 (en) Radiation-converting scintillating screen.
EP0079651B1 (en) Photo-electric detection structure
FR2555321A1 (en) Scintillation device for detecting X-rays
EP0851455A1 (en) Radiological image intensifier tube
EP0182405A1 (en) Photoelectric device for detecting luminous events
EP0176422A1 (en) Image pick-up tube, device comprising this tube and method of operating such a tube
JPS6151736A (en) X-ray image intensifier

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB NL

17P Request for examination filed

Effective date: 19891129

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: N.V. PHILIPS' GLOEILAMPENFABRIEKEN

Owner name: LABORATOIRES D'ELECTRONIQUE PHILIPS

17Q First examination report despatched

Effective date: 19911111

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19930929

REF Corresponds to:

Ref document number: 3884570

Country of ref document: DE

Date of ref document: 19931104

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19931223

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: CJ

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20001121

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20001129

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010118

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011123

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020702

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20011123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020730

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST