EP0553578B1 - Image intensifier tube with intensity distribution compensation - Google Patents

Image intensifier tube with intensity distribution compensation Download PDF

Info

Publication number
EP0553578B1
EP0553578B1 EP92400258A EP92400258A EP0553578B1 EP 0553578 B1 EP0553578 B1 EP 0553578B1 EP 92400258 A EP92400258 A EP 92400258A EP 92400258 A EP92400258 A EP 92400258A EP 0553578 B1 EP0553578 B1 EP 0553578B1
Authority
EP
European Patent Office
Prior art keywords
layer
photocathode
thickness
screen
scintillator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92400258A
Other languages
German (de)
French (fr)
Other versions
EP0553578A1 (en
Inventor
Yvan Raverdy
Gérard Vieux
François Chareyre
Alain Tranchant
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales Electron Devices SA
Original Assignee
Thomson Tubes Electroniques
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson Tubes Electroniques filed Critical Thomson Tubes Electroniques
Priority to DE1992610795 priority Critical patent/DE69210795T2/en
Publication of EP0553578A1 publication Critical patent/EP0553578A1/en
Application granted granted Critical
Publication of EP0553578B1 publication Critical patent/EP0553578B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/02Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
    • H01J29/10Screens on or from which an image or pattern is formed, picked up, converted or stored
    • H01J29/36Photoelectric screens; Charge-storage screens
    • H01J29/38Photoelectric screens; Charge-storage screens not using charge storage, e.g. photo-emissive screen, extended cathode
    • H01J29/385Photocathodes comprising a layer which modified the wave length of impinging radiation

Definitions

  • the present invention relates to an X-ray image intensifier tube according to claim 1.
  • the radiological image intensifier tubes make it possible to transform a radiological image into a visible image, generally for medical observation.
  • These tubes are vacuum tubes comprising an input screen, an electronic optical system, and a screen for observing the visible image.
  • the input screen includes a scintillator which converts incident X photons into visible photons which then excite a photocathode, generally constituted by an alkaline antimonide, for example potassium antimonide doped with cesium.
  • a photocathode generally constituted by an alkaline antimonide, for example potassium antimonide doped with cesium.
  • the photocathode thus excited generates a flow of electrons.
  • the flow of electrons from the photocathode is then transmitted by the electronic optical system which focuses the electrons and directs them onto an observation screen made up of a phosphor which then emits visible light.
  • This light can then be processed, for example, by a television, cinema or photography system.
  • the input screen comprises an aluminum substrate covered by the scintillator, itself covered by an electrically conductive layer and transparent to the light coming from the scintillator, for example made of oxide of indium.
  • the photocathode is deposited on this transparent layer.
  • X-rays hit the entrance screen on the side of the aluminum substrate and pass through this substrate to reach the material constituting the scintillator.
  • the light photons produced by the scintillator are emitted a little in all directions.
  • a substance such as cesium iodide is generally chosen as scintillating material, which has the property of growing in the form of crystals perpendicular to the surface on which they are deposited.
  • the needle crystals thus deposited tend to guide the light perpendicular to the surface, which is favorable for good image resolution.
  • the surface of the input screen is not flat but curved; it can be parabolic or hyperbolic for large screens, or more generally in the form of a spherical cap for smaller screens.
  • the electronic density generated by the screen is not uniform.
  • the brightness curve represents the light intensity in each point of the diameter of the output screen.
  • this curve is not horizontal; it is generally in the form of an arc of a circle slightly flattened in the center; the brightness of the output screen is maximum towards the center but decreases markedly as one approaches the edges.
  • the reduction in gloss on the edges relative to the center is around 25%.
  • the brightness curve of the intensifier tube can be improved much more easily without affecting the thickness of the scintillator and without adding an optically absorbent layer, and by using rather some very specific properties of the thin transparent layer placed under the photocathode.
  • the photocathode is made of a chemically fairly unstable material which will react with the under layer on which it is deposited; this reaction will modify the emissive properties of the photocathode, and this to an extent related to the thickness of the under layer in the case where this thickness is very thin, that is to say in the case where it does not exceed not a few hundred nanometers.
  • the invention therefore proposes to place a very thin intermediate layer of radially variable thickness under the photocathode.
  • This layer is preferably transparent; it is preferably conductive; its thickness is preferably less than a few hundred angstroms; it is preferably made of indium oxide.
  • photocathodes potassium antimonide doped with cesium. These photocathodes are very reactive, especially during their deposition because of the high temperature prevailing in the depository. They are strongly reducing and react strongly with rather oxidizing substances.
  • the final brightness of the intensifier tube strongly depends on the thickness of the layer of indium oxide. The dependence is much stronger than that which results from the simple (negligible) optical absorption properties of this layer. This is why it is particularly advantageous to give a variable thickness radially to this layer in order to modify the gloss curve at will.
  • the order of magnitude of the thicknesses is preferably as follows: approximately 250 angstroms at the edges and 400 angstroms at the center.
  • FIG. 1 shows a conventional brightness curve of an image intensifier tube, taken along a diameter of the output screen: it represents the brightness of a line of dots of the image visible on the screen of output as a function of the distance of these points from the center of the screen, assuming uniform illumination of the input screen.
  • the illumination is a uniform beam of X-rays.
  • the general structure of a conventional radiological image intensifier is shown in Figure 2.
  • the vacuum tube enclosure contains an EE input screen at the front and an ES output screen at the rear. Electron beam focusing electrodes are provided in the enclosure.
  • the input screen is most often curved in parabolic or hyperbolic form, with a strong curvature, for reasons of electronic optics, that is to say to make possible a homogeneous focusing of the electrons on the screen of exit.
  • This curvature is one of the causes of the shape of the gloss profile of the tube.
  • the EE input screen is most often formed by a curved aluminum sheet 10, on which a scintillating layer 12 has been deposited (cesium iodide, several hundred micrometers thick) itself covered with a transparent conductive electrode 14 (most often made of indium oxide In2O3) then a photocathode 16 (for example made of potassium and cesium antimonide).
  • a scintillating layer 12 cesium iodide, several hundred micrometers thick
  • a transparent conductive electrode 14 most often made of indium oxide In2O3
  • a photocathode 16 for example made of potassium and cesium antimonide
  • the transparent conductive electrode (14) is intended to uniformly fix the potential of the photocathode.
  • an intermediate layer between the scintillator layer and the photocathode (and this layer may be the transparent conductive electrode 14 itself) be deposited with a thickness that is radially variable from the center to the edges, this intermediate layer being chosen from a material which modifies the emissive properties of the photocathode as a function of the thickness deposited.
  • the intermediate layer is quite simply the layer of indium oxide 14 serving as transparent conductive electrode under the photocathode.
  • the thickness varies radially. It is greater (thickness e1) in the center of the screen than at the edges (thickness e2), because it turns out that an increase in thickness of the layer 14 causes a reduction in gloss. We therefore compensate for the excessive curvature of the gloss profile of FIG. 1.
  • the thickness variation is in practice continuous from the center to the edges.
  • the deposit with variable thickness is carried out in a known manner by evaporation in the presence of a mask which rotates in front of the surface to be covered, the shape of the mask being defined as a function of the thickness profile to be obtained.
  • the thicknesses are a few hundred angstroms.
  • indium oxide In2O3 is possible.
  • Partially reduced indium oxide In x O y in thickness of the order of a few hundred angstroms may also be suitable.
  • the thickness variation can be of the same order of magnitude as for stoichiometric indium oxide.

