JPS597679B2 - Scintillator crystal and its manufacturing method - Google Patents

Scintillator crystal and its manufacturing method

Info

Publication number
JPS597679B2
JPS597679B2 JP54035463A JP3546379A JPS597679B2 JP S597679 B2 JPS597679 B2 JP S597679B2 JP 54035463 A JP54035463 A JP 54035463A JP 3546379 A JP3546379 A JP 3546379A JP S597679 B2 JPS597679 B2 JP S597679B2
Authority
JP
Japan
Prior art keywords
crystal
scintillator
absorption coefficient
scintillator crystal
detection sensitivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54035463A
Other languages
Japanese (ja)
Other versions
JPS55130899A (en
Inventor
「てつ」 大井
一正 高木
徳海 深沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP54035463A priority Critical patent/JPS597679B2/en
Priority to GB8009174A priority patent/GB2045795B/en
Priority to US06/132,132 priority patent/US4365155A/en
Priority to DE3011978A priority patent/DE3011978C2/en
Publication of JPS55130899A publication Critical patent/JPS55130899A/en
Publication of JPS597679B2 publication Critical patent/JPS597679B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K4/00Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/67Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing refractory metals
    • C09K11/68Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing refractory metals containing chromium, molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • C30B29/32Titanates; Germanates; Molybdates; Tungstates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/202Measuring radiation intensity with scintillation detectors the detector being a crystal
    • G01T1/2023Selection of materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31Surface property or characteristic of web, sheet or block

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Measurement Of Radiation (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Luminescent Compositions (AREA)

Description

【発明の詳細な説明】 本発明はX線またはγ線等の放射線を光に変換するため
のシンチレータ用結晶に関するもので、特に前記放射線
を用いた断層像撮像装置に有用なZnW04よりなるシ
ンチレータ用結晶およびその製造方法に係るものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a scintillator crystal for converting radiation such as X-rays or γ-rays into light, and in particular to a scintillator crystal made of ZnW04 useful for tomographic imaging devices using the radiation. This invention relates to crystals and methods for producing the same.

近年、細く絞ったX線ビームを種々の方向より被写体に
照射、走査し、各走査線における被写体透過X線を検出
し、これをコンピュータに送り仮想マトリックス各点の
X線吸収率を求め、前記仮想マ} IJツクス各点に求
めたX線吸収率に応じた明暗を与え断層像として表示す
るX線断層像撮像装置が盛んに開発されている。
In recent years, a narrowly focused X-ray beam is irradiated onto the object from various directions and scanned, the X-rays transmitted through the object in each scanning line are detected, and this is sent to a computer to determine the X-ray absorption rate at each point in the virtual matrix. Virtual Matrix X-ray tomographic imaging devices that display a tomographic image by giving each point a brightness or darkness corresponding to the determined X-ray absorption rate are being actively developed.

前記撮像装置に使用されるシンチレータ結晶としては原
子番号(Z)の大きい元素を高密度で含む物質が適して
おり、今までにNaI(Tl)、CsI,Bi4Ge3
012、CaWO4およびC dWO,等が知られてい
た。
Materials containing elements with high atomic numbers (Z) at high density are suitable as scintillator crystals used in the imaging device, and so far, materials such as NaI (Tl), CsI, Bi4Ge3
012, CaWO4 and CdWO, etc. were known.

しかしながらこれらのものはX線断層像撮像装置用のシ
ンチレータ結晶としては満足すべきものではなかった。
However, these materials were not satisfactory as scintillator crystals for X-ray tomographic imaging devices.

すなわち、前記X線撮像装置に用いられるシンチレータ
用結晶としては、この装置に於けるX線ビームの走査、
そしてX線を検出するシンチレータ結晶からの受光装置
を従来のフォトマルチプラ?ヤー(光電子増倍管)方式
からフォトダイオード方式への切換えを指向している等
の点から、X線検出感度が高いことは勿論のこと、残光
時間が短かいこと、発光波長がフォトダイオードの最適
ピーク値に近い5 0 0 nm以上の赤外領域にある
ことが望ましい。
That is, the scintillator crystal used in the X-ray imaging device is suitable for scanning the X-ray beam in this device,
And is the light receiving device from the scintillator crystal that detects X-rays a conventional photomultiplier? The aim is to switch from a photomultiplier tube (photomultiplier) system to a photodiode system, which not only has high X-ray detection sensitivity, but also has a short afterglow time and a light emission wavelength that is superior to that of a photodiode. It is desirable that the wavelength be in the infrared region of 500 nm or more, which is close to the optimum peak value of .

