JP2005119948A - Fluoride single crystal for radiation detection, scintillator, and radiation detector - Google Patents
Fluoride single crystal for radiation detection, scintillator, and radiation detector Download PDFInfo
- Publication number
- JP2005119948A JP2005119948A JP2004262642A JP2004262642A JP2005119948A JP 2005119948 A JP2005119948 A JP 2005119948A JP 2004262642 A JP2004262642 A JP 2004262642A JP 2004262642 A JP2004262642 A JP 2004262642A JP 2005119948 A JP2005119948 A JP 2005119948A
- Authority
- JP
- Japan
- Prior art keywords
- single crystal
- scintillator
- fluoride
- radiation
- fluoride single
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Luminescent Compositions (AREA)
- Light Receiving Elements (AREA)
- Measurement Of Radiation (AREA)
Abstract
Description
本発明は、新規な放射線検出用フッ化物単結晶及びシンチレータ並びに放射線検出器に関し、特に、主として、X線断層撮影装置(X−ray Computed Tomography:X線CT)、陽電子放射断層撮影装置(Positron Emission computed Tomography:PET)、タイム・オブ・フライト陽電子放射断層撮影装置(Time−Of−Flight Positron Emission computed Tomography:TOF−PET)などの医療診断装置に用いられる放射線検出用フッ化物単結晶及びシンチレータ並びに放射線検出器に関する。 The present invention relates to a novel fluoride single crystal for radiation detection, a scintillator, and a radiation detector, and in particular, mainly an X-ray computed tomography (X-ray CT), a positron emission tomography apparatus (Positron Emission). Radiation-detecting fluoride single crystals and scintillators used in medical diagnostic devices such as computed tomography (PET), time-of-flight positron emission tomography (TOF-PET), and radiation Relates to the detector.
従来、医療診断や工業用非破壊検査などに放射線が利用され、例えば、医療装置として、X線CT、PETが実用化されている。このような放射線を用いた装置には、γ線やX線などの放射線を検出するための検出器、例えば、シンチレータが使用されている。 Conventionally, radiation has been used for medical diagnosis, industrial nondestructive inspection, and the like. For example, X-ray CT and PET have been put to practical use as medical devices. In such an apparatus using radiation, a detector for detecting radiation such as γ-rays and X-rays, for example, a scintillator is used.
ここで、シンチレータは、γ線やX線などの放射線の刺激により可視光線又は可視光線に近い波長の電磁波を放射する物質であり、密度が高いこと、蛍光の減衰時間が短いこと、及び耐放射線性に優れていることなどが要求される。 Here, the scintillator is a substance that radiates visible light or electromagnetic waves having a wavelength close to visible light by stimulation of radiation such as γ-rays or X-rays, and has a high density, a short fluorescence decay time, and radiation resistance. It is required to have excellent properties.
このようなPET用のシンチレータ材料としては、従来、ビスマスジャーマネイト(Bi4Ge3O12単結晶(BGO))が使用されていたが、高性能な特性を求めてセリウムをドープしたガドリニウムシリケート(Ce:Gd2SiO5(Ce:GSO))単結晶が開発され、実用化された(特許文献1参照)。 As such a scintillator material for PET, bismuth germanate (Bi 4 Ge 3 O 12 single crystal (BGO)) has been conventionally used. However, gadolinium silicate doped with cerium for high performance characteristics ( A Ce: Gd 2 SiO 5 (Ce: GSO)) single crystal was developed and put to practical use (see Patent Document 1).
また、その後、さらに高性能な特性を求めて種々の検討が行われ、セリウムをドープしたルテチウムオキシオルトシリケート結晶(Ce:Lu2SiO5:(Ce:LSO))が開発され、現在最も高性能なものとして実用化されている(特許文献2、3、4等参照)。
After that, various studies were conducted to obtain higher performance characteristics, and cerium-doped lutetium oxyorthosilicate crystals (Ce: Lu 2 SiO 5 : (Ce: LSO)) were developed. (See
一方、TOF−PET用のシンチレータとしては、PET用シンチレータと比較してさらに高い時間分解能が必要となるので、現在、CsFが使用されており、また、光学レンズ用などとして製造されているBaF2の使用が検討されている。しかしながら、CsFは潮解性が問題となり、BaF2はTOF−PET用として使用できる蛍光寿命の短い蛍光が紫外領域で起こるので紫外線用検出器を使用しなければならず、また、遅くて強い発光が検出器を破壊してしまうという問題がある。 On the other hand, the TOF-PET scintillator requires higher time resolution than the PET scintillator, so CsF is currently used and BaF 2 manufactured for optical lenses and the like. The use of is being considered. However, CsF has a problem of deliquescence, and BaF 2 has a short fluorescence lifetime that can be used for TOF-PET. In the ultraviolet region, an ultraviolet detector must be used, and slow and strong light emission occurs. There is a problem that the detector is destroyed.
このような単結晶以外に、各種のセラミック材料がシンチレータとして検討され、BaFCl:Eu、LaOBr:Tb、CsI:Tl、CaWO4、CdWO4などの多結晶体(セラミックス)(特許文献5等参照)、(Gd,Y)2O3:Euのような立方晶構造を有する希土類酸化物の多結晶体(セラミックス)(特許文献6等参照)、Gd2O2S:Prのような希土類酸硫化物の多結晶体(セラミックス)(特許文献7等参照)などが知られている。
In addition to such single crystals, various ceramic materials have been studied as scintillators, and polycrystals (ceramics) such as BaFCl: Eu, LaOBr: Tb, CsI: Tl, CaWO 4 , and CdWO 4 (see
このようなセラミックシンチレータ材料は、粉末を焼結して製造されるため、透明性(透光性)の改良、焼結性の改良などに関して種々の提案がなされている。例えば、Gd2O2S:Prなどの蛍光体セラミックス中の不純物量、特に燐酸根(PO4)の含有量を100ppm以下とすることによって、シンチレータの光出力を向上させるという提案がある(特許文献8参照)。また、希土類酸硫化物粉末にLiF、Li2GeF6、NaBF4のようなフッ化物を焼結助剤として添加し、これらの混合粉末を熱間静水圧プレス(HIP)で焼結することによって、高密度化させた蛍光体セラミックスが提案されている(特許文献9参照)。 Since such a ceramic scintillator material is manufactured by sintering powder, various proposals have been made regarding improvement of transparency (translucency), improvement of sinterability, and the like. For example, there is a proposal to improve the light output of the scintillator by setting the amount of impurities in phosphor ceramics such as Gd 2 O 2 S: Pr, particularly the content of phosphate radicals (PO 4 ) to 100 ppm or less (patent) Reference 8). Also, fluorides such as LiF, Li 2 GeF 6 , and NaBF 4 are added to the rare earth oxysulfide powder as a sintering aid, and these mixed powders are sintered by hot isostatic pressing (HIP). A highly densified phosphor ceramic has been proposed (see Patent Document 9).
上述したように、従来、酸化物の単結晶、セラミックスなどの種々の物質についてシンチレータとしての実用化が検討されているが、Ce:LSOを上回る特性を有するものは現在迄見出されておらず、行き詰まりを見せている。また、TOF−PET用のシンチレータについても、CsFを越えるものは提案されていない。 As described above, various materials such as oxide single crystals and ceramics have been studied for practical use as a scintillator. However, no material having properties exceeding Ce: LSO has been found so far. , Showing a deadlock. In addition, no scintillator for TOF-PET exceeding CsF has been proposed.
なお、フッ化物単結晶は、その広範囲に亘る高い透過性、小さな結晶場、屈折率の温度係数が負であることから、レーザー用結晶として大きな期待を集めていたが、CsFやBaF2以外の単結晶についてはシンチレータなどの放射線検出用材料としての検討は殆どなされていなかった。一方、フッ化物単結晶は作製雰囲気、作製温度、原料の純度や組成の制御等、作製を困難にする要因が多数存在するので、大きなバルク結晶を製造すること自体困難であった。そこで本発明者は高品位な単結晶を安全かつ容易に作製する技術を開発し(特許文献10参照)、レーザー用単結晶として、フッ化リチウムカルシウムアルミニウム(特許文献11参照)、フッ化バリウムリチウム単結晶(特許文献12参照)を製造している。さらに、フッ化リチウムカルシウムアルミニウムに関してはシンチレータとして使用できる特性を有していることを報告した(非特許文献1、非特許文献2参照)が、密度が2.94g/cm3と小さく、γ線の吸収係数が小さいという問題があった。また、フッ化セリウム単結晶は、蛍光波長が紫外領域にあるものの無色透明単結晶が調整可能で散乱吸収がなく、蛍光寿命に優れた特性をもっているため、有用なシンチレータとして研究がなされている(特許文献13等参照)が、発光量がBGOの半分であるという問題があった。
Note that fluoride single crystals have been highly anticipated as laser crystals because of their high permeability over a wide range, small crystal fields, and negative temperature coefficient of refractive index, but other than CsF and BaF 2 The single crystal has hardly been studied as a radiation detection material such as a scintillator. On the other hand, since there are many factors that make it difficult to produce a fluoride single crystal, such as the production atmosphere, production temperature, purity of raw materials, and control of composition, it is difficult to produce a large bulk crystal. Therefore, the present inventor has developed a technique for producing a high-quality single crystal safely and easily (see Patent Document 10), and as a single crystal for laser, lithium calcium aluminum fluoride (see Patent Document 11), barium lithium fluoride. A single crystal (see Patent Document 12) is manufactured. Furthermore, lithium lithium calcium aluminum has been reported to have a characteristic that can be used as a scintillator (see Non-Patent
そこで、本発明はこのような事情に鑑み、高い蛍光強度を有する放射線検出用フッ化物単結晶及びシンチレータ並びに放射線検出器を提供することを課題とする。 Then, this invention makes it a subject to provide the fluoride single crystal for radiation detection which has high fluorescence intensity, a scintillator, and a radiation detector in view of such a situation.
本発明者は、フッ化セリウムに、ルテチウムLu及びガドリニウムGdの少なくとも一種の元素を、Ce1−xR1 xF3(0.001≦x≦0.5)となるように含有させると、γ線やX線等の放射線の照射による発光量が飛躍的に向上することを知見し、シンチレータ等の放射線検出用材料として有用であることを見出し、本発明に至った。 When the present inventor contains cerium fluoride with at least one element of lutetium Lu and gadolinium Gd such that Ce 1-x R 1 x F 3 (0.001 ≦ x ≦ 0.5), The present inventors have found that the amount of light emitted by irradiation with radiation such as γ rays and X rays has been dramatically improved, and found that it is useful as a radiation detection material such as a scintillator.
かかる本発明の第1の態様は、フッ化物単結晶であって、Ceと、Lu及びGdの少なくとも一種の元素R1とを含み、Ce1−xR1 xF3(0.001≦x≦0.5)で表されることを特徴とする放射線検出用フッ化物単結晶にある。 Such a first aspect of the present invention is a fluoride single crystal, which includes Ce and at least one element R 1 of Lu and Gd, and includes Ce 1-x R 1 x F 3 (0.001 ≦ x ≦ 0.5) The present invention resides in a radiation detecting fluoride single crystal.
本発明の第2の態様は、第1の態様において、さらにSc、Y及びLaの少なくとも一種の元素R2を含み、(Ce1−xR1 x)1−yR2 yF3(0.001≦x≦0.5、y≦0.95)で表されることを特徴とする放射線検出用フッ化物単結晶にある。 The second aspect of the present invention, in the first aspect, further includes at least one element R 2 of Sc, Y, and La, and (Ce 1-x R 1 x ) 1-y R 2 y F 3 (0 .001 ≦ x ≦ 0.5, y ≦ 0.95), which is a fluoride single crystal for radiation detection.
本発明の第3の態様は、Ceと、Lu及びGdの少なくとも一種の元素R1とを含み、Ce1−xR1 xF3(0.001≦x≦0.5)で表されるフッ化物単結晶からなることを特徴とするシンチレータにある。 A third aspect of the present invention includes Ce and at least one element R 1 of Lu and Gd, and is represented by Ce 1-x R 1 x F 3 (0.001 ≦ x ≦ 0.5). A scintillator comprising a fluoride single crystal.
本発明の第4の態様は、第3の態様において、さらにSc、Y及びLaの少なくとも一種の元素R2を含み、(Ce1−xR1 x)1−yR2 yF3(0.001≦x≦0.5、y≦0.95)で表されるフッ化物単結晶からなることを特徴とするシンチレータにある。 The fourth aspect of the present invention, in the third aspect, further comprises at least one element R 2 of Sc, Y and La, and (Ce 1-x R 1 x ) 1-y R 2 y F 3 (0 .001 ≦ x ≦ 0.5, y ≦ 0.95). A scintillator characterized by comprising a fluoride single crystal represented by the following formula.
本発明の第5の態様は、第1又は2の態様の放射線検出用フッ化物単結晶からなるシンチレータと、このシンチレータからの発光を検出する光検出器とを具備することを特徴とする放射線検出器にある。 According to a fifth aspect of the present invention, there is provided a radiation detection comprising the scintillator comprising the radiation-detecting fluoride single crystal of the first or second aspect, and a photodetector for detecting light emitted from the scintillator. In the vessel.
本発明の放射線検出用フッ化物単結晶は、蛍光強度が高いため、高い解像力を有するという効果を奏する。 Since the fluoride single crystal for radiation detection of the present invention has high fluorescence intensity, it has an effect of having high resolving power.
本発明の放射線検出用フッ化物単結晶は、CeF3のCeの一部をLu及び/又はGdで置換したもので、Ce1−xR1 xF3(0.001≦x≦0.5)で表されるR1置換フッ化セリウム単結晶(以下「R1:CeF3」という)である。Lu及びGd自体は密度が高く且つ発光しないあるいは弱いため、CeF3のCeの一部を置換することにより蛍光強度が高い放射線検出用フッ化物単結晶とすることができるものと推測される。なおxが0.001より小さいと蛍光強度を向上させる効果が顕著でなくなり、0.5より大きいと透明度や結晶性が低下したり蛍光強度を向上させる効果が顕著でなくなることがある。また、このようなフッ化物単結晶であれば製造方法としては特に限定されない。 The fluoride single crystal for radiation detection of the present invention is obtained by substituting a part of Ce of CeF 3 with Lu and / or Gd. Ce 1-x R 1 x F 3 (0.001 ≦ x ≦ 0.5 R 1 -substituted cerium fluoride single crystal (hereinafter referred to as “R 1 : CeF 3 ”). Since Lu and Gd themselves have high density and do not emit light or are weak, it is presumed that a fluorescent single crystal for radiation detection with high fluorescence intensity can be obtained by substituting part of Ce in CeF 3 . If x is less than 0.001, the effect of improving the fluorescence intensity is not remarkable, and if it is more than 0.5, the transparency and crystallinity may be lowered or the effect of improving the fluorescence intensity may not be remarkable. Moreover, if it is such a fluoride single crystal, it will not specifically limit as a manufacturing method.
ルテチウムLu及びガドリニウムGdは、好ましくはフッ化物で添加するが、蛍光の波長に吸収が存在しないものを用いるのが好ましい。 Lutetium Lu and gadolinium Gd are preferably added as fluorides, but it is preferable to use those that do not have absorption at the fluorescence wavelength.
Lu及びGdの少なくとも一種の元素に加えて、さらにCeをスカンジウムSc、イットリウムY及びランタンLaの少なくとも一種の元素R2で置換してもよい。Sc、Y及びLaは、Lu及びGdと同様に最外殻のs軌道を満たし且つ最も外側のd軌道に電子を1つ持つ電子配置を有する特徴を持つ元素であるため、発光に有利である。なお、95モル%程度までCeをR2で置換することができる。このSc、Y又はLaを含む本発明のフッ化物単結晶は、(Ce1−xR1 x)1−yR2 yF3(0.001≦x≦0.5)で表され、yは0.95以下、好ましくは0.7以下、さらに好ましくは0.005〜0.5である。yが0.005より小さい又は0.95より大きいと蛍光強度を向上させる効果が顕著でなくなる。 In addition to at least one element of Lu and Gd, Ce may be further substituted with at least one element R 2 of scandium Sc, yttrium Y, and lanthanum La. Sc, Y, and La are elements that have the characteristic of having an electron configuration that satisfies the outermost s orbital and has one electron in the outermost d orbital like Lu and Gd, and thus are advantageous for light emission. . In addition, Ce can be substituted with R 2 up to about 95 mol%. The Sc, fluoride single crystal of the present invention comprising Y or La is expressed by (Ce 1-x R 1 x ) 1-y R 2 y F 3 (0.001 ≦ x ≦ 0.5), y Is 0.95 or less, preferably 0.7 or less, and more preferably 0.005 to 0.5. When y is smaller than 0.005 or larger than 0.95, the effect of improving the fluorescence intensity is not remarkable.