Description

La présente invention concerne un tube intensificateur d'images radiologiques, selon la revendication 1.The present invention relates to an X-ray image intensifier tube according to claim 1.

Les tubes intensificateurs d'image radiologique permettent de transformer une image radiologique en image visible, généralement pour assurer l'observation médicale.The radiological image intensifier tubes make it possible to transform a radiological image into a visible image, generally for medical observation.

Ces tubes sont des tubes à vide comprenant un écran d'entrée, un système d'optique électronique, et un écran d'observation de l'image visible.These tubes are vacuum tubes comprising an input screen, an electronic optical system, and a screen for observing the visible image.

L'écran d'entrée comporte un scintillateur qui convertit des photons X incidents en photons visibles qui viennent ensuite exciter une photocathode, généralement constituée par un antimoniure alcalin, par exemple de l'antimoniure de potassium dopé au césium. La photocathode ainsi excitée génère un flux d'électrons.The input screen includes a scintillator which converts incident X photons into visible photons which then excite a photocathode, generally constituted by an alkaline antimonide, for example potassium antimonide doped with cesium. The photocathode thus excited generates a flow of electrons.

Le flux d'électrons issu de la photocathode est ensuite transmis par le système d'optique électronique qui focalise les électrons et les dirige sur un écran d'observation constitué d'un luminophore qui émet alors une lumière visible. Cette lumière peut ensuite être traitée, par exemple, par un système de télévision, de cinéma ou de photographie.The flow of electrons from the photocathode is then transmitted by the electronic optical system which focuses the electrons and directs them onto an observation screen made up of a phosphor which then emits visible light. This light can then be processed, for example, by a television, cinema or photography system.

Dans les réalisations les plus récentes l'écran d'entrée comporte un substrat d'aluminium recouvert par le scintillateur, lui-même recouvert par une couche conductrice de l'électricité et transparente à la lumière issue du scintillateur, par exemple en oxyde d'indium. La photocathode est déposée sur cette couche transparente.In the most recent embodiments, the input screen comprises an aluminum substrate covered by the scintillator, itself covered by an electrically conductive layer and transparent to the light coming from the scintillator, for example made of oxide of indium. The photocathode is deposited on this transparent layer.

Les rayons X frappent l'écran d'entrée du côté du substrat d'aluminium et traversent ce substrat pour atteindre ensuite le matériau constituant le scintillateur.X-rays hit the entrance screen on the side of the aluminum substrate and pass through this substrate to reach the material constituting the scintillator.

Les photons lumineux produits par le scintillateur sont émis un peu dans toutes les directions. Mais, pour augmenter la résolution du tube, on choisit en général comme matériau scintillateur une substance telle que l'iodure de césium qui a la propriété de croître sous forme de cristaux perpendiculaires à la surface sur laquelle ils sont déposés. Les cristaux en aiguilles ainsi déposés tendent à guider la lumière perpendiculairement à la surface, ce qui est favorable à une bonne résolution d'image.The light photons produced by the scintillator are emitted a little in all directions. However, in order to increase the resolution of the tube, a substance such as cesium iodide is generally chosen as scintillating material, which has the property of growing in the form of crystals perpendicular to the surface on which they are deposited. The needle crystals thus deposited tend to guide the light perpendicular to the surface, which is favorable for good image resolution.

Toutefois, pour des raisons d'optique électronique, la surface de l'écran d'entrée n'est pas plane mais bombée ; elle peut être parabolique ou hyperbolique pour des écrans de grande dimension, ou plus généralement en forme de calotte sphérique pour des écrans de plus petite dimension.However, for reasons of electronic optics, the surface of the input screen is not flat but curved; it can be parabolic or hyperbolic for large screens, or more generally in the form of a spherical cap for smaller screens.

Il résulte de cette courbure de l'écran que si l'on éclaire l'écran d'entrée par un faisceau uniforme de rayons X, la densité électronique engendrée par l'écran n'est pas uniforme. On peut mesurer par exemple la courbe de brillance le long d'un diamètre de l'écran de sortie du tube, pour un éclairage uniforme en rayon X de l'écran d'entrée : la courbe de brillance représente l'intensité lumineuse en chaque point du diamètre de l'écran de sortie. On constate que cette courbe n'est pas horizontale ; elle est généralement en forme d'arc de cercle un peu aplati au centre ; la brillance de l'écran de sortie est maximale vers le centre mais diminue nettement à mesure qu'on s'approche des bords. Pour des tubes de petite dimension (écran d'entrée de diamètre 15cm par exemple) la diminution de brillance sur les bords par rapport au centre est de l'ordre de 25 %. Pour des écrans de plus grande dimension (diamètre 30 centimètres par exemple) la diminution atteint 35 %.It follows from this curvature of the screen that if we illuminate the input screen with a uniform beam of X-rays, the electronic density generated by the screen is not uniform. We can measure, for example, the brightness curve along a diameter of the tube exit screen, for uniform X-ray lighting of the entry screen: the brightness curve represents the light intensity in each point of the diameter of the output screen. We see that this curve is not horizontal; it is generally in the form of an arc of a circle slightly flattened in the center; the brightness of the output screen is maximum towards the center but decreases markedly as one approaches the edges. For small tubes (entry screen 15cm in diameter for example) the reduction in gloss on the edges relative to the center is around 25%. For larger screens (diameter 30 centimeters for example) the reduction reaches 35%.

Un but de l'invention est de réaliser un tube intensificateur d'images ayant une courbe de brillance plus homogène, c'est-à-dire montrant un plus faible écart entre la brillance au centre et la brillance sur les bords pour un éclairement uniforme de l'écran d'entrée. Un autre but de l'invention est d'obtenir cette meilleure homogénéité de brillance par une méthode simple et industriellement plus facile à mettre en oeuvre que les méthodes proposées dans l'art antérieur.An object of the invention is to produce an image intensifier tube having a more homogeneous brightness curve, that is to say showing a smaller difference between the brightness in the center and the brightness at the edges for uniform illumination. of the input screen. Another object of the invention is to obtain this better homogeneity of gloss by a simple method and industrially easier to implement than the methods proposed in the prior art.

On peut noter en effet qu'on n déjà proposé dans l'art antérieur (EP 0 239 991) d'améliorer l'homogénéité de la brillance en donnant une répartition non homogène à l'épaisseur de la couche de scintillateur de l'écran d'entrée. Toutefois, cela n'est pas facile à mettre en oeuvre pour la raison suivante : le rendement du scintillateur croit puis décroît avec l'épaisseur ; pour avoir un bon rendement on doit donc se situer au niveau du maximum ; mais alors on se situe sur un plateau de la courbe de rendement en fonction de l'épaisseur, et il faut donc faire varier de manière très importante l'épaisseur pour modifier la brillance. On est donc conduit à avoir des inhomogénéités très fortes d'épaisseur du scintillateur, ce qui est gênant industriellement, d'autant plus que le scintillateur est déposé en couche très épaisse (de l'ordre de 400 micromètres).It can be noted in fact that it has already been proposed in the prior art (EP 0 239 991) to improve the uniformity of the gloss by giving a non-homogeneous distribution to the thickness of the scintillator layer of the screen. entry. However, this is not easy to implement for the following reason: the yield of the scintillator increases and then decreases with the thickness; to have a good yield one must therefore be at the level of the maximum; but then we are on a plateau of the yield curve as a function of the thickness, and it is therefore necessary to vary the thickness very significantly to modify the gloss. We are therefore led to have very strong inhomogeneities in the thickness of the scintillator, which is troublesome industrially, all the more so since the scintillator is deposited in a very thick layer (of the order of 400 micrometers).

On notera qu'on a par ailleurs proposé dans l'art antérieur (EP-A- 0 378 257, selon le préambule de la revendication 1) de rajouter entre le scintillateur et la photocathode une couche sélectivement absorbante, dont la fonction est d'absorber les longueurs d'onde lumineuses émises par le scintillateur au dessous d'une certaine longueur d'onde, parce que ces longueurs d'onde sont gênantes, et de laisser passer librement les longueurs d'onde préférées vers la photocathode; cette couche peut avoir une épaisseur variable, telle que l'absorption optique au centre soit plus grande que l'absorption sur les bords. L'absorption plus grande est due au trajet optique plus grand à travers cette couche intermédiaire pour les rayons lumineux issus du scintillateur. Pour obtenir cet effet, une épaisseur variant de 10 à 20 microns est donnée pour la couche intermédiaire.It will be noted that it has moreover been proposed in the prior art (EP-A- 0 378 257, according to the preamble of claim 1) to add between the scintillator and the photocathode a selectively absorbent layer, the function of which is to absorb the light wavelengths emitted by the scintillator below a certain wavelength, because these wavelengths are annoying, and allow the preferred wavelengths to pass freely to the photocathode; this layer can have a variable thickness, such that the optical absorption in the center is greater than the absorption on the edges. The greater absorption is due to the greater optical path through this intermediate layer for the light rays coming from the scintillator. To obtain this effect, a thickness varying from 10 to 20 microns is given for the intermediate layer.

On a trouvé selon l'invention qu'on pouvait améliorer beaucoup plus facilement la courbe de brillance du tube intensificateur sans jouer sur l'épaisseur du scintillateur et sans rajouter une couche optiquement absorbante, et en utilisant plutôt certaines propriétés très particulières de la fine sous couche transparente placée sous la photocathode.It has been found according to the invention that the brightness curve of the intensifier tube can be improved much more easily without affecting the thickness of the scintillator and without adding an optically absorbent layer, and by using rather some very specific properties of the thin transparent layer placed under the photocathode.

On propose selon l'invention, décrit dans la revendication 1, de déposer sous la photocathode (pour un tube IIR : entre le scintillateur et la photocathode) une couche intercalaire mince, d'épaisseur radialement variable, réalisée en un matériau transparent dont la présence à cet endroit provoque une modification des propriétés émissives de la photocathode dans une mesure liée à l'épaisseur de ce matériau.It is proposed according to the invention, described in claim 1, to deposit under the photocathode (for an IIR tube: between the scintillator and the photocathode) a thin intermediate layer, of radially variable thickness, made of a transparent material whose presence at this point causes a modification of the emissive properties of the photocathode to an extent related to the thickness of this material.

L'invention part en fait de l'observation suivante faite par le Déposant : la photocathode est réalisée en un matériau chimiquement assez instable qui va réagir avec la sous couche sur laquelle il est déposé; cette réaction va modifier les propriétés émissives de la photocathode, et ceci dans une mesure liée à l'épaisseur de la sous couche dans le cas où cette épaisseur est très mince, c'est-à-dire dans le cas où elle n'excède pas quelques centaines de nanomètres.The invention in fact starts from the following observation made by the Applicant: the photocathode is made of a chemically fairly unstable material which will react with the under layer on which it is deposited; this reaction will modify the emissive properties of the photocathode, and this to an extent related to the thickness of the under layer in the case where this thickness is very thin, that is to say in the case where it does not exceed not a few hundred nanometers.

On s'est donc aperçu que l'interposition d'une couche intermédiaire très mince, même transparente, entre le scintillateur et la photocathode pouvait avoir des conséquences directes sur la brillance, et cela en relation étroite avec l'épaisseur de cette couche intermédiaire. Cet effet ne résulte pas d'un phénomène d'absorbtion optique, mais d'un phénomène de désactivation chimique partielle de la photocathode, d'autant plus importante que l'épaisseur de la sous couche est importante si on reste dans des gammes d'épaisseur de l'ordre de quelques centaines de nanomètres.It has therefore been seen that the interposition of a very thin, even transparent, intermediate layer between the scintillator and the photocathode could have direct consequences on the brightness, and this in close relation with the thickness of this intermediate layer. This effect does not result from a phenomenon of optical absorption, but from a phenomenon of partial chemical deactivation of the photocathode, all the more important as the thickness of the under layer is important if one remains in ranges of thickness of the order of a few hundred nanometers.

L'invention propose donc de placer sous la photocathode une couche intermédiaire très mince d'épaisseur variable radialement. Cette couche est de préférence transparente; elle est de préférence conductrice; son épaisseur est de préférence inférieure à quelques centaines d'angströms; elle est de préférence en oxyde d'indium.The invention therefore proposes to place a very thin intermediate layer of radially variable thickness under the photocathode. This layer is preferably transparent; it is preferably conductive; its thickness is preferably less than a few hundred angstroms; it is preferably made of indium oxide.

Cela est possible avec les photocathodes couramment utilisées, à l'antimoniure de potassium dopé au césium. Ces photocathodes sont très réactives, notamment pendant leur dépôt à cause de la température élevée qui règne dans l'enceinte de dépôt. Elles sont fortement réductrices et réagissent fortement avec des substances plutôt oxydantes.This is possible with commonly used photocathodes, potassium antimonide doped with cesium. These photocathodes are very reactive, especially during their deposition because of the high temperature prevailing in the depository. They are strongly reducing and react strongly with rather oxidizing substances.

Par exemple, si on interpose entre la couche scintillatrice et la photocathode une couche d'oxyde d'indium In₂O₃ qui a la propriété d'être à la fois conductrice et transparente et qui est donc parfois utilisée comme sous-couche conductrice avant dépôt de la photocathode, on a trouvé selon l'invention que la brillance finale du tube intensificateur dépendait fortement de l'épaisseur de la couche d'oxyde d'indium. La dépendance est beaucoup plus forte que celle qui résulte des simples propriétés d'absorbtion optique (négligeables) de cette couche. C'est pourquoi il est particulièrement avantageux de donner une épaisseur variable radialement à cette couche pour modifier à volonté la courbe de brillance. Cette variation de brillance vient très probablement d'une réaction chimique entre l'oxyde d'indium et l'antimoniure alcalin de la photocathode ; cette réaction tend à décomposer une quantité d'antimoniure qui est liée à la quantité d'oxyde d'indium donc à l'épaisseur de la couche d'oxyde d'indium. Cette réaction chimique intervient pendant la phase de dépôt de la photocathode.For example, if a layer of indium oxide In₂O₃ is interposed between the scintillator layer and the photocathode, which has the property of being both conductive and transparent and which is therefore sometimes used as a conductive sublayer before deposition of the photocathode, it has been found according to the invention that the final brightness of the intensifier tube strongly depends on the thickness of the layer of indium oxide. The dependence is much stronger than that which results from the simple (negligible) optical absorption properties of this layer. This is why it is particularly advantageous to give a variable thickness radially to this layer in order to modify the gloss curve at will. This variation in gloss is very probably due to a chemical reaction between the indium oxide and the alkaline antimonide of the photocathode; this reaction tends to decompose an amount of antimonide which is linked to the amount of indium oxide and therefore to the thickness of the indium oxide layer. This chemical reaction takes place during the photocathode deposition phase.

Là encore on mettra une épaisseur de couche intercalaire plus grande au centre, pour réduire au centre le rendement de la photocathode. L'ordre de grandeur des épaisseurs est de préférence le suivant : environ 250 angströms sur les bords et 400 angströms au centre.Again, we will put a thicker interlayer thickness in the center, to reduce the efficiency of the photocathode in the center. The order of magnitude of the thicknesses is preferably as follows: approximately 250 angstroms at the edges and 400 angstroms at the center.

D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description détaillée qui suit et qui est faite en référence aux dessins annexés dans lesquels :

  • la figure 1 représente une courbe de brillance d'un tube IIR de l'art antérieur;
  • la figure 2 représente la structure générale d'un tube IIR de l'art antérieur;
  • la figure 3 représente la structure des couches de l'écran d'entrée selon l'invention.
  • la figure 4 représente une courbe de brillance compensée selon l'invention.
Other characteristics and advantages of the invention will appear on reading the detailed description which follows and which is given with reference to the appended drawings in which:
  • FIG. 1 represents a brightness curve of an IIR tube of the prior art;
  • FIG. 2 represents the general structure of an IIR tube of the prior art;
  • FIG. 3 represents the structure of the layers of the input screen according to the invention.
  • FIG. 4 represents a compensated brightness curve according to the invention.

A la figure 1 on a représenté une courbe de brillance classique de tube intensificateur d'image, relevée selon un diamètre de l'écran de sortie : elle représente la brillance d'une ligne de points de l'image visible sur l'écran de sortie en fonction de la distance de ces points par rapport au centre de l'écran, en supposant uniforme l'éclairement de l'écran d'entrée. Pour un tube IIR, l'éclairement est un faisceau uniforme de rayons X.FIG. 1 shows a conventional brightness curve of an image intensifier tube, taken along a diameter of the output screen: it represents the brightness of a line of dots of the image visible on the screen of output as a function of the distance of these points from the center of the screen, assuming uniform illumination of the input screen. For an IIR tube, the illumination is a uniform beam of X-rays.

En abscisse on a donc porté la distance radiale par rapport au centre, et en ordonnée la brillance de l'image visible de sortie. On voit que la courbe de brillance n'est pas du tout une ligne droite horizontale ou presque comme cela pourrait être théoriquement souhaitable; c'est plutôt une sorte d'arc de cercle aplati vers le centre. La différence de brillance entre le centre et les bords va de 25% à 35% selon les types de tubes et selon leur diamètre. En réalité, une certaine différence de brillance peut être souhaitable, mais pas aussi élevée que cela.On the abscissa we therefore plotted the radial distance from the center, and on the ordinate the brightness of the visible output image. It can be seen that the brightness curve is not at all a horizontal straight line or almost as it might be theoretically desirable; it is rather a kind of arc of a circle flattened towards the center. The difference in gloss between the center and the edges ranges from 25% to 35% depending on the types of tubes and their diameter. In reality, some difference in gloss may be desirable, but not as high as that.

La structure générale d'un intensificateur d'image radiologique classique est représentée à la figure 2. L'enceinte du tube à vide renferme à l'avant un écran d'entrée EE et à l'arrière un écran de sortie ES. Des électrodes de focalisation de faisceau électronique sont prévues dans l'enceinte.The general structure of a conventional radiological image intensifier is shown in Figure 2. The vacuum tube enclosure contains an EE input screen at the front and an ES output screen at the rear. Electron beam focusing electrodes are provided in the enclosure.

L'écran d'entrée est le plus souvent bombé en forme parabolique ou hyperbolique, avec une forte courbure, pour des raisons d'optique électronique, c'est-à-dire pour rendre possible une focalisation homogène des électrons sur l'écran de sortie. Cette courbure est une des causes de la forme du profil de brillance du tube.The input screen is most often curved in parabolic or hyperbolic form, with a strong curvature, for reasons of electronic optics, that is to say to make possible a homogeneous focusing of the electrons on the screen of exit. This curvature is one of the causes of the shape of the gloss profile of the tube.

L'écran d'entrée EE est le plus souvent constitué par une tôle d'aluminium bombée 10, sur laquelle on a déposé une couche scintillatrice 12 (iodure de césium, plusieurs centaines de micromètres d'épaisseur) elle-même recouverte d'une électrode conductrice transparente 14 (le plus souvent en oxyde d'indium In₂O₃) puis d'une photocathode 16 (par exemple en antimoniure de potassium et césium).The EE input screen is most often formed by a curved aluminum sheet 10, on which a scintillating layer 12 has been deposited (cesium iodide, several hundred micrometers thick) itself covered with a transparent conductive electrode 14 (most often made of indium oxide In₂O₃) then a photocathode 16 (for example made of potassium and cesium antimonide).

L'électrode conductrice transparente (14) est destinée à fixer uniformément le potentiel de la photocathode.The transparent conductive electrode (14) is intended to uniformly fix the potential of the photocathode.

Selon l'invention, on propose qu'une couche intercalaire entre la couche scintillatrice et la photocathode (et cette couche peut être l'électrode conductrice transparente 14 elle même) soit déposée avec une épaisseur radialement variable du centre vers les bords, cette couche intercalaire étant choisie dans un matériau qui modifie les propriétés émissives de la photocathode en fonction de l'épaisseur déposée.According to the invention, it is proposed that an intermediate layer between the scintillator layer and the photocathode (and this layer may be the transparent conductive electrode 14 itself) be deposited with a thickness that is radially variable from the center to the edges, this intermediate layer being chosen from a material which modifies the emissive properties of the photocathode as a function of the thickness deposited.

La structure d'écran qui met en oeuvre de la manière la plus simple l'invention est représentée à la figure 3 : la couche intercalaire est tout simplement la couche d'oxyde d'indium 14 servant d'électrode conductrice transparente sous la photocathode. Comme on le voit sur la figure 3, l'épaisseur varie radialement. Elle est plus grande (épaisseur e1) au centre de l'écran que sur les bords (épaisseur e2) , car il s'avère qu'une augmentation d'épaisseur de la couche 14 provoque une réduction de la brillance. On compense donc la trop grande courbure du profil de brillance de la figure 1. La variation d'épaisseur est en pratique continue du centre vers les bords.The screen structure which implements the invention in the simplest manner is shown in FIG. 3: the intermediate layer is quite simply the layer of indium oxide 14 serving as transparent conductive electrode under the photocathode. As seen in Figure 3, the thickness varies radially. It is greater (thickness e1) in the center of the screen than at the edges (thickness e2), because it turns out that an increase in thickness of the layer 14 causes a reduction in gloss. We therefore compensate for the excessive curvature of the gloss profile of FIG. 1. The thickness variation is in practice continuous from the center to the edges.