これに対して、前述した従来のシンチレータ用結晶の(
1) B i 4 Ge 3 02では下表1に示す如
くX線検出感度が、標準となるNaI(Tl)の12%
;と小さい。
In contrast, the conventional scintillator crystal described above (
1) In B i 4 Ge 3 02, the X-ray detection sensitivity is 12% of the standard NaI (Tl) as shown in Table 1 below.
; and small.

(2)CaWo4では元元波長が430nmと短かくフ
ォトダイオード使用の際に不利である。
(2) CaWo4 has a short original wavelength of 430 nm, which is disadvantageous when using a photodiode.

(3) C dW04では公害元素のCdを含むため、
その対策に製造コストの上昇をきたし好ましくない等の
欠点を有するものであった。
(3) Since C dW04 contains Cd, which is a polluting element,
Countermeasures have disadvantages such as undesirable increases in manufacturing costs.

なお、本願発明におけるX線検出感度とは、すべて従来
のシンチレー夕用結晶のうちで最高感度を有するNaI
(TI)を100%としたものを基準にして示すことと
する。
Note that the X-ray detection sensitivity in the present invention refers to NaI, which has the highest sensitivity among conventional scintillator crystals.
(TI) is 100%.

本発明は上記の欠点を解消し、X線検出感度、発光波長
、残光特性の点でX線断層像撮像装置のシンチレータ用
結晶として最も適したものを提供しようとするものであ
る。
The present invention aims to eliminate the above-mentioned drawbacks and provide a crystal that is most suitable as a scintillator crystal for an X-ray tomographic imaging device in terms of X-ray detection sensitivity, emission wavelength, and afterglow characteristics.

本発明者らはMWO,(M: 2価イオン)の一般式で
表わされるタングステートの中からZ nWO4(タン
グステン酸亜鉛)を選び、この特性について種々検々を
加え、このなかからシンチレータ用結晶として特に有用
なものを見出したものである。
The present inventors selected ZnWO4 (zinc tungstate) from among the tungstates represented by the general formula MWO, (M: divalent ion), conducted various tests on its properties, and selected crystals for scintillators from among these. We have found this to be particularly useful.

すなわち、ZnWo4は粉体ではかなり強い発光強度を
有し、発光波長のピーク値も520nmと長いことが知
られていた。
That is, it was known that ZnWo4 has a considerably strong emission intensity in powder form, and that the peak value of the emission wavelength is as long as 520 nm.

しかし、従来から知られた方法でこの物質の単結晶を作
成し、その物性を調べてみると、結晶が暗赤褐色を呈し
、可視光領域での吸収係数が太き《、そのため透過光を
利用するシンチレータ結晶としては、X線の検出感度が
高々5%程度と低く、ま2た《使い.ものにならなかっ
た。
However, when we created a single crystal of this substance using a conventional method and investigated its physical properties, we found that the crystal exhibited a dark reddish-brown color and had a large absorption coefficient in the visible light region. As a scintillator crystal, the X-ray detection sensitivity is low at about 5% at most, and it is difficult to use. It didn't become a thing.

また、前記可視光の吸収係数が大きいことはZ nM/
0 4固有の性質と考えられていた。
Furthermore, the fact that the visible light absorption coefficient is large means that Z nM/
It was thought to be a characteristic unique to 04.

本発明者らはZnWO,について、通常得られるZ n
WO ,結晶から更に純度を上げていった結晶を?々育
成し、その吸収係数(波長520nmに於ける)を測定
したところ、純度を上げてゆくにつれ、吸収係数を小さ
《できることを見出し、この結晶の吸収係数を特定値以
下とすることによりシンチレータ用結晶として実用化し
うるものであることを見出したものである。
The present inventors have discovered that ZnWO, which is commonly obtained
WO: A crystal that is even more pure than a crystal? When the crystals were grown and their absorption coefficients (at a wavelength of 520 nm) were measured, they found that as the purity increased, the absorption coefficients could be reduced. It was discovered that it can be put to practical use as a crystal.

第1図に波長5 2 0nmに於ける吸収係数と、該吸
収係数のZnW04結晶をX線検出用シンチレータ結晶
として用いた場合のX線検出感度を示した。
FIG. 1 shows the absorption coefficient at a wavelength of 520 nm and the X-ray detection sensitivity when a ZnW04 crystal with the absorption coefficient is used as a scintillator crystal for X-ray detection.