なお、フッ化物単結晶が放射線を吸収した際に発生する蛍光の強度を増大させ、シンチレータとしての特性を向上させるために、必要に応じて他のドーパントを、例えばフッ化物として、さらに添加してもよい。このようなドーパントとしては、ネオジムNd、プラセオジムPr、ユーロピウムEu、ツリウムTm、ホルミウムHo、エルビウムEr、テルビウムTbおよびジスプロシウムDyを挙げることができる。また、蛍光波長を長波長側にシフトさせるために、バリウムBa等をドーパントとしてもよい(E.Auffrayら、Nuclear Instruments and Methods in Physics Research A 383 (1996) 367-390参照)。このようなドーパントは、例えば、モル比で0.01%〜1%程度添加する。但し、このようなドーパントを添加すると、蛍光寿命が変化する場合があるので、所望の特性に併せて適宜選択する必要がある。 In addition, in order to increase the intensity of the fluorescence generated when the fluoride single crystal absorbs radiation and to improve the characteristics as a scintillator, other dopants may be added as necessary, for example, as fluorides. Also good. Examples of such a dopant include neodymium Nd, praseodymium Pr, europium Eu, thulium Tm, holmium Ho, erbium Er, terbium Tb, and dysprosium Dy. Further, in order to shift the fluorescence wavelength to the longer wavelength side, barium Ba or the like may be used as a dopant (see E. Auffray et al., Nuclear Instruments and Methods in Physics Research A 383 (1996) 367-390). For example, such a dopant is added in a molar ratio of about 0.01% to 1%. However, when such a dopant is added, the fluorescence lifetime may change, so it is necessary to select it appropriately according to the desired characteristics.
本発明の放射線検出用フッ化物単結晶は、PET又はTOF−PETの検出器のシンチレータなどとして使用するので、高品質、かつ均質なバルク結晶を得る必要がある。このようなバルク結晶を得るためには、下記に示すような製造法によるのが好ましい。 Since the fluoride single crystal for radiation detection of the present invention is used as a scintillator for a PET or TOF-PET detector, it is necessary to obtain a high-quality and homogeneous bulk crystal. In order to obtain such a bulk crystal, it is preferable to use a production method as described below.
すなわち、本発明の放射線検出用フッ化物単結晶は、好適には、融液成長法、あるいは溶液成長法によって製造するが、本発明のR1:CeF3を製造するためには、以下の条件によって融液成長法、あるいは溶液成長法により製造するのが好ましい。この条件は、10−4〜10−5torrの高真空を保ちながら、粉末又はバルク状多結晶フッ化物原料すなわちCeF3及びR1F3等を室温から原料の融点以下の温度、例えば、500〜800℃の温度まで加熱し、炉内にCF4などのフロン系ガス及びアルゴンガスを導入してから(混合比、フロン系ガス:アルゴンガス=100:0〜0:100、体積比)温度を融点以上に上げ、融液あるいは溶液表面に発生する不純物および融液あるいは溶液内に存在する不純物とガスとを反応させて、不純物を除去し、得られた融液あるいは溶液から成長させるようにする。 That is, the fluoride single crystal for radiation detection of the present invention is preferably produced by a melt growth method or a solution growth method. In order to produce R 1 : CeF 3 of the present invention, the following conditions are used. It is preferable to manufacture by a melt growth method or a solution growth method. This condition is that while maintaining a high vacuum of 10 −4 to 10 −5 torr, the powder or bulk polycrystalline fluoride raw material, that is, CeF 3 and R 1 F 3, etc. is at a temperature below the melting point of the raw material, for example, 500 After heating to a temperature of ˜800 ° C. and introducing a chlorofluorocarbon gas such as CF 4 and an argon gas into the furnace (mixing ratio, chlorofluorocarbon gas: argon gas = 100: 0 to 0: 100, volume ratio) To increase the temperature above the melting point, react impurities generated in the melt or solution surface and impurities present in the melt or solution with gas to remove impurities and grow from the obtained melt or solution To do.
上記製造方法によって、例えば、純度99.9重量%程度のフッ化物原料を使った場合でも、従来技術の方法に比してより簡便に、高品質な単結晶を製造することが可能となる。また、本発明のフッ化物単結晶は、不純物を除去して得た融液又は溶液からArなどの不活性ガス雰囲気下で融液成長法、あるいは溶液成長法によってフッ化物単結晶を作製することが可能となる。 According to the above manufacturing method, for example, even when a fluoride raw material having a purity of about 99.9% by weight is used, it is possible to manufacture a high-quality single crystal more easily than the conventional method. The fluoride single crystal of the present invention can be prepared from a melt or solution obtained by removing impurities by a melt growth method or a solution growth method in an inert gas atmosphere such as Ar. Is possible.
以下に、本発明の放射線検出用フッ化物単結晶についてより詳細に説明する。 Hereinafter, the fluoride single crystal for radiation detection of the present invention will be described in more detail.