Le dépôt avec épaisseur variable est réalisé d'une manière connue par évaporation en présence d'un masque qui tourne devant la surface à recouvrir, la forme du masque étant définie en fonction du profil d'épaisseur à obtenir. Les épaisseurs sont de quelques centaines d'angströms.The deposit with variable thickness is carried out in a known manner by evaporation in the presence of a mask which rotates in front of the surface to be covered, the shape of the mask being defined as a function of the thickness profile to be obtained. The thicknesses are a few hundred angstroms.

On a trouvé qu'une épaisseur variant entre 400 angströms environ (au centre de l'écran) et 250 angströms environ (sur les bords) était tout à fait appropriée. Il est intéressant de remarquer que la variation d'absorbtion optique due à cette variation d'épaisseur est tout-à-fait négligeable. Et pourtant la brillance de l'écran est compensée dans la mesure désirée (on peut facilement passer d'une différence de 25% à une différence de 10% par exemple entre le centre et les bords). Il semble donc que ce soit surtout par diminution de l'émissivité de la photocathode que la couche d'oxyde d'indium agit. Et l'action dépend fortement de l'épaisseur d'oxyde d'indium.It has been found that a thickness varying between about 400 angstroms (at the center of the screen) and about 250 angstroms (at the edges) is quite suitable. It is interesting to note that the variation in optical absorption due to this variation in thickness is entirely negligible. And yet the brightness of the screen is compensated to the desired extent (we can easily go from a difference of 25% to a difference of 10% for example between the center and the edges). It therefore seems that it is mainly by reducing the emissivity of the photocathode that the indium oxide layer acts. And the action strongly depends on the thickness of indium oxide.

Le choix d'autres matériaux que l'oxyde d'indium stoechiométrique In₂O₃ est possible. De l'oxyde d'indium partiellement réduit InxOy , en épaisseur de l'ordre de quelques centaines d'angströms peut convenir également. La variation d'épaisseur peut être du même ordre de grandeur que pour l'oxyde d'indium stoechiométrique.The choice of other materials than stoichiometric indium oxide In₂O₃ is possible. Partially reduced indium oxide In x O y , in thickness of the order of a few hundred angstroms may also be suitable. The thickness variation can be of the same order of magnitude as for stoichiometric indium oxide.

Dans le cas d'un intensificateur d'image visible et non radiologique, il n'y a pas de scintillateur et le matériau tel que l'oxyde d'indium, dont l'épaisseur agit sur la brillance finale, est déposé sur un substrat avant le dépôt de la photocathode.In the case of a visible and non-radiological image intensifier, there is no scintillator and the material such as indium oxide, the thickness of which acts on the final brightness, is deposited on a substrate before depositing the photocathode.

Claims (5)

  1. An X-ray image intensifier tube comprising an output screen which supplies a visible image and an input screen which supports a scintillator layer (12), a photocathode layer (16) and an intermediate thin layer (14) between the scintillator layer and the photocathode layer, characterized in that the intermediate thin layer is transparent and is obtained by depositing a material susceptible to react with the photocathode during the manufacturing phase, the thickness of this intermediate layer being variable in radial direction to such an extent that the emission efficiency of the photocathode varies locally in accordance with the thickness of the layer.
  2. A tube according to claim 1, characterized in that the intermediate transparent layer is a conducting layer.
  3. A tube according to one of claims 1 and 2, characterized in that the material is a metal oxide, in particular stoichiometric indium oxide In₂O₃ or partially reduced indium oxide InxOy, the thicknesses being selected at approximately some hundred Å.
  4. A tube according to one of claims 1 to 3, characterized in that the thickness of the intermediate layer is greater at the centre than at the borders of the input screen.
  5. A tube according to one of claims 1 to 4, characterized in that the photocathode is made from a strongly reducing material and that the intermediate layer is made from a material having an oxidizing tendency.
EP92400258A 1990-08-31 1992-01-31 Image intensifier tube with intensity distribution compensation Expired - Lifetime EP0553578B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE1992610795 DE69210795T2 (en) 1992-01-31 1992-01-31 Image intensifier tube with intensity distribution compensation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR9010870A FR2666447B1 (en) 1990-08-31 1990-08-31 IMAGE INTENSIFIER TUBE WITH BRIGHTNESS CURVE COMPENSATION.