この実験で用いたX線はIOOKV,シンチレータ結晶
の厚さは2mmである。
The X-rays used in this experiment were IOOKV, and the thickness of the scintillator crystal was 2 mm.

本実験の結果吸収係数3crrL−1以上の結晶ではX
線検出感度は数パーセントと低い。
As a result of this experiment, for crystals with an absorption coefficient of 3crrL-1 or more,
Line detection sensitivity is low, at a few percent.

後述する表2にみられるように、不純物濃度を5 0
ppmとすると吸収係数は1.8の−1であり、この結
晶を用いた場合にはX線検出感度は12%となり、従来
シンチレータ用結晶として用いられていたB 1 4
G e 30 tとほぼ同じX線検出感度が得られた。
As shown in Table 2 below, the impurity concentration was reduced to 50
ppm, the absorption coefficient is -1 of 1.8, and when this crystal is used, the X-ray detection sensitivity is 12%, and B 1 4, which has been conventionally used as a scintillator crystal, is
Almost the same X-ray detection sensitivity as G e 30 t was obtained.

また、更に不純物濃度を2 0 ppmとして吸収係数
を1.2crrL−1 とした場合にはX線検出感度は
22%、吸収係数0.5crrL−1では32%、吸収
係数0.21cm’ では40%であった。
Further, when the impurity concentration is 20 ppm and the absorption coefficient is 1.2 crrL-1, the X-ray detection sensitivity is 22%, 32% with an absorption coefficient of 0.5 crrL-1, and 40% with an absorption coefficient of 0.21 cm'. %Met.

また吸収係数を更に小さくした場合にもXi検出感度は
ほぼ40%で止まった。
Furthermore, even when the absorption coefficient was further reduced, the Xi detection sensitivity remained at approximately 40%.

実施例 1 次に、本発明ZnwO4結晶の製造方法について述べる
と、9 9. 9 9%の高純度■03とZnO酸化物
を等モルの割合で白金ルツボに入れ(原料重量400g
r)、酸素雰囲気中にて高周波加熱により原料を約1
1 0 0 ’Cに加熱し、チョクラルスキー法にて、
結晶引上速度4mml時間、回転数50rpmの条件で
25mmφのZnWO4結晶を育成することができた。
Example 1 Next, the method for manufacturing the ZnwO4 crystal of the present invention will be described.99. 9 Place 9% high purity ■03 and ZnO oxide in equimolar proportions in a platinum crucible (raw material weight 400g).
r), the raw material is heated by high frequency heating in an oxygen atmosphere to approx.
Heating to 100'C, using Czochralski method,
A ZnWO4 crystal with a diameter of 25 mm could be grown under the conditions of a crystal pulling speed of 4 mml time and a rotation speed of 50 rpm.

これによって得られた本発明の結晶はわずかに茶褐色を
呈しているが、波長520nmに於ける吸収係数は1.
8cfrL’ 、不純物含有量は5 0 ppmであっ
た。
The crystal of the present invention thus obtained has a slightly brown color, but the absorption coefficient at a wavelength of 520 nm is 1.
8 cfrL', and the impurity content was 50 ppm.

(本発明■)この時の不純物はSi,Ca が主なもの
であった。
(Invention ■) The impurities at this time were mainly Si and Ca.

実施例 2 次に、実施例1で製造された不純物量50ppmのZr
LWO4結晶を原料とし、再度結晶成長(成長条件は実
施例1と同じ)したところ得られた結晶は透明となりこ
の吸収係数は0.21Cr/L−1、不純物含有量は1
0ppmのZnWo4結晶を得ることができた。
Example 2 Next, Zr manufactured in Example 1 with an impurity amount of 50 ppm
Using LWO4 crystal as a raw material, crystal growth was performed again (the growth conditions were the same as in Example 1), and the resulting crystal was transparent, with an absorption coefficient of 0.21Cr/L-1 and an impurity content of 1.
ZnWo4 crystals with a concentration of 0 ppm could be obtained.