本発明の放射線検出用フッ化物単結晶は、粉末又は多結晶のフッ化セリウム(CeF3)に、フッ化ルテチウム(LuF3)などルテチウム原料及び/又はフッ化ガドリニウム(GdF3)などのガドリニウム原料や、必要に応じてドーパント用原料やフッ化スカンジウム(ScF3)、フッ化イットリウム(YF3)、フッ化ランタン(LaF3)などの元素R2原料を坩堝内に充填し、炉内・原料内に含まれる水分および酸素の除去のため10−4〜10−5torr程度の高真空を保ちながら、上記原料を室温から500〜800℃程度、すなわち、融点を超えない所定の温度まで加熱する。次に、作製炉内にCF4などのフロン系ガス及びアルゴンガスを導入してから(混合比、フロン系ガス:アルゴンガス=100:0〜0:100、体積比)温度を融点以上に上昇し、融液又は溶液表面に発生する不純物および融液又は溶液内に存在する不純物とフロン系ガスとを反応させ、不純物を除去するようにする。そして、得られた融液あるいは溶液からR1:CeF3を製造する。 The fluoride single crystal for radiation detection of the present invention comprises a powder or polycrystalline cerium fluoride (CeF 3 ), a lutetium raw material such as lutetium fluoride (LuF 3 ) and / or a gadolinium raw material such as gadolinium fluoride (GdF 3 ). If necessary, raw materials for dopants and elemental R 2 materials such as scandium fluoride (ScF 3 ), yttrium fluoride (YF 3 ), lanthanum fluoride (LaF 3 ) are filled in the crucible, and the inside of the furnace The raw material is heated from room temperature to about 500 to 800 ° C., that is, to a predetermined temperature not exceeding the melting point, while maintaining a high vacuum of about 10 −4 to 10 −5 torr to remove moisture and oxygen contained therein. . Next, after introducing a chlorofluorocarbon gas such as CF 4 and an argon gas into the production furnace (mixing ratio, chlorofluorocarbon gas: argon gas = 100: 0 to 0: 100, volume ratio), the temperature is raised to the melting point or higher. Then, impurities generated on the surface of the melt or solution and impurities present in the melt or solution are reacted with the fluorocarbon gas to remove the impurities. Then, R 1 : CeF 3 is produced from the obtained melt or solution.
このようにして得られる融液又は溶液からの単結晶の製造方法は特に限定されず、引き上げ法やブリッジマン法等を用いればよい。例えば、引き上げ法によると、融液の温度を各化合物の融点近辺に保ち、種結晶を1〜50rpmで回転させながら0.1〜10mm/hの速度で引き上げることによって、結晶中に気泡やスキャッタリングセンターなどのない、透明な高品質単結晶が得られる。また、本発明のフッ化物単結晶は、融解後、徐冷するだけでも単結晶が得られ、条件を適宜設定すれば、種結晶を用いることなく、徐冷するだけで単結晶が得られるという特長を有する。 The method for producing a single crystal from the melt or solution thus obtained is not particularly limited, and a pulling method, a Bridgman method, or the like may be used. For example, according to the pulling method, the temperature of the melt is kept in the vicinity of the melting point of each compound, and the seed crystal is lifted at a speed of 0.1 to 10 mm / h while rotating at 1 to 50 rpm. A transparent high-quality single crystal without a ring center is obtained. In addition, the fluoride single crystal of the present invention can be obtained only by slow cooling after melting, and if the conditions are set appropriately, the single crystal can be obtained by slow cooling without using a seed crystal. Has features.
また、このようにして得られるR1:CeF3は、X線やγ線に対する蛍光強度が高いため、PETやTOF−PET用のシンチレータとして有用である。 Further, R 1 : CeF 3 obtained in this manner is useful as a scintillator for PET or TOF-PET because of its high fluorescence intensity against X-rays and γ-rays.
このようなR1:CeF3を所定の寸法に切り出したシンチレータは、放射線、例えば、X線又はγ線を吸収することにより発生する蛍光の波長に合わせた光検出器、例えば、可視光又は紫外線の光電子増倍管などの光検出器と組み合わせることにより、放射線検出器とすることができる。 Such a scintillator obtained by cutting out R 1 : CeF 3 into a predetermined size is a photodetector that matches the wavelength of fluorescence generated by absorbing radiation, for example, X-rays or γ-rays, such as visible light or ultraviolet light. By combining with a photodetector such as a photomultiplier tube, a radiation detector can be obtained.
(実施例1)
純度99.99%の市販のバルク粉砕原料であるCeF3及びLuF3をモル比で90:10として準備し、それらを混合せずに坩堝内に充填した。それをそのまま単結晶作製炉内に置き、10−4〜10−5torr程度まで真空に引き、そのまま約700℃程度まで真空状態で加熱し炉内・原料中の水分・酸素を除去した。ここでCF4ガス及びアルゴンガス(体積比50:50)を単結晶作製炉内に導入し、混合ガス雰囲気中で原料を加熱融解し、そのまま1時間、液体状態で保った。このとき、液体表面に現れた不純物は、CF4ガスと反応することにより、全て消滅した。次に融液に種結晶を接触させ、c軸方向に引き上げ速度1mm/h、回転数10rpmで引き上げ単結晶を成長・作製した。作製した結晶は、気泡、クラック、スキャッタリングセンターなどの無く、透明かつ高品質なルテチウム置換フッ化セリウム(Lu:CeF3)単結晶であった。
(Example 1)
CeF 3 and LuF 3 , which are commercially available bulk pulverized raw materials having a purity of 99.99%, were prepared at a molar ratio of 90:10, and they were filled in a crucible without mixing. It was placed in a single crystal production furnace as it was, evacuated to about 10 −4 to 10 −5 torr, and heated as it was in a vacuum state to about 700 ° C. to remove moisture and oxygen in the furnace and raw materials. Here, CF 4 gas and argon gas (volume ratio 50:50) were introduced into the single crystal production furnace, the raw material was heated and melted in a mixed gas atmosphere, and kept in a liquid state for 1 hour. At this time, all impurities appearing on the liquid surface disappeared by reacting with CF 4 gas. Next, the seed crystal was brought into contact with the melt, and a single crystal was grown and produced in the c-axis direction at a pulling speed of 1 mm / h and a rotation speed of 10 rpm. The produced crystal was a transparent and high-quality lutetium-substituted cerium fluoride (Lu: CeF 3 ) single crystal without bubbles, cracks, or a scattering center.
(実施例2)
CeF3とLuF3のモル比を95:5とした以外は実施例1と同様に、結晶を育成した。
(Example 2)
Crystals were grown in the same manner as in Example 1 except that the molar ratio of CeF 3 and LuF 3 was 95: 5.