Publications (2)

Publication Number Publication Date
EP0553578A1 EP0553578A1 (en) 1993-08-04
EP0553578B1 true EP0553578B1 (en) 1996-05-15

Family

ID=9399992

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92400258A Expired - Lifetime EP0553578B1 (en) 1990-08-31 1992-01-31 Image intensifier tube with intensity distribution compensation

Country Status (3)

Country Link
US (1) US5256870A (en)
EP (1) EP0553578B1 (en)
FR (1) FR2666447B1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5635720A (en) * 1995-10-03 1997-06-03 Gatan, Inc. Resolution-enhancement device for an optically-coupled image sensor for an electron microscope
FR2758002B1 (en) * 1996-12-27 2004-07-02 Thomson Tubes Electroniques VISUALIZATION SYSTEM WITH LUMINESCENT OBSERVATION SCREEN
IL120774A0 (en) * 1997-05-04 1997-09-30 Yeda Res & Dev Protection of photocathodes with thin films
FR2782388B1 (en) 1998-08-11 2000-11-03 Trixell Sas SOLID STATE RADIATION DETECTOR WITH INCREASED LIFE
US6700123B2 (en) * 2002-01-29 2004-03-02 K. W. Muth Company Object detection apparatus
US20040036973A1 (en) * 2002-06-01 2004-02-26 Giuseppe Iori Multi-layer interference filter having colored reflectance and substantially uniform transmittance and methods of manufacturing the same
CN104749604B (en) * 2013-12-30 2018-06-01 同方威视技术股份有限公司 Multi-technical fusion scintillation detector device
GB2524778A (en) * 2014-04-02 2015-10-07 Univ Warwick Ultraviolet light detection

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3716713A (en) * 1969-01-09 1973-02-13 Varian Associates Input screen for image devices having reduced sensitivity in the cental region
US3706885A (en) * 1971-01-29 1972-12-19 Gen Electric Photocathode-phosphor imaging system for x-ray camera tubes
US3838273A (en) * 1972-05-30 1974-09-24 Gen Electric X-ray image intensifier input
NL8602629A (en) * 1986-10-21 1988-05-16 Philips Nv ROENTGEN IMAGE AMPLIFIER TUBE WITH A SEPARATION LAYER BETWEEN THE LUMINESCENTION LAYER AND THE PHOTOCATHODE.
NL8900040A (en) * 1989-01-09 1990-08-01 Philips Nv ROENTGEN IMAGE AMPLIFIER TUBE WITH SELECTIVE FILTER.
JP2758206B2 (en) * 1989-05-23 1998-05-28 株式会社東芝 X-ray image tube
FR2647955B1 (en) * 1989-05-30 1991-08-16 Thomson Tubes Electroniques RADIOLOGICAL IMAGE ENHANCER TUBE ENTRY SCREEN

Also Published As

Publication number Publication date
FR2666447A1 (en) 1992-03-06
FR2666447B1 (en) 1996-08-14
US5256870A (en) 1993-10-26
EP0553578A1 (en) 1993-08-04

Similar Documents

Publication Publication Date Title
EP0554145B1 (en) Image intensifier tube, particularly of the proximity focusing type
EP0553578B1 (en) Image intensifier tube with intensity distribution compensation
EP0559550B1 (en) Microchannel plate type intensifier tube, especially for radiological images
EP0428667B1 (en) Input screen for radiological image intensifier tube
EP0403802B1 (en) X-ray image intensifier and method of manufacturing input screen
EP0540391B1 (en) Radiological image intensifier tube
FR2625838A1 (en) INTENSIFIER RADIOLOGICAL IMAGE INTENSIFIER TUBE ENTRY SCINTILLATOR AND METHOD FOR MANUFACTURING SUCH A SCINTILLATOR
EP0319080B1 (en) X-ray image intensifier tube
EP0125962B1 (en) X-ray image intensifier and its use in computed x-ray image processing
EP0062553B1 (en) Image intensifier tube target and image intensifier tube with video output comprising such a target
EP0013241B1 (en) Radiological intensifier tube with video output and radiological network provided with such a tube
FR2521781A1 (en) RADIOLOGICAL IMAGE CONVERTER
EP0412887B1 (en) High efficiency cathodoluminescent screen for high luminance cathode ray tube
FR2545269A1 (en) ELECTROLUMINESCENT SCREEN AND METHOD FOR MANUFACTURING THE SAME
FR2479559A1 (en) METHOD FOR PRODUCING LUMINESCENT SCREENS
EP0851455B1 (en) Radiological image intensifier tube
EP0143714B1 (en) Luminescent screen and process for manfacturing the same
EP0533538B1 (en) Image intensifier tube with brightness correction
JPH08306328A (en) X-ray pick-up tube
EP0176422A1 (en) Image pick-up tube, device comprising this tube and method of operating such a tube
BE519239A (en)
EP0427842A1 (en) Thin-film cathodoluminescent screen for high-luminance cathode ray tube

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB NL

17P Request for examination filed

Effective date: 19930809

17Q First examination report despatched

Effective date: 19940325

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19960515

REF Corresponds to:

Ref document number: 69210795

Country of ref document: DE

Date of ref document: 19960620

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19960515

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20110117

Year of fee payment: 20

Ref country code: DE

Payment date: 20110126

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69210795

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69210795

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: V4

Effective date: 20120131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20120201