(本発明■)比較例 一方、純度99.9%のWO3とZnO酸化物を等モル
づつ白金ルツボに混入し、実施例1と同様の条件でチョ
クラルスキー法による結晶成長を行なったところ、得ら
れたZ nWo ,結晶には強い着色があり吸収係数は
4.OCr/′L−1 となった(在来品)。
(Invention ■) Comparative Example On the other hand, equimolar amounts of 99.9% pure WO3 and ZnO oxide were mixed into a platinum crucible, and crystal growth was performed by the Czochralski method under the same conditions as in Example 1. The resulting Z nWo crystals were strongly colored and had an absorption coefficient of 4. OCr/'L-1 (conventional product).

この場合の不純物含有量は120ppmであり、不純物
としてはSi,Ca,Feが存在していた。
The impurity content in this case was 120 ppm, and Si, Ca, and Fe were present as impurities.

このZ nWO 4結晶はX線検出用シンチレータとし
ては使いものにならなかった。
This Z nWO 4 crystal could not be used as a scintillator for X-ray detection.

実施例 3 前記比較例で作製したZnWO4結晶を原料とじ≧て再
度チョクラルスキー法により結晶成長(成長条件は実施
例1と同じ)を行なったところ、吸収係数を1.2cI
rL’ と小さくし、X線検出感度についても22%
と大きく向上させることができた(本発明■)。
Example 3 When the ZnWO4 crystal produced in the comparative example was bound as raw materials and crystal growth was performed again by the Czochralski method (growth conditions were the same as in Example 1), the absorption coefficient was 1.2 cI.
rL' and X-ray detection sensitivity is also 22%.
(This invention ■)

実施例 4 実施例1と同じ原料ならびに結晶成長条件でチョクラル
スキー法によりZnW04結晶を成長させる際、結晶側
が負、融液側が正となるように電界を印加し、結晶の単
位断面積当り0. 5 m AicrAの電流を流して
結晶成長を行ったところ得られた結晶は直径が25r/
L1rLで、その吸収係数については1.3cm−1
と、実施例1の場合より更に低くすることができた。
Example 4 When growing a ZnW04 crystal by the Czochralski method using the same raw materials and crystal growth conditions as in Example 1, an electric field was applied so that the crystal side was negative and the melt side was positive, and the .. Crystal growth was performed by passing a current of 5 m AicrA, and the resulting crystal had a diameter of 25 r/m.
L1rL and its absorption coefficient is 1.3cm-1
, it was possible to make it even lower than in the case of Example 1.

このZnWo4結晶をシンチレータ用結晶として用いた
場合のX線検出感度は19%と良好であった。
When this ZnWo4 crystal was used as a scintillator crystal, the X-ray detection sensitivity was as good as 19%.

また、ちなみにこの結晶の不純物含有量は3 4 pp
mであった(本発明■)。
Also, by the way, the impurity content of this crystal is 3 4 pp
m (present invention ■).

実施例 5 純度99.99%の■03とZnO酸化物を等モルづつ
混合し、この原料4 0 0 grを白金ボート( 2
0mm×2 0mmX 2 0 0 mm)に入れ、
該ボートの周囲からリング状のSiC よりなる抵抗
加熱体を用い、かつ、該加熱体を4 mml時間の移動
速度でボート長手方向に移動しながら、ボート内の原料
を257n7ILO幅で順次帯状に溶融(溶融温度12
00℃)するゾーンメルト法により結晶成長させたとこ
ろ吸収係数が1.7crrL−1のZnW04結晶が得
られた。
Example 5 ■03 with a purity of 99.99% and ZnO oxide were mixed in equal moles, and 400 gr of this raw material was transferred to a platinum boat (2
0mm x 20mm x 200mm),
Using a ring-shaped resistance heating element made of SiC from around the boat, and moving the heating element in the longitudinal direction of the boat at a moving speed of 4 mml hours, the raw materials in the boat were sequentially melted in a band shape with a width of 257n7 ILO. (melting temperature 12
When the crystal was grown by the zone melt method at 00°C, a ZnW04 crystal with an absorption coefficient of 1.7 crrL-1 was obtained.

この結晶をX線検出用シンチレータとしたところ、X線
検出感度は13%であった(本発明■)。
When this crystal was used as a scintillator for X-ray detection, the X-ray detection sensitivity was 13% (invention (2)).

今までに説明したZnWO4結晶をシンチレータとして
用いた場合の代表例を、従来のシンチレータ用結晶の特
性と比較すると下表2に示す如くである。
A typical example of the case where the ZnWO4 crystal described above is used as a scintillator is compared with the characteristics of conventional scintillator crystals as shown in Table 2 below.