(実施例3)
純度99.99%の市販のバルク粉砕原料であるCeF3及びLuF3をモル比で99:1として準備し、これらを混合して坩堝内に充填した。それをそのまま単結晶作製炉内に置き、10−4〜10−5torr程度まで真空に引き、そのまま約700℃程度まで真空状態で加熱し炉内・原料中の水分・酸素を除去した。ここでCF4ガス及びアルゴンガスを単結晶作製炉内に導入し、混合ガス雰囲気中で原料を加熱融解し、そのまま3時間、液体状態で保った。このとき、液体表面に現れた不純物は、CF4ガスと反応することにより、全て消滅した。次に融液に種結晶を接触させ、c軸方向に引き上げ速度1.5mm/h、回転数10rpmで引き上げ単結晶を成長・作製した。作製した結晶は、直径約15mm、長さ約70mmで、気泡、クラック、スキャッタリングセンターなどの無く、透明かつ高品質なルテチウムドープフッ化セリウム(Lu:CeF3)単結晶であった。
(Example 3)
CeF 3 and LuF 3 which are commercially available bulk pulverized raw materials having a purity of 99.99% were prepared at a molar ratio of 99: 1, and these were mixed and filled in a crucible. It was placed in a single crystal production furnace as it was, evacuated to about 10 −4 to 10 −5 torr, and heated as it was in a vacuum state to about 700 ° C. to remove moisture and oxygen in the furnace and raw materials. Here, CF 4 gas and argon gas were introduced into the single crystal production furnace, the raw material was heated and melted in a mixed gas atmosphere, and kept in a liquid state for 3 hours. At this time, all impurities appearing on the liquid surface disappeared by reacting with CF 4 gas. Next, the seed crystal was brought into contact with the melt, and a single crystal was grown and produced in the c-axis direction at a pulling speed of 1.5 mm / h and a rotation speed of 10 rpm. The produced crystal was a transparent and high-quality lutetium-doped cerium fluoride (Lu: CeF 3 ) single crystal having a diameter of about 15 mm and a length of about 70 mm, free from bubbles, cracks, and a scattering center.
(実施例4)
純度99.99%の市販のバルク粉砕原料であるCeF3及びGdF3をモル比で90:10として準備し、これらを混合して坩堝内に充填した。それをそのまま単結晶作製炉内に置き、10−4〜10−5torr程度まで真空に引き、そのまま約700℃程度まで真空状態で加熱し炉内・原料中の水分・酸素を除去した。ここでCF4ガス及びアルゴンガスを単結晶作製炉内に導入し、混合ガス雰囲気中で原料を加熱融解し、そのまま3時間、液体状態で保った。このとき、液体表面に現れた不純物は、CF4ガスと反応することにより、全て消滅した。次に融液に種結晶を接触させ、c軸方向に引き上げ速度1.5mm/h、回転数10rpmで引き上げ単結晶を成長・作製した。作製した結晶は、直径約15mm、長さ約70mmで、気泡、クラック、スキャッタリングセンターなどの無く、透明かつ高品質なガドリニウムドープフッ化セリウム(Gd:CeF3)単結晶であった。
Example 4
CeF 3 and GdF 3 , which are commercially available bulk pulverized raw materials having a purity of 99.99%, were prepared at a molar ratio of 90:10, and these were mixed and filled in a crucible. It was placed in a single crystal production furnace as it was, evacuated to about 10 −4 to 10 −5 torr, and heated as it was in a vacuum state to about 700 ° C. to remove moisture and oxygen in the furnace and raw materials. Here, CF 4 gas and argon gas were introduced into the single crystal production furnace, the raw material was heated and melted in a mixed gas atmosphere, and kept in a liquid state for 3 hours. At this time, all impurities appearing on the liquid surface disappeared by reacting with CF 4 gas. Next, the seed crystal was brought into contact with the melt, and a single crystal was grown and produced in the c-axis direction at a pulling speed of 1.5 mm / h and a rotation speed of 10 rpm. The produced crystal was a transparent and high-quality gadolinium-doped cerium fluoride (Gd: CeF 3 ) single crystal having a diameter of about 15 mm and a length of about 70 mm, free from bubbles, cracks, and a scattering center.
(実施例5)
純度99.99%の市販のバルク粉砕原料であるCeF3及びGdF3をモル比で95:5として準備する以外は実施例4と同様に結晶を育成した。
(Example 5)
Crystals were grown in the same manner as in Example 4 except that CeF 3 and GdF 3 , which are commercially available bulk pulverized raw materials having a purity of 99.99%, were prepared at a molar ratio of 95: 5.
(実施例6)
純度99.99%の市販のバルク粉砕原料であるCeF3及びGdF3をモル比で97:3として準備する以外は実施例4と同様に結晶を育成した。
(Example 6)
Crystals were grown in the same manner as in Example 4 except that CeF 3 and GdF 3 , which are commercially available bulk pulverized raw materials having a purity of 99.99%, were prepared at a molar ratio of 97: 3.
(実施例7)
純度99.99%の市販のバルク粉砕原料であるCeF3及びGdF3をモル比で99:1として準備する以外は実施例4と同様に結晶を育成した。
(Example 7)
Crystals were grown in the same manner as in Example 4 except that CeF 3 and GdF 3 , which are commercially available bulk pulverized raw materials having a purity of 99.99%, were prepared at a molar ratio of 99: 1.
(比較例1)
LuF3を添加しない以外は実施例2と同様に、結晶を育成した。
(Comparative Example 1)
Crystals were grown in the same manner as in Example 2 except that LuF 3 was not added.
(比較例2)
LuF3のかわりにErF3を用いた以外は実施例2と同様に、結晶を育成した。
(Comparative Example 2)
Except using ErF 3 in place of LuF 3 is as in Example 2, were grown crystals.
(比較例3)
LuF3のかわりにTmF3を用いた以外は実施例2と同様に、結晶を育成した。
(Comparative Example 3)
Except using TmF 3 in place of LuF 3 is as in Example 2, were grown crystals.
(比較例4)
LuF3のかわりにHoF3を用いた以外は実施例2と同様に、結晶を育成した。
(Comparative Example 4)
Except using HoF 3 in place of LuF 3 is as in Example 2, were grown crystals.
(比較例5)
LuF3を添加しない以外は実施例3と同様に、結晶を育成した。
(Comparative Example 5)
Crystals were grown in the same manner as in Example 3 except that LuF 3 was not added.
(試験例1)
各実施例及び各比較例で得られた単結晶についてX線蛍光スペクトルを測定した結果を図1に示す。図1に示すように、LuでCeF3のCeの一部を置換すると蛍光強度が著しく高くなり、Luで置換しない比較例1と比べて、実施例2では2倍に、実施例1では4倍になったことが確認された。一方、Luの代わりにEr、Tm又はHoで置換した比較例2〜4では、蛍光強度はLuで置換しない比較例1よりも低くなった。
(Test Example 1)
The result of having measured the X-ray fluorescence spectrum about the single crystal obtained by each Example and each comparative example is shown in FIG. As shown in FIG. 1, when a part of CeF 3 Ce is substituted with Lu, the fluorescence intensity is remarkably increased. In comparison with Comparative Example 1 in which Lu is not substituted, Example 2 is doubled and Example 1 is 4 times. It was confirmed that it doubled. On the other hand, in Comparative Examples 2 to 4 substituted with Er, Tm, or Ho instead of Lu, the fluorescence intensity was lower than that of Comparative Example 1 that was not substituted with Lu.
(試験例2)
実施例3で得られた単結晶について、蛍光X線スペクトル測定により組成分析をした結果を表1に示す。なお、測定装置は、日本フィリップス社製PW2404型を用いた。実際に形成された単結晶を分析した結果、単結晶に含まれるLuの量は、原料の配合割合よりも低いことが分かった。従って、実施例1及び実施例2の単結晶についても、実施例3と同様に、Luの割合は原料の配合割合よりも少ないことが推測できる。
(Test Example 2)
Table 1 shows the results of composition analysis of the single crystal obtained in Example 3 by fluorescent X-ray spectrum measurement. The measuring device used was PW2404 type manufactured by Philips Japan. As a result of analyzing the actually formed single crystal, it was found that the amount of Lu contained in the single crystal was lower than the blending ratio of the raw materials. Therefore, in the single crystals of Example 1 and Example 2 as well as Example 3, it can be estimated that the ratio of Lu is smaller than the mixing ratio of the raw materials.
(試験例3)
実施例3及び比較例5の単結晶について、γ線によるエネルギースペクトルを測定した結果を図2に示す。図2に示すように、実施例3は比較例5で得られた単結晶と比べて2.7倍のスペクトル強度が確認されたことから、実施例3は比較例5に比べてγ線の蛍光強度が大幅に向上したことが分かった。
(Test Example 3)
FIG. 2 shows the result of measuring the energy spectrum by γ rays for the single crystals of Example 3 and Comparative Example 5. As shown in FIG. 2, Example 3 was confirmed to have a spectral intensity 2.7 times that of the single crystal obtained in Comparative Example 5, and therefore Example 3 was more γ-ray than Comparative Example 5. It was found that the fluorescence intensity was greatly improved.
(試験例4)
実施例3及び比較例5の単結晶について、γ線の蛍光寿命を測定した。結果を図3及び図4に示す。図3及び図4に示すように、実施例3及び比較例5のγ線の蛍光寿命はほぼ同じ値となり、本発明のフッ化物単結晶は、蛍光寿命は変わらずγ線照射による発光量は大幅に向上することが分かった。
(Test Example 4)
For the single crystals of Example 3 and Comparative Example 5, the fluorescence lifetime of γ rays was measured. The results are shown in FIGS. As shown in FIGS. 3 and 4, the fluorescence lifetimes of γ rays in Example 3 and Comparative Example 5 are almost the same value, and the fluoride single crystal of the present invention does not change the fluorescence lifetime, and the amount of light emitted by γ-ray irradiation is the same. It turns out that it improves significantly.