表からも明らかなように本発明のZnWO,よりなるシ
ンチレータ用結晶は波長520nmに於ける吸収係数を
1.8crrL−1以下とすることにより、X線検出感
度を極めて大きなものとすることができ、従って本来の
発光波長残光特性の点と併せて、X線検出感度、発光波
長、残光特性の三点において、X線断層像撮像装置用の
シンチレータ結晶として最も適しているものといえる。
As is clear from the table, the scintillator crystal made of ZnWO of the present invention can have an extremely high X-ray detection sensitivity by setting the absorption coefficient at a wavelength of 520 nm to 1.8 crrL-1 or less. Therefore, it can be said that it is the most suitable scintillator crystal for X-ray tomographic imaging devices in terms of the three points of X-ray detection sensitivity, emission wavelength, and afterglow characteristics, as well as the original emission wavelength afterglow characteristics.

また吸収係数については1.2crIL’以下とするこ
とにより更に好ましいX線検出感度が得られ、より有用
なシンチレータ用結晶が得られるものである。
Further, by setting the absorption coefficient to 1.2 crIL' or less, more preferable X-ray detection sensitivity can be obtained, and a more useful crystal for scintillator can be obtained.

吸収係数を低下させる方法としては、結晶成長をくり返
し行なう方法あるいはチョクラルスキー法による結晶成
長の際に電界を印加する等の方法を述べたが、これらを
組合せて使用することも可能であり、また、その成長条
件等についても例示した他に、通常の結晶成長にて使用
される条件が使用しうるものであることはいうまでもな
い。
As methods for reducing the absorption coefficient, methods such as repeating crystal growth or applying an electric field during crystal growth using the Czochralski method have been described, but it is also possible to use a combination of these methods. Further, in addition to the growth conditions and the like exemplified, it goes without saying that conditions used in normal crystal growth can be used.

なお、以上の説明では主にX線断層像撮像装置のシンチ
レータ結晶として使用した場合について説明したがγ線
にも使用しうるものであるのでその旨記しておく。
Note that although the above description has mainly been about the case where the crystal is used as a scintillator crystal in an X-ray tomographic image pickup device, it is noted that it can also be used for gamma rays.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はZ nWO 4結晶の波長520n7Aに於げ
る吸収係数とX線検出感度との関係を示す図である。
FIG. 1 is a diagram showing the relationship between the absorption coefficient and X-ray detection sensitivity at a wavelength of 520n7A of ZnWO4 crystal.

Claims (1)

【特許請求の範囲】 1 不純物含有量が5 0 ppml下であるZ nW
O4よりなることを特徴とするシンチレータ用結晶。 2 不純物含有量が20ppml下である特許請求の範
囲第1項記載のシンチレータ用結晶。 3 上記不純物が主としてSi,Ca である特許請
求の範囲第1項または第2項記載のシンチレータ用結晶
。 4 不純物濃度が50ppm以下であるZnW04結晶
を溶融して結晶成長を行なうことを特徴とするシンチレ
ータ用結晶の製造方法。 5 前記結晶成長がチョクラルスキー法により行なわれ
ることを特徴とする特許請求の範囲第4項記載のシンチ
レータ用結晶の製造方法。 6 前記結晶成長がゾーンメルト法により行なわれるこ
とを特徴とする特許請求の範囲第4項記載のシンチレー
タ用結晶の製造方法。 7 不純物濃度が50ppm以下であるZnW04の原
料を溶融してチョクラルスキー法により、結晶を成長さ
せる際に.、成長させる結晶側と融液側との間に電界を
印加することを特徴とするシンチレータ用結晶の製造方
法。 8 前記電界を印加する場合、結晶側を負、融液側を正
となるように電界を印加することを特徴とする特許請求
の範囲第7項記載のシンチレータ用結晶の製造方法。
[Claims] 1. Z nW having an impurity content of 50 ppml or less
A scintillator crystal characterized by being made of O4. 2. The scintillator crystal according to claim 1, which has an impurity content of 20 ppml or less. 3. The scintillator crystal according to claim 1 or 2, wherein the impurities are mainly Si and Ca. 4. A method for producing a scintillator crystal, which comprises growing a crystal by melting a ZnW04 crystal having an impurity concentration of 50 ppm or less. 5. The method for producing a crystal for a scintillator according to claim 4, wherein the crystal growth is performed by the Czochralski method. 6. The method for producing a scintillator crystal according to claim 4, wherein the crystal growth is performed by a zone melt method. 7. When a ZnW04 raw material with an impurity concentration of 50 ppm or less is melted and a crystal is grown by the Czochralski method. A method for producing a scintillator crystal, characterized by applying an electric field between the side of the crystal to be grown and the side of the melt. 8. The method for manufacturing a scintillator crystal according to claim 7, wherein when applying the electric field, the electric field is applied so that the electric field is negative on the crystal side and positive on the melt side.
JP54035463A 1979-03-28 1979-03-28 Scintillator crystal and its manufacturing method Expired JPS597679B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP54035463A JPS597679B2 (en) 1979-03-28 1979-03-28 Scintillator crystal and its manufacturing method
GB8009174A GB2045795B (en) 1979-03-28 1980-03-19 Scintillator and method of producing same
US06/132,132 US4365155A (en) 1979-03-28 1980-03-20 Scintillator with ZnWO4 single crystal
DE3011978A DE3011978C2 (en) 1979-03-28 1980-03-27 Scintillator of a tomography device made of a tungstate single crystal and process for its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54035463A JPS597679B2 (en) 1979-03-28 1979-03-28 Scintillator crystal and its manufacturing method

Publications (2)

Publication Number Publication Date
JPS55130899A JPS55130899A (en) 1980-10-11
JPS597679B2 true JPS597679B2 (en) 1984-02-20

Family

ID=12442470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54035463A Expired JPS597679B2 (en) 1979-03-28 1979-03-28 Scintillator crystal and its manufacturing method

Country Status (4)

Country Link
US (1) US4365155A (en)
JP (1) JPS597679B2 (en)
DE (1) DE3011978C2 (en)
GB (1) GB2045795B (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4560877A (en) * 1982-12-29 1985-12-24 General Electric Company Solid state detector module
US4563584A (en) * 1982-12-29 1986-01-07 General Electric Company Solid state detector
JPS59206793A (en) * 1983-05-10 1984-11-22 Toshiba Corp Production of scintillator array
US4554054A (en) * 1983-12-09 1985-11-19 Rohm And Haas Company Methacrylic acid separation
JPS63123899A (en) * 1986-11-13 1988-05-27 Toshiba Corp Cadmium tungstate single crystal
FR2623659B1 (en) * 1987-11-24 1990-03-09 Labo Electronique Physique X-RAY IMAGE INTENSIFIER TUBE
EP0440854B1 (en) * 1990-02-07 1995-10-04 Siemens Aktiengesellschaft Process of manufacturing a stimulable storage phosphor screen
GB2340015B (en) * 1995-11-02 2000-04-26 Analogic Corp Computed tomography scanner with reduced power x-ray source
US5867553A (en) * 1995-11-02 1999-02-02 Analogic Corporation Computed tomography scanner with reduced power x-ray source
EP0795631A1 (en) * 1996-02-23 1997-09-17 Saint-Gobain/Norton Industrial Ceramics Corporation Scintillation crystals having reduced afterglow and method of making the same
US6480563B2 (en) * 2000-12-19 2002-11-12 Ge Medical Systems Global Technology Co., Llc System and method of aligning scintillator crystalline structures for computed tomography imaging
US6847041B2 (en) * 2001-02-09 2005-01-25 Canon Kabushiki Kaisha Scintillator panel, radiation detector and manufacture methods thereof
JP2003041244A (en) * 2001-07-25 2003-02-13 Furukawa Co Ltd Scintillator
US7054408B2 (en) * 2003-04-30 2006-05-30 General Electric Company CT detector array having non pixelated scintillator array
CZ302527B6 (en) * 2003-08-28 2011-06-29 Fyzikální Ústav Av Cr Scintillator based on lead wolframate with displaced stoichiometry
JP2005343753A (en) * 2004-06-03 2005-12-15 Mitsui Mining & Smelting Co Ltd Zinc tungstate single crystal and its production method
JP2005263621A (en) * 2004-02-17 2005-09-29 Mitsui Mining & Smelting Co Ltd Zinc tungstate single crystal and its manufacturing method
JP2005263515A (en) * 2004-03-16 2005-09-29 Mitsui Mining & Smelting Co Ltd Zinc tungstate single crystal and its manufacturing method
JP2005272274A (en) * 2004-03-26 2005-10-06 Mitsui Mining & Smelting Co Ltd Zinc tungstate single crystal and its manufacturing method
SG172388A1 (en) * 2008-12-29 2011-07-28 Saint Gobain Ceramics Rare-earth materials, scintillator crystals, and ruggedized scintillator devices incorporating such crystals
CN102336440B (en) * 2011-06-28 2013-05-01 福州大学 Method for preparing high-purity and monoclinic-phase ZnWo4 nano particle and application thereof
US9164181B2 (en) 2011-12-30 2015-10-20 Saint-Gobain Ceramics & Plastics, Inc. Scintillation crystals having features on a side, radiation detection apparatuses including such scintillation crystals, and processes of forming the same
CN102557141B (en) * 2012-03-02 2015-05-13 河北联合大学 Structure-oriented synthetic method of zinc tungstate nanometer sheet
CN102935360A (en) * 2012-11-14 2013-02-20 陕西科技大学 Method for preparing ZnWO4 nanorod photocatalysis material
US10809393B2 (en) * 2015-04-23 2020-10-20 Fermi Research Alliance, Llc Monocrystal-based microchannel plate image intensifier
CN106140141A (en) * 2016-06-21 2016-11-23 常州工程职业技术学院 A kind of oxygen-containing defected ZnWO4catalysis material and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3960756A (en) * 1972-05-30 1976-06-01 Bicron Corporation High efficiency scintillation detectors
GB1551253A (en) * 1975-07-10 1979-08-30 Emi Ltd Detection of radiation
FR2372439A1 (en) * 1976-11-26 1978-06-23 Radiologie Cie Gle SPARKLING X-RAY DETECTOR, AND RADIOLOGY DEVICE CONTAINING SUCH DETECTORS
US4234792A (en) * 1977-09-29 1980-11-18 Raytheon Company Scintillator crystal radiation detector

Also Published As

Publication number Publication date
DE3011978A1 (en) 1980-10-09
JPS55130899A (en) 1980-10-11
GB2045795B (en) 1983-03-09
US4365155A (en) 1982-12-21
DE3011978C2 (en) 1984-10-11
GB2045795A (en) 1980-11-05

Similar Documents

Publication Publication Date Title
JPS597679B2 (en) Scintillator crystal and its manufacturing method
US7692153B2 (en) Scintillator crystal and radiation detector
JP5389328B2 (en) Single crystal for scintillator containing Pr, its manufacturing method, radiation detector and inspection apparatus
Boatner et al. Bridgman growth of large SrI2: Eu2+ single crystals: A high-performance scintillator for radiation detection applications
TWI418671B (en) Rare earth fluoride solid solution material (polycrystalline and / or single crystal), method of manufacturing the same, and radiation detector and inspection device
JP6000664B2 (en) Scintillator material and radiation detector using the same
DE102012101199B4 (en) Europium-doped iodide scintillators
CA2622381C (en) High light yield fast scintillator
JP2004500462A (en) Scintillator crystal, manufacturing method thereof and application thereof
JPH067165B2 (en) High speed radiation resistant CT scintillator device using garnet structure scintillator
WO1991011734A1 (en) Divalent fluoride doped cerium fluoride scintillator
WO2014104238A1 (en) Crystalline material, radiation detector, image pick-up device, non-destructive inspection device, and lighting apparatus
WO2004086089A1 (en) Fluoride single crystal material for thermoluminescence dosimeter and thermoluminescence dosimeter
Sugiyama et al. Scintillation properties of Tm-doped Lu3Al5O12 single crystals
CN112028493B (en) Preparation method and application of high-transparency all-inorganic perovskite quantum dot glass scintillator
Yajima et al. Tl-Doped CsI/⁶LiBr Scintillator for Thermal Neutron Detection With Ultrahigh Light Yield
Johnson et al. Opportunities for fluorochlorozirconate and other glass-ceramic detectors in medical imaging devices
US4496844A (en) Photoluminescent phosphors and X-ray imaging systems utilizing such phosphors
JP5652903B2 (en) Oxide crystal and neutron detector for neutron scintillator
JP2005029442A (en) Production method for zinc tungstate single crystal
JP2005119948A (en) Fluoride single crystal for radiation detection, scintillator, and radiation detector
JP2008239351A (en) Method for manufacturing oxide crystal, oxide crystal, scintillator, inspecting unit and inspecting device
JP4195732B2 (en) Method for growing rare earth silicate single crystals
JP3694884B2 (en) Method for growing rare earth silicate single crystals
KR101794868B1 (en) Scintillator and method for manufacturing the same