(試験例5)
実施例4〜7で得られた単結晶について、EDS(energy dispersive spectroscopy:エネルギー分散型X線分析)測定によりGdの含有量を測定した結果を図5に示す。この結果、単結晶に含まれるGdの量も、原料の配合割合よりも低いことが分かった。
(Test Example 5)
About the single crystal obtained in Examples 4-7, the result of having measured the content of Gd by EDS (energy dispersive spectroscopy: energy dispersive X-ray analysis) measurement is shown in FIG. As a result, it was found that the amount of Gd contained in the single crystal was also lower than the blending ratio of the raw materials.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004262642A JP4905756B2 (en) | 2003-09-24 | 2004-09-09 | Fluoride single crystal and scintillator for radiation detection and radiation detector |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003332328 | 2003-09-24 | ||
JP2003332328 | 2003-09-24 | ||
JP2004262642A JP4905756B2 (en) | 2003-09-24 | 2004-09-09 | Fluoride single crystal and scintillator for radiation detection and radiation detector |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005119948A true JP2005119948A (en) | 2005-05-12 |
JP4905756B2 JP4905756B2 (en) | 2012-03-28 |
Family
ID=34621963
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004262642A Expired - Fee Related JP4905756B2 (en) | 2003-09-24 | 2004-09-09 | Fluoride single crystal and scintillator for radiation detection and radiation detector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4905756B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007045869A (en) * | 2005-08-08 | 2007-02-22 | Stella Chemifa Corp | Low hygroscopic halogen-substituted fluoride scintillator material, radiation detector and inspection device |
JPWO2005100645A1 (en) * | 2004-04-12 | 2008-03-06 | ステラケミファ株式会社 | Rare earth fluoride solid solution material (polycrystal and/or single crystal), its manufacturing method, radiation detector and inspection apparatus |
JP2010280542A (en) * | 2009-06-05 | 2010-12-16 | Tokuyama Corp | RARE EARTH-CONTAINING K3LuF6, VACUUM ULTRAVIOLET LIGHT-EMITTING ELEMENT, AND VACUUM ULTRAVIOLET LIGHT-EMITTING SCINTILLATOR |
JP2011132092A (en) * | 2009-12-25 | 2011-07-07 | Tokuyama Corp | Fluoride crystal, vacuum ultraviolet light emitting element and vacuum ultraviolet light emitting scintillator |
JP2020518698A (en) * | 2017-12-27 | 2020-06-25 | 有研稀土新材料股▲フン▼有限公司 | Rare earth halide scintillation materials and their applications |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6117082A (en) * | 1984-07-03 | 1986-01-25 | Toshiba Corp | Radiation detector |
JPS6465482A (en) * | 1987-09-05 | 1989-03-10 | Hitachi Chemical Co Ltd | Radiation detector |
-
2004
- 2004-09-09 JP JP2004262642A patent/JP4905756B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6117082A (en) * | 1984-07-03 | 1986-01-25 | Toshiba Corp | Radiation detector |
JPS6465482A (en) * | 1987-09-05 | 1989-03-10 | Hitachi Chemical Co Ltd | Radiation detector |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2005100645A1 (en) * | 2004-04-12 | 2008-03-06 | ステラケミファ株式会社 | Rare earth fluoride solid solution material (polycrystal and/or single crystal), its manufacturing method, radiation detector and inspection apparatus |
JP2007045869A (en) * | 2005-08-08 | 2007-02-22 | Stella Chemifa Corp | Low hygroscopic halogen-substituted fluoride scintillator material, radiation detector and inspection device |
JP2010280542A (en) * | 2009-06-05 | 2010-12-16 | Tokuyama Corp | RARE EARTH-CONTAINING K3LuF6, VACUUM ULTRAVIOLET LIGHT-EMITTING ELEMENT, AND VACUUM ULTRAVIOLET LIGHT-EMITTING SCINTILLATOR |
JP2011132092A (en) * | 2009-12-25 | 2011-07-07 | Tokuyama Corp | Fluoride crystal, vacuum ultraviolet light emitting element and vacuum ultraviolet light emitting scintillator |
JP2020518698A (en) * | 2017-12-27 | 2020-06-25 | 有研稀土新材料股▲フン▼有限公司 | Rare earth halide scintillation materials and their applications |
Also Published As
Publication number | Publication date |
---|---|
JP4905756B2 (en) | 2012-03-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5389328B2 (en) | Single crystal for scintillator containing Pr, its manufacturing method, radiation detector and inspection apparatus | |
US6437336B1 (en) | Scintillator crystals and their applications and manufacturing process | |
JP6033879B2 (en) | Luminescent material and process for forming the luminescent material | |
JP5984940B2 (en) | Scintillation compounds containing rare earth elements and formation processes thereof | |
JP4393511B2 (en) | Rare earth fluoride solid solution material (polycrystal and / or single crystal), manufacturing method thereof, radiation detector and inspection apparatus | |
AU2006252151B2 (en) | Scintillator compositions, and related processes and articles of manufacture | |
CN103249805B (en) | Luminescent material comprising a doped rare earth silicate | |
JP5686724B2 (en) | Solid scintillator, radiation detector, and X-ray tomography apparatus | |
US20060163484A1 (en) | Metal halide for radiation detection, method for production thereof and radiation detector | |
CA2622381C (en) | High light yield fast scintillator | |
KR20030003226A (en) | Scintillator crystals, method for making same, use thereof | |
JP2007045869A (en) | Low hygroscopic halogen-substituted fluoride scintillator material, radiation detector and inspection device | |
JP4702767B2 (en) | Method for producing Lu3Al5O12 crystal material for radiation detection and method for producing (ZxLu1-x) 3Al5O12 crystal material for radiation detection | |
CN110603310A (en) | Garnet scintillator co-doped with monovalent ions | |
US7060982B2 (en) | Fluoride single crystal for detecting radiation, scintillator and radiation detector using the single crystal, and method for detecting radiation | |
CN105969354A (en) | Cerium-doped gadolinium disilicate luminescent material and preparation method thereof | |
JPWO2004086089A1 (en) | Fluoride single crystal material for thermofluorescence dosimeter and thermofluorescence dosimeter | |
JP4605588B2 (en) | Fluoride single crystal for radiation detection, method for producing the same, and radiation detector | |
JP4905756B2 (en) | Fluoride single crystal and scintillator for radiation detection and radiation detector | |
JP5994149B2 (en) | X-ray scintillator materials | |
JP2022151064A (en) | Scintillator and radiation detector | |
JP2004137489A (en) | Fluoride single crystal material for radiation detection and radiation detector | |
WO2018110451A1 (en) | Phosphor for detecting ionizing radiation, phosphor material containing said phosphor, and inspection apparatus and diagnostic apparatus having said phosphor material | |
WO2021149670A1 (en) | Scintillator and radiation detector | |
CN117186891A (en) | Transition metal element doped garnet Dan Gouxing aluminate scintillation material with high quality factor, and preparation method and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20070511 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070706 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090121 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101124 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110124 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111228 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111228 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150120 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |