FR2738080A1 - SEMICONDUCTOR-BASED X-RAY DETECTION DEVICE - Google Patents

SEMICONDUCTOR-BASED X-RAY DETECTION DEVICE Download PDF

Info

Publication number
FR2738080A1
FR2738080A1 FR9510046A FR9510046A FR2738080A1 FR 2738080 A1 FR2738080 A1 FR 2738080A1 FR 9510046 A FR9510046 A FR 9510046A FR 9510046 A FR9510046 A FR 9510046A FR 2738080 A1 FR2738080 A1 FR 2738080A1
Authority
FR
France
Prior art keywords
detection
cdte
detector
blocking
ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR9510046A
Other languages
French (fr)
Other versions
FR2738080B1 (en
Inventor
Loic Verger
Francis Glasser
Thierry Miguet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Priority to FR9510046A priority Critical patent/FR2738080B1/en
Priority to JP9509915A priority patent/JPH10512398A/en
Priority to EP96929365A priority patent/EP0788662A1/en
Priority to CA 2203413 priority patent/CA2203413A1/en
Priority to PCT/FR1996/001313 priority patent/WO1997008758A1/en
Publication of FR2738080A1 publication Critical patent/FR2738080A1/en
Application granted granted Critical
Publication of FR2738080B1 publication Critical patent/FR2738080B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/115Devices sensitive to very short wavelength, e.g. X-rays, gamma-rays or corpuscular radiation

Abstract

The invention provides an X ray detector comprising at least one high resistivity, type II-VI semiconductor material on which are arranged two or more electrical contacts, at least one of which is selected from the group of blocking contacts.

Description

DISPOSITIF DE DETECTION DE RAYONS X A BASE
DE SEMI-CONDUCTEURS
DESCRIPTION
Domaine Technique
La présente invention concerne un dispositif de détection de rayons X à base de semi-conducteurs.
BASED X-RAY DETECTION DEVICE
SEMICONDUCTORS
DESCRIPTION
Technical area
The present invention relates to an X-ray detection device based on semiconductors.

Etat de la technique antérieure
De nombreux types de détecteurs ont été imaginés pour la détection de rayonnements X ou y. Si la nature du milieu détecteur est très variée, solide, liquide ou gazeuse, les principes de détection, pour leur part, sont en général fondés sur les mêmes processus d'ionisation ou d'excitation du milieu détecteur par le passage de particules chargées.
State of the art
Many types of detectors have been devised for the detection of X or y radiation. If the nature of the detector medium is very varied, solid, liquid or gaseous, the principles of detection, for their part, are generally based on the same processes of ionization or excitation of the detector medium by the passage of charged particles.

Néanmoins, le nombre de particules chargées créé dans le détecteur ainsi que les moyens de mesurer le signal qui en découle sont très différents selon qu'il s'agit de détecter un rayonnement X ou un rayonnement y. (voir référence [1]).However, the number of charged particles created in the detector as well as the means of measuring the resulting signal are very different depending on whether it is to detect X-ray or y-radiation. (see reference [1]).

L'emploi de détecteurs solides à base de semi-conducteurs a été le principal apport de ces trente dernières années aux techniques de détection du rayonnement X ou y qui utilisent majoritairement les détecteurs à gaz ou à scintillation. The use of solid-state detectors based on semiconductors has been the main contribution of the last thirty years to X-ray or y-ray detection techniques, which mainly use gas or scintillation detectors.

Les détecteurs à base de semi-conducteurs réalisent- directement la conversion en énergie du rayonnement X ou y dans la matière sans passer par des étapes intermédiaires telles qu'une émission de photons visibles dans le cas des scintillateurs. On s'affranchit ainsi des problèmes du couplage synonymes de perte de rendement. L'énergie nécessaire pour créer une paire- électron-trou dans un semi-conducteur est beaucoup plus faible que dans un gaz ou dans un scintillateur (environ 4eV dans les semi-conducteurs contre 30eV dans les gaz et 300eV dans un système scintillateur photomultiplicateur). En conséquence, le nombre de charges libres créées par photon détecté est plus important, ce qui permet d'obtenir des gains élevés avec un faible bruit.De plus, leur numéro atomique et leur densité élevés permet d'utiliser des volumes de détection nettement inférieurs à ceux des gaz ou des scintillateurs, tout en conservant la même efficacité quantique de détection (voir référence [2]). Detectors based on semiconductors directly convert energy into X or y radiation in the material without passing through intermediate steps such as emission of visible photons in the case of scintillators. This eliminates the problems of coupling synonymous with loss of yield. The energy required to create an electron-hole pair in a semiconductor is much lower than in a gas or in a scintillator (about 4eV in semiconductors against 30eV in gases and 300eV in a scintillator photomultiplier system) . As a result, the number of free charges created per photon detected is higher, which makes it possible to obtain high gains with low noise, and their high atomic number and density makes it possible to use significantly lower detection volumes. to those of gases or scintillators, while retaining the same quantum detection efficiency (see reference [2]).

L'ensemble de ces avantages a permis d'utiliser les détecteurs à base de semi-conducteurs dans les trois domaines d'application suivants, qui sont donnés dans l'ordre chronologique de leur étude
- la détection nucléaire dont l'objectif est de mesurer l'énergie déposée par un photon y issu d'une source de rayonnement nucléaire,
- l'instrumentation scientifique, dès lors qu'il faut détecter des impulsions de rayonnement X brèves et en mesurer l'évolution temporelle et l'intensité,
- la détection de rayonnement X dont l'objectif est de réaliser l'image radiologique d'un objet irradié par un générateur à rayons X.
All of these advantages have made it possible to use detectors based on semiconductors in the following three fields of application, which are given in chronological order of their study.
- nuclear detection whose objective is to measure the energy deposited by a photon there from a nuclear radiation source,
- scientific instrumentation, since it is necessary to detect brief X-ray pulses and measure their temporal evolution and intensity,
- X-ray detection, the objective of which is to produce the radiological image of an object irradiated by an X-ray generator.

Ce dernier domaine d'application de la détection du rayonnement X par des détecteurs à base de semi-conducteurs est très récent et par conséquent beaucoup moins étudié que celui de la détection du rayonnement y, qui a débuté dans les années 60.  This latter field of application of X-ray detection by semiconductor-based detectors is very recent and therefore much less studied than that of y-radiation detection, which began in the 1960s.

Parmi les matériaux semi-conducteurs, le tellurure de Cadmium (CdTe) constitue le meilleur choix eu égard à ses propriétés électroniques (voir référence -[3]). Among the semiconductor materials, Cadmium telluride (CdTe) is the best choice having regard to its electronic properties (see reference - [3]).

Cependant, d'autres détecteurs, notamment à base de semi-conducteurs de type IV (Si, Ge, ...), II-VI < ZnS,...), III-V (GaAs, InP...), ou Il-Vil (HgI2,...), peuvent être utilisés aussi bien dans le domaine X que dans le domaine des rayons y. However, other detectors, in particular based on type IV semiconductors (Si, Ge, ...), II-VI <ZnS, ...), III-V (GaAs, InP ...), or Il-Vil (HgI2, ...), can be used both in the X domain and in the y ray domain.

L'utilisation de ces matériaux semi-conducteurs comme détecteurs de rayonnement X implique le dépôt de deux contacts électriques à la surface du matériau, aux bornes desquelles une tension de polarisation est appliquée. Les porteurs de charges, c'est-à-dire les paires électron-trou créées par l'interaction du photon X avec le matériau, se séparent sous l'action du champ électrique, les électrons migrant vers l'électrode positive et les trous vers l'électrode négative. L'aptitude de ces porteurs de charge à migrer vers les électrodes sans se faire piéger par les défauts présents dans le matériau semi-conducteur conditionne la valeur du signal mesuré. The use of these semiconductor materials as X-ray detectors involves the deposition of two electrical contacts on the surface of the material, at the terminals of which a bias voltage is applied. The charge carriers, that is to say the electron-hole pairs created by the interaction of the photon X with the material, separate under the action of the electric field, the electrons migrating towards the positive electrode and the holes towards the negative electrode. The ability of these charge carriers to migrate towards the electrodes without being trapped by the faults present in the semiconductor material conditions the value of the measured signal.

Cette aptitude appelée également "propriété de transport" des porteurs de charge est d'autant plus élevée que le champ électrique appliqué sur toute l'épaisseur du détecteur est fort, car il limite leur temps de transit dans le détecteur.This aptitude also called "transport property" of the charge carriers is all the higher as the electric field applied over the entire thickness of the detector is strong, because it limits their transit time in the detector.

Ces propriétés de transport des porteurs de charge ainsi que la résistivité du matériau, qui imposent le courant dit d'obscurité (courant détecteur en l'absence de rayonnement), et la zone utile de détection dépendent de la pureté du matériau, c'est-à-dire de la présence de défauts actifs dans la bande interdite. Ces défauts actifs apparaissent systématiquement durant la cristallogenèse du matériau et ce, quelle que soit la méthode de tirage utilisée (THM ("Travelling Heater Method" ou méthode à radiateur mobile), HPBM ("High Pressure Brigman Method" ou méthode Br-igman haute pression) ou BM ("Brigman Method" ou méthode Brigman) pour CdTe) . La bibliographie concernant l'étude de ces défauts selon la méthode de tirage est abondante et les dernières évolutions montrent qu'il n'a pas été possible de les supprimer (voir référence [4]). These transport properties of the charge carriers as well as the resistivity of the material, which impose the so-called dark current (detector current in the absence of radiation), and the useful detection area depend on the purity of the material. ie the presence of active faults in the prohibited band. These active defects appear systematically during the crystallogenesis of the material, regardless of the pulling method used (THM ("Traveling Heater Method" or mobile radiator method), HPBM ("High Pressure Brigman Method" or Br-igman high method). pressure) or BM ("Brigman Method" or Brigman method) for CdTe). The bibliography concerning the study of these defects using the pulling method is abundant and the latest developments show that it has not been possible to remove them (see reference [4]).

Le choix de la nature du contact métallique déposé sur le matériau semi-conducteur est dicté par la nécessité de limiter le courant d'obscurité, de limiter la résistance de contact et d'imposer le champ électrique sur toute l'épaisseur du détecteur, ce qui permet d'assurer une zone utile de détection élevée. Là encore la littérature concernant les différentes structures de détections possibles comme les structures ohmiques (dépôt métallique), les jonctions (implantations, diffusions), les structures diodes (hétérojonctions...) est abondante (voir référence [5]).  The choice of the nature of the metallic contact deposited on the semiconductor material is dictated by the need to limit the dark current, to limit the contact resistance and to impose the electric field on the entire thickness of the detector, this which ensures a high useful detection area. Here again, the literature on the various possible detection structures such as ohmic structures (metallic deposit), junctions (implantations, diffusions), diode structures (heterojunctions, etc.) is abundant (see reference [5]).

Mais en plus du choix du matériau détecteur selon sa pureté, et de la nature du contact afin de rendre optimales les performances du détecteur, la structure de détection (contact - semi-conducteur contact) ainsi formée doit répondre à un cahier des charges commun à la détection de rayonnement X et y, à savoir l'obtention d'un signal élevé avec un minimum de bruit qui soit constant durant le temps de son acquisition. But in addition to the choice of the detector material according to its purity, and the nature of the contact in order to make the detector's performances optimal, the detection structure (contact - contact semiconductor) thus formed must meet specifications common to detection of X and y radiation, namely obtaining a high signal with a minimum of noise which is constant during the time of its acquisition.

Or, si ces structures de détection optimales de type jonctions, diodes permettent d'obtenir un signal élevé avec un minimum de bruit, elles présentent malheureusement un effet de polarisation qui consiste en une évolution dans le temps de la répartition spatiale du champ électrique appliqué entre les deux électrodes (voir référence [6]). However, if these optimal detection structures of the junction, diode type make it possible to obtain a high signal with a minimum of noise, they unfortunately have a polarization effect which consists in an evolution over time of the spatial distribution of the electric field applied between the two electrodes (see reference [6]).

Là encore de nombreuses publications portent sur le fonctionnement de ces structures idéales, mais celles-ci sont utilisées exclusivement à la détection du rayonnement y. Ces publications montrent que l'effet de polarisation est lié à la présence de défauts actifs dans le matériau semi-conducteur (par exemple CdTe:Cl), que les structures optimales (type jonctions, diodes) mettaient en évidence. Aujourd'hui, seule l'utilisation d'une structure de détection spécifique, contact dit "electroless" déposé sur une surface préalablement polie chimiquement, dite "ohmique" permet de rendre le signal mesuré constant dans le temps. En contrepartie, le courant d'obscurité est élevé (bruit important), ce qui limite le champ électrique appliqué et donc les propriétés de transport des porteurs de charge (rendement faible) (voir référence [7]). Again many publications relate to the functioning of these ideal structures, but these are used exclusively for the detection of radiation there. These publications show that the polarization effect is linked to the presence of active defects in the semiconductor material (for example CdTe: Cl), which the optimal structures (type junctions, diodes) demonstrated. Today, only the use of a specific detection structure, a so-called "electroless" contact deposited on a previously chemically polished, so-called "ohmic" surface, makes it possible to make the measured signal constant over time. In return, the dark current is high (high noise), which limits the applied electric field and therefore the transport properties of the charge carriers (low efficiency) (see reference [7]).

Une telle structure de détection non optimale est la seule utilisée pour la détection du rayonnement y. L'interprétation de l'effet de polarisation (évolution dans le temps de la répartition spatiale du champ électrique appliqué) a conduit les nouveaux utilisateurs de systèmes de détection du rayonnement X à utiliser de telles structures. Such a non-optimal detection structure is the only one used for the detection of γ radiation. The interpretation of the polarization effect (evolution over time of the spatial distribution of the applied electric field) has led new users of X-ray detection systems to use such structures.

La présente invention a pour objet un dispositif de détection de rayons X permettant de pallier ces différents inconvénients.  The present invention relates to an X-ray detection device which overcomes these various drawbacks.

Exposé de l'invention
La présente invention concerne un détecteur de rayonnement X constitué d'un matériau semi-conducteur de haute résistivité du type II-VI sur lequel sont disposés au moins deux contacts électriques, au moins un de ceux-ci étant pris dans la famille des contacts bloquants.
Statement of the invention
The present invention relates to an X-ray detector made of a high resistivity semiconductor material of type II-VI on which are arranged at least two electrical contacts, at least one of these being taken from the family of blocking contacts. .

La nature et le principe de détection du rayonnement X, différents de ceux de la détection de rayonnement y, permettent ainsi d'utiliser des structures de détection optimales (type diodes Pin, jonction pn.... à base de CdTe pour la détection X, alors qu'elles ne fonctionnent pas en détection y. The nature and principle of X-ray detection, different from that of y-radiation detection, thus allow the use of optimal detection structures (Pin diodes, pn junction .... based on CdTe for X detection , while they do not work in y detection.

L'effet de polarisation responsable de l'abandon des structures optimales en détection y peut être supprimé dans certaines conditions en détection X.The polarization effect responsible for abandoning the optimal structures in y detection can be suppressed under certain conditions in X detection.

Une telle structure autorise l'application d'un fort champ électrique tout en limitant le courant d'obscurité par un facteur 3 à 10 et supprimant l'effet de polarisation propre au matériau CdTe. Such a structure allows the application of a strong electric field while limiting the dark current by a factor of 3 to 10 and eliminating the polarization effect specific to the CdTe material.

Une telle structure, pour laquelle il y a absence d'empilement et de traînée, rend celle-ci adaptée à la réalisation d'imagerie de rayonnement X. Such a structure, for which there is no stacking and no drag, makes it suitable for carrying out X-ray imaging.

Avantageusement, une structure de détection de type diodes tête-bêche bloquant/CdTe/bloquant peut être déposée sur n'importe quel matériau CdTe. Advantageously, a detection structure of the blocking / CdTe / blocking diode head-to-tail diodes type can be deposited on any CdTe material.

La détection du rayonnement X à température ambiante à l'aide de structures optimales à base de
CdTe permet donc de
- limiter le courant d'obscurité,
- autoriser un champ électrique élevé et donc un signal élevé et un faible effet mémoire
- obtenir un signal constant dans le temps.
Detection of X-rays at room temperature using optimal structures based on
CdTe therefore allows
- limit the current of darkness,
- allow a high electric field and therefore a high signal and a weak memory effect
- obtain a constant signal over time.

En ce qui concerne les contacts bloquants (comme par exemple l'aluminium, l'indium, l'argent), la présente invention va à l'encontre de ce qui se faisait dans l'art- antérieur.  As regards blocking contacts (such as aluminum, indium, silver), the present invention goes against what was done in the prior art.

En effet, de tels contacts bloquants qui sont stables dans le temps pour un rayonnement X, permettent d'améliorer grandement la qualité de la détection X. De plus, ces contacts bloquants (comme par exemple l'aluminium, l'argent, l'indium) ont été très vite abandonnés en détection Gamma parce qu'ils n'étaient pas stables dans le temps. La détection X s'étant développée sur les bases de la détection Gamma, l'homme de l'art utilise donc des contacts ohmiques. Indeed, such blocking contacts which are stable over time for X-ray radiation, make it possible to greatly improve the quality of X-ray detection. In addition, these blocking contacts (such as aluminum, silver, indium) were quickly abandoned in Gamma detection because they were not stable over time. Since X detection has developed on the basis of Gamma detection, those skilled in the art therefore use ohmic contacts.

Brève description des dessins
- Les figures 1A, 1B et 1C illustrent un dispositif de détection y,
- les figures 2A et 2B illustrent un dispositif de détection X selon l'invention,
- les figures 3A, 3B et 3C illustrent des caractéristiques courant-tension pour différentes structures selon l'invention,
- les figures 4A, 4B et 4C illustrent des courbes de détection du rayonnement y,
- les figures 5A, 5B et 5C illustrent des courbes de détection du rayonnement X,
- les figures 6A, 6B et 6C illustrent une caractérisation par temps de vol du dispositif de l'invention avec une source de rayonnement y,
- les figures 7A à 7C illustrent une caractérisation par temps de vol du dispositif de l'invention avec une source de rayonnement X.
Brief description of the drawings
FIGS. 1A, 1B and 1C illustrate a detection device y,
FIGS. 2A and 2B illustrate a detection device X according to the invention,
FIGS. 3A, 3B and 3C illustrate current-voltage characteristics for different structures according to the invention,
FIGS. 4A, 4B and 4C illustrate curves for detecting the radiation y,
FIGS. 5A, 5B and 5C illustrate X-ray detection curves,
FIGS. 6A, 6B and 6C illustrate a characterization by time of flight of the device of the invention with a source of radiation y,
- Figures 7A to 7C illustrate a characterization by time of flight of the device of the invention with an X-ray source.

Exposé détaillé de modes de réalisation
Pour mieux comprendre l'invention, il est nécessaire- d'expliquer les différences entre les rayonnements X et y, les différences dans le principe de détection des rayonnements X et y ainsi que les différents critères physiques exigés aux détecteurs X et y.
Detailed description of embodiments
To better understand the invention, it is necessary to explain the differences between X and y radiation, the differences in the principle of detection of X and y radiation as well as the different physical criteria required for the X and y detectors.

Les rayonnements X et y sont tous les deux constitués de photons dont les énergies sont à peu près du même ordre de grandeur. Les différences se situent au niveau des sources d'émission et de leur contrôle. Both X and y radiation are made up of photons whose energies are roughly of the same order of magnitude. The differences lie in the sources of emissions and their control.

Le rayonnement y est issu de sources radioactives dont l'émission de photons est aléatoire, donc non contrôlable. L'énergie de chaque photon est quantifiée, car le photon est issu de désintégrations du noyau atomique. L'activité (nombre de désintégrations par seconde) est variable, mais en général peu élevée. The radiation there comes from radioactive sources whose emission of photons is random, therefore not controllable. The energy of each photon is quantified, because the photon comes from disintegrations of the atomic nucleus. The activity (number of disintegrations per second) is variable, but generally low.

Le rayonnement X est issu d'un générateur dont l'émission de photons est contrôlable. On obtient un spectre énergétique de photons dont on peut contrôler l'énergie maximum (par la haute tension du tube) et le nombre de photons par unité de temps (par l'intensité du tube). Le débit de photons est en général assez élevé. L'émission des photons X peut être continue ou hachée sous forme d'impulsions répétitives avec l'utilisation d'un hacheur. X-ray radiation comes from a generator whose emission of photons is controllable. We obtain an energy spectrum of photons which we can control the maximum energy (by the high voltage of the tube) and the number of photons per unit of time (by the intensity of the tube). The photon flow is generally quite high. The emission of X photons can be continuous or chopped in the form of repetitive pulses with the use of a chopper.

Le rayonnement y est principalement utilisé en médecine nucléaire. L'objectif est de réaliser une spectrométrie y des photons issus de traceurs qui ont été injectés dans le patient. Cette spectrométrie y consiste à détecter tous les photons émis et à mesurer leur énergie.  Radiation is mainly used there in nuclear medicine. The objective is to perform spectrometry and photons from tracers which have been injected into the patient. This spectrometry consists in detecting all the photons emitted and measuring their energy.

Le rayonnement X est principalement utilisé en radiographie. L'objectif est de réaliser l'image d'un objet en le soumettant à un spectre de photons, en mesurant le signal issu des photons transmis n'ayant pas interagi avec l'objet durant le temps d'acquisition. X-ray is mainly used in radiography. The objective is to produce the image of an object by subjecting it to a spectrum of photons, by measuring the signal from the transmitted photons which have not interacted with the object during the acquisition time.

Contrairement à la spectrométrie y, on ne mesure pas l'énergie de chaque photon, mais le signal résultant de l'interaction des photons transmis durant le temps d'acquisition dans le détecteur. Unlike y spectrometry, we do not measure the energy of each photon, but the signal resulting from the interaction of photons transmitted during the acquisition time in the detector.

La mesure de l'énergie de chaque photon réalisé en spectrométrie y est très différente et plus contraignante que celle du signal issu d'un ensemble de photons interagissant dans le détecteur réalisé en radiographie X. The measurement of the energy of each photon produced in spectrometry is very different and more restrictive than that of the signal from a set of photons interacting in the detector produced in X-ray radiography.

La figure 1A illustre un dispositif de détection y, avec une source de rayons y 10. Les figures 1B et 1C représentent respectivement des courbes du courant intégré Q en fonction du temps et du nombre de coups en fonction de la valeur mesurée Qmes.  FIG. 1A illustrates a detection device y, with a source of rays y 10. FIGS. 1B and 1C respectively represent curves of the integrated current Q as a function of time and of the number of strokes as a function of the measured value Qmes.

La figure 2A illustre un dispositif de détection X, avec un générateur de rayons X 11. La figure 2B illustre le courant mesuré I en fonction du temps, avec des valeurs de courant intégré Q. FIG. 2A illustrates a detection device X, with an X-ray generator 11. FIG. 2B illustrates the measured current I as a function of time, with integrated current values Q.

La détection du rayonnement y par un semi-conducteur de type CdTe a commencé dès les années 60. De nombreuses études ont été menées, afin d'optimiser la structure de détection pour une meilleure spectrométrie. Aujourd'hui, seule la structure ohmique avec dépôt de deux contacts electroless (Or ou Platine) sur une surface préalablement décapée chimiquement permet d'obtenir une spectrométrie acceptable (mais non optimale) avec un signal constant dans le temps. Les autres structures de détection (type jonction, diodes...) affichent de bien meilleurs performances en terme de résolution en énergie, mais cela seulement dans les quelques premières -secondes ou minutes de l'acquisition au bout desquelles plus aucun signal n'est observé. Cet effet dit de polarisation est dû à la présence de défauts dans le matériau que les progrès de la cristallogenèse n'ont pas encore permis de supprimer. The detection of γ radiation by a CdTe type semiconductor began in the 1960s. Many studies have been carried out in order to optimize the detection structure for better spectrometry. Today, only the ohmic structure with deposit of two electroless contacts (Gold or Platinum) on a surface previously chemically etched allows to obtain an acceptable (but not optimal) spectrometry with a constant signal over time. The other detection structures (junction type, diodes, etc.) display much better performance in terms of energy resolution, but this only within the first few -seconds or minutes of acquisition at the end of which no more signal is observed. This so-called polarization effect is due to the presence of defects in the material which progress in crystallogenesis has not yet made it possible to remove.

La détection du rayonnement X par un semi-conducteur de type CdTe a commencé dans les années 90 et donc beaucoup plus tard que celle du rayonnement y. Ceci explique les raisons qui ont poussé les nombreux utilisateurs du CdTe en détection X d'utiliser la seule structure fonctionnant en détection y. L'effet de polarisation qui provoque une évolution de la distribution spatiale du champ électrique dans le détecteur jusqu'à son extension dans les quelques secondes après son application, est mise en évidence en détection y et devait de la même façon être observée en détection X. The detection of X-rays by a CdTe semiconductor began in the 1990s and therefore much later than that of y-rays. This explains the reasons which pushed the many users of CdTe in detection X to use the only structure functioning in detection y. The polarization effect which causes an evolution of the spatial distribution of the electric field in the detector until its extension in a few seconds after its application, is highlighted in detection y and should in the same way be observed in detection X .

La présente invention a pour objet de démontrer qu'une certaine structure de détection optimale fonctionne en détection X, alors qu'elle ne fonctionne pas en détection y. The object of the present invention is to demonstrate that a certain optimal detection structure works in X detection, whereas it does not work in y detection.

Le dispositif de détection de l'invention est constitué d'un matériau semi-conducteur de haute résistivité de type II-VI : CdTe à C1, Cdl~,Zn,Te, CdTe1 .Se,, CdlxZnxTe:Cl CdTel-xsex:clt GaAs, HgIn sur lequel est déposé un contact bloquant par déplacement de cations en solution conférant ainsi au contact
Métal/Semi-conducteur des propriétés électriques remarquables. Le contact bloquant peut être déposé sur une seule face, mais mieux encore sur les deux faces.
The detection device of the invention consists of a semiconductor material of high resistivity of type II-VI: CdTe to C1, Cdl ~, Zn, Te, CdTe1 .Se ,, CdlxZnxTe: Cl CdTel-xsex: clt GaAs, HgIn on which is deposited a blocking contact by displacement of cations in solution thus giving the contact
Metal / Semiconductor with remarkable electrical properties. The blocking contact can be placed on one side, but better still on both sides.

Une telle structure avec deux contact bloquants déposés sur les faces opposées d'un détecteur
CdTe présente une résistivité 3 à 10 fois supérieure environ à-celle que présente ce même matériau muni de contacts électrodes or ou platine (structure dite ohmique). En conséquence, cette structure bloquant/CdTe/bloquant est le siège d'un courant d'obscurité environ 3 à 10 fois plus faible pour une même polarisation. Elle se comporte comme une structure diode tête-bêche.
Such a structure with two blocking contacts deposited on the opposite faces of a detector
CdTe has a resistivity 3 to 10 times higher than that of this same material provided with gold or platinum electrode contacts (so-called ohmic structure). Consequently, this blocking / CdTe / blocking structure is the seat of a dark current approximately 3 to 10 times weaker for the same polarization. It behaves like a head-to-tail diode structure.

Les figures 3A, 3B et 3C illustrent les caractéristiques courant-tension respectivement
- pour une structure ohmique/CdTe/ohmique
- pour une structure bloquant/CdTe/bloquant
- pour une structure bloquant/CdTe/ohmique.
Figures 3A, 3B and 3C illustrate the current-voltage characteristics respectively
- for an ohmic / CdTe / ohmic structure
- for a blocking / CdTe / blocking structure
- for a blocking / CdTe / ohmic structure.

Les contacts se répartissent, en effet, en deux familles : les contacts bloquants (comme par exemple l'aluminium, l'indium, l'argent) et les contacts ohmiques (comme par exemple l'or ou le platine). The contacts are, in fact, divided into two families: blocking contacts (such as aluminum, indium, silver) and ohmic contacts (such as gold or platinum).

Pour la première structure (figure 3A), on obtient une résistivité du matériau de 109Q-cm ; pour la seconde (figure 3B), on obtient une résistivité apparente de 101lQ-cm.  For the first structure (Figure 3A), a material resistivity of 109Q-cm is obtained; for the second (Figure 3B), we obtain an apparent resistivity of 101lQ-cm.

De plus, la résistance de contact s'avère très faible par rapport à celle du CdTe, ce qui permet au champ électrique de s'appliquer sur tout le volume du détecteur CdTe et non pas de se consommer sous les électrodes bloquantes. In addition, the contact resistance turns out to be very low compared to that of CdTe, which allows the electric field to be applied over the entire volume of the CdTe detector and not to be consumed under the blocking electrodes.

De telles structures ont déjà été étudiées en détection y (référence [8]), mais rien n'a été publié sur leur utilisation en détection X, car les raisons de leur abandon en détection y ne s'appliquent pas en détection X.  Such structures have already been studied in y detection (reference [8]), but nothing has been published on their use in X detection, because the reasons for abandoning them in y detection do not apply in X detection.

Les structures de détection à base de CdTe de haute résistivité utilisées en détection y sont couramment appelées "structures ohmiques". Les figures 4A à 4C -présentent des résultats de détection de rayonnements y obtenus avec le semi-conducteur CdTe de haute résistivité muni de contacts ohmiques et de contacts diodes. La source de rayonnement y est une source radioactive au cobalt 57 pour laquelle les photons émis ont les énergies suivantes : 14 keV (9,1 % des cas), 122 keV (85,7 % des cas), 136 keV (10,7 % des cas).  The high resistivity CdTe-based detection structures used in detection are commonly called "ohmic structures". FIGS. 4A to 4C show the results of detection of radiation y obtained with the high resistivity CdTe semiconductor provided with ohmic contacts and diode contacts. The radiation source there is a cobalt 57 radioactive source for which the emitted photons have the following energies: 14 keV (9.1% of cases), 122 keV (85.7% of cases), 136 keV (10.7 % of cases).

La figure 4A présente le spectre théorique idéal incident au détecteur CdTe. FIG. 4A presents the ideal theoretical spectrum incident to the CdTe detector.

La structure ohmique Au/CdTe/Au (avec un détecteur 3x3x3 min , une polarisation 150 volts, un courant d'obscurité-10 A) permet d'obtenir une spectrométrie y aux performances moyennes comme représenté sur la figure 4B, car la résolution en énergie mesurée (entre 5 et 8 %) est loin de la résolution théorique (2 %). La structure ohmique n'autorise pas l'application d'un fort champ électrique qui permettrait certes aux porteurs de charge créés dans le volume du détecteur CdTe de migrer vers les électrodes sans se faire piéger par les défauts actifs du matériau, mais qui engendrerait un courant d'obscurité trop élevé. C'est ainsi que champ électrique élevé et courant d'obscurité faibles sont incompatibles avec une structure ohmique.Les contacts ohmiques font que le courant d'obscurité n'est pas limité, mais imposé par la résistivité du matériau. The Au / CdTe / Au ohmic structure (with a 3 × 3 × 3 min detector, a 150-volt polarization, a dark current -10 A) makes it possible to obtain a spectrometry of medium performance as shown in FIG. 4B, because the resolution in measured energy (between 5 and 8%) is far from the theoretical resolution (2%). The ohmic structure does not allow the application of a strong electric field which would certainly allow the charge carriers created in the volume of the CdTe detector to migrate towards the electrodes without being trapped by the active defects of the material, but which would generate a dark current too high. Thus, a high electric field and a low dark current are incompatible with an ohmic structure. Ohmic contacts mean that the dark current is not limited, but imposed by the resistivity of the material.

Grâce à ce courant d'obscurité, la structure de détection ohmique ne polarise pas, c'est-à-dire le spectre mesuré reste stable durant le temps de son acquisition (quelques minutes). Thanks to this dark current, the ohmic detection structure does not polarize, that is to say the measured spectrum remains stable during the time of its acquisition (a few minutes).

La structure bloquante diode bloquant/CdTe/bloquant (avec un détecteur 3x3x3 mm3, une polarisation 300Volts, un courant d'obscurité 10-9A) ne permet- pas d'obtenir une spectrométrie y, comme représenté sur la figure 4C, aucun signal n'étant détecté. Le courant d'obscurité étant 3 à 10 fois inférieur à celui de la précédente structure pour une même tension de polarisation, une tension de polarisation plus élevée peut être appliquée. Or, l'absence de spectre montre que le champ électrique n'est pas appliqué sur tout le volume du détecteur et que, soumis à une tension de polarisation continue, le détecteur bloquant/CdTe/bloquant polarise. The blocking diode blocking / CdTe / blocking structure (with a 3x3x3 mm3 detector, a 300Volts polarization, a dark current 10-9A) does not make it possible to obtain a y spectrometry, as shown in FIG. 4C, no signal n 'being detected. The dark current being 3 to 10 times lower than that of the previous structure for the same bias voltage, a higher bias voltage can be applied. However, the absence of a spectrum shows that the electric field is not applied to the entire volume of the detector and that, subjected to a DC bias voltage, the blocking / CdTe / blocking detector polarizes.

Aucune structure de détection combinant l'application d'un fort champ électrique, un très faible courant d'obscurité et un signal constant dans le temps n'a été proposée pour la détection du rayonnement y à base de CdTe à température ambiante. No detection structure combining the application of a strong electric field, a very low dark current and a constant signal over time has been proposed for the detection of y-radiation based on CdTe at room temperature.

Le rayonnement X est le plus souvent constitué d'un train d'impulsions de quelques millisecondes à la fréquence de quelques dizaines d'Hertz. La haute tension du générateur X varie entre 20 et 160 kV, l'intensité entre 2 et 40 mA. Sur la figure 5A, on a un train d'impulsions de durée 2ms, de fréquence 50Hz, avec une tension 120kV/20mA. X-ray radiation is most often made up of a train of pulses of a few milliseconds at the frequency of a few tens of Hertz. The high voltage of generator X varies between 20 and 160 kV, the intensity between 2 and 40 mA. In FIG. 5A, there is a train of pulses of duration 2 ms, of frequency 50 Hz, with a voltage 120kV / 20mA.

La structure ohmique Au/CdTe/Au (avec un détecteur 10x10x1mm3, une polarisation SOVolts, un courant d'obscurité 10-7A) affiche une bonne sensibilité, mais la présence d'une traînée 20 qui apparaît dès la fin de chaque impulsion X, comme illustré sur la figure 5B, provoque un empilement du signal mesuré. Cette traînée est liée au dépiégeage des porteurs de charge qui se sont piégés durant l'impulsion X du fait de la présence des défauts du
CdTe et du faible champ électrique appliqué.
The Au / CdTe / Au ohmic structure (with a 10 × 10 × 1 mm 3 detector, SOVolts polarization, 10-7A dark current) displays good sensitivity, but the presence of a trail 20 which appears at the end of each X pulse, as illustrated in FIG. 5B, causes a stack of the measured signal. This drag is linked to the trapping of the charge carriers which are trapped during the pulse X due to the presence of the defects of the
CdTe and the weak electric field applied.

La structure diode bloquant/CdTe/bloquant (avec un - détecteur 10 x lOx lmm3, une polarisation 150Volts, un courant d'obscurité 10-9A) affiche une sensibilité équivalente à la structure ohmique
Au/CdTe/Au et cela sans présenter l'effet de polarisation (voir figure 5C) . Cette constatation inattendue est remarquable, car elle ouvre la voie à l'utilisation de structure autorisant l'application d'un fort champ électrique pour un faible courant d'obscurité. L'application d'un fort champ électrique permet de limiter le piégeage/dépiégeage des porteurs de charge et ainsi de limiter la traînée et par conséquent de supprimer l'empilement.Ces structures diodes bloquant/Cd/Te/bloquant semblent suivre parfaitement l'évolution temporelle théorique du train d'impulsion X avec une dynamique d'atténuation à la coupure du rayonnement proche de quatre décades.
The blocking / CdTe / blocking diode structure (with a - detector 10 x lOx lmm3, a 150Volts polarization, a dark current 10-9A) displays a sensitivity equivalent to the ohmic structure
Au / CdTe / Au and this without presenting the polarization effect (see FIG. 5C). This unexpected observation is remarkable, because it opens the way to the use of a structure allowing the application of a strong electric field for a weak dark current. The application of a strong electric field makes it possible to limit the trapping / trapping of the charge carriers and thus to limit the drag and consequently to suppress the stacking. These blocking / Cd / Te / blocking diode structures seem to follow perfectly the theoretical temporal evolution of the train of pulse X with a dynamic of attenuation at the cut of the radiation close to four decades.

Pour mieux comprendre ces phénomènes, on étudie ces structures en utilisant une manipulation de caractérisation appelée "temps de vol" (ou "Time of flight" en anglais). Elle permet par l'utilisation d'un laser ultraviolet très rapide (impulsions 500ps) et répétitif (30Hz max.), comme représenté sur les figures 6A et 7A., d'observer l'évolution temporelle de la répartition spatiale du champ électrique (voir figure 6B). To better understand these phenomena, we study these structures using a characterization manipulation called "time of flight" (or "Time of flight" in English). It allows by the use of a very fast (500ps pulses) and repetitive (30Hz max.) Ultraviolet laser, as shown in FIGS. 6A and 7A., To observe the temporal evolution of the spatial distribution of the electric field ( see Figure 6B).

En détection y , comme représenté sur la figure 6A avec une source radioactive Cobalt 57, tout se passe comme si le détecteur était constamment dans l'obscurité puisque le photon y incident au détecteur ne crée que très peu de porteurs de charge et dans un espace infiniment plus petit que le volume du détecteur. L'expérimentation du temps de vol confirme la présence d'un champ électrique constant dans le temps, plus élevé côté cathode pour la structure
Au/CdTe/Au- (avec un détecteur 1 Ox 1 Ox lmm3 , une polarisation 54V, un courant d'obscurité 10-6A) (voir figure 6C, les courbes 30 et 31 correspondant à une utilisation avec et sans filtre.Elle confirme également l'absence de champ électrique pour la structure bloquant/Cd/Te/bloquant (avec un détecteur 10 X 10 X lmm3, une polarisation 90V, un courant d'obscurité 10-9A). I1 y a disparition du signal zooms après la mise sous tension.
In y detection, as shown in FIG. 6A with a Cobalt 57 radioactive source, everything happens as if the detector is constantly in the dark since the photon y incident to the detector creates only very few charge carriers and in a space infinitely smaller than the volume of the detector. The flight time experiment confirms the presence of a constant electric field over time, higher on the cathode side for the structure
Au / CdTe / Au- (with a detector 1 Ox 1 Ox lmm3, a polarization 54V, a dark current 10-6A) (see figure 6C, curves 30 and 31 corresponding to use with and without filter. It confirms also the absence of an electric field for the blocking / Cd / Te / blocking structure (with a 10 X 10 X lmm3 detector, 90V polarization, 10-9A dark current). There is disappearance of the zoom signal after the power up.

En détection X, (voir figure 7A) avec un générateur 120kV, 20mA, une des faces du détecteur est irradiée par le laser ultra-violet, l'autre face est irradiée par les photons X issus du générateur; Cette fois, les structures de détection sont soumises à un flux de photons bien plus important qu'en détection y, les photons X sont absorbés dans tout le volume et de nombreux porteurs de charge sont créés. Les résultats du temps de vol montrent que le champ électrique de la structure Au/CdTe/Au (avec un détecteur 10x10x1mm3, une polarisation 90V, un courant d'obscurité 10-oA) est peu modifié sauf si le débit de photons incidents est trop élevé, auquel cas le champ électrique devient plus élevé vers l'électrode opposée à celle qui est irradiée par le générateur X (voir figure 7B) .Les résultats concernant la structure bloquant/CdTe/bloquant (détecteur 10x10x1mm3, polarisation 72V, courant d'obscurité 10-9A) montrent la présence d'un champ électrique qui, sous la présence de nombreux porteurs de charge crées, s' est régénéré alors qu'il devrait être absent (voir figure 7C). La présence de ces nombreux porteurs de charge, par leur piégeage, semble pouvoir compenser l'effet des défauts responsables de l'effet de polarisation.  In X detection (see Figure 7A) with a 120kV, 20mA generator, one side of the detector is irradiated by the ultra-violet laser, the other side is irradiated by X photons from the generator; This time, the detection structures are subjected to a much higher flux of photons than in detection y, the X photons are absorbed throughout the volume and numerous charge carriers are created. The time-of-flight results show that the electric field of the Au / CdTe / Au structure (with a 10x10x1mm3 detector, 90V polarization, 10-oA dark current) is little changed unless the incident photon flow is too high. high, in which case the electric field becomes higher towards the opposite electrode to that which is irradiated by generator X (see figure 7B). The results concerning the blocking / CdTe / blocking structure (detector 10x10x1mm3, polarization 72V, current of darkness 10-9A) show the presence of an electric field which, under the presence of many charge carriers created, has regenerated when it should be absent (see Figure 7C). The presence of these numerous charge carriers, by their trapping, seems to be able to compensate for the effect of the defects responsible for the polarization effect.

REFERENCES [1] "Cadmium telluride and related materials as X and
gamma-ray detectors. A review of recent progress" de
P. Siffert (SPIE, volume 2305 pages 98 à 109, 1994) [2] "CdTe in photoconductive applications. Fast detector
for metrology and X-ray imaging" de Marc Cuzin
(Nuclear Instruments and methods in physic research,
section A, pages 341 à 351, 1992) [3] "CdTe detectors responses to pulsed X-rays ;
Comparison of different materials" de L. Verger, M.
REFERENCES [1] "Cadmium telluride and related materials as X and
gamma-ray detectors. A review of recent progress "by
P. Siffert (SPIE, volume 2305 pages 98 to 109, 1994) [2] "CdTe in photoconductive applications. Fast detector
for metrology and X-ray imaging "by Marc Cuzin
(Nuclear Instruments and methods in physic research,
section A, pages 341 to 351, 1992) [3] "CdTe detectors responses to pulsed X-rays;
Comparison of different materials "by L. Verger, M.

Cuzin, F. Glasser, J. Lajzerowicz, F. Mathy et J. Cuzin, F. Glasser, J. Lajzerowicz, F. Mathy and J.

Rustique (Materials Research Society Symp. Proc.,
volume 302, 1993, pages 169 à 181) [4] "Structural defects in high resistivity cadmium
telluride" de M. Samimi, B. Biglari, M. Hage-Ali,
J.M. Koebel et P. Siffert (Nuclear Instruments and
Methods in Physics Research A283 (1989) p. 243-248) [5] "A review of ohmic and rectifying contacts on
cadmium telluride" de J.P. Ponpon (Solid State
Electronics vol. 28, numéro 7, pages 689 à 706,
1987) [6] Polarization in cadmium telluride nuclear radiation
detectors" de P. Siffert, J. Berger, C. Scharager,
A. Cornet, R. Stuck, R.O. Bell, H.B. Serreze, F.V.
Rustic (Materials Research Society Symp. Proc.,
volume 302, 1993, pages 169 to 181) [4] "Structural defects in high resistivity cadmium
telluride "by M. Samimi, B. Biglari, M. Hage-Ali,
JM Koebel and P. Siffert (Nuclear Instruments and
Methods in Physics Research A283 (1989) p. 243-248) [5] "A review of ohmic and rectifying contacts on
telluride cadmium "by JP Ponpon (Solid State
Electronics vol. 28, number 7, pages 689 to 706,
1987) [6] Polarization in cadmium telluride nuclear radiation
detectors "by P. Siffert, J. Berger, C. Scharager,
A. Cornet, R. Stuck, RO Bell, HB Serreze, FV

Wald (IEE transactions on nuclear science, volume
NS-23, numéro 1, Février 1976, pages 159 à 170) [7] "Polarization-free semi-insulating chlorine doped
cadmium telluride" de M. Hage-Ali, C. Scharager,
J.M. Koebel et P. Siffert (Nuclear Instruments and
Methods , 176, 1980, pages 499 à 502) [8] G.-A-1 511 410.
Wald (IEE transactions on nuclear science, volume
NS-23, number 1, February 1976, pages 159 to 170) [7] "Polarization-free semi-insulating chlorine doped
telluride cadmium "by M. Hage-Ali, C. Scharager,
JM Koebel and P. Siffert (Nuclear Instruments and
Methods, 176, 1980, pages 499 to 502) [8] G.-A-1 511 410.

Claims (4)

REVENDICATIONS 1. Dispositif de détection de rayons X à base de semi-conducteurs caractérisé en ce qu'il est constitué d'un matériau semi-conducteur de haute résistivité sur lequel sont disposés au moins deux contacts électriques dont au moins un est pris dans la famille des contacts bloquants. 1. X-ray detection device based on semiconductors characterized in that it consists of a semiconductor material of high resistivity on which are arranged at least two electrical contacts of which at least one is taken from the family blocking contacts. 2. Dispositif selon la revendication 1, caractérisé en ce que ledit matériau semi-conducteur est de type II-VI. 2. Device according to claim 1, characterized in that said semiconductor material is of type II-VI. 3. Dispositif selon la revendiction 1, caractérisé en ce que le matériau est choisi parmi les matériaux suivants : CdTe : Cl, CdlxZnxTe, CdTelxsex, Cdl-xZnxTe:cl, CdTe1-xSex:C1, GaAs, HgIn. 3. Device according to claim 1, characterized in that the material is chosen from the following materials: CdTe: Cl, CdlxZnxTe, CdTelxsex, Cdl-xZnxTe: cl, CdTe1-xSex: C1, GaAs, HgIn. 4. Dispositif selon la revendication 1, caractérisé en ce qu'il comporte deux contacts métalliques positionnés sur deux côtés opposés des moyens de détection.  4. Device according to claim 1, characterized in that it comprises two metal contacts positioned on two opposite sides of the detection means.
FR9510046A 1995-08-24 1995-08-24 SEMICONDUCTOR-BASED X-RAY DETECTION DEVICE Expired - Fee Related FR2738080B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
FR9510046A FR2738080B1 (en) 1995-08-24 1995-08-24 SEMICONDUCTOR-BASED X-RAY DETECTION DEVICE
JP9509915A JPH10512398A (en) 1995-08-24 1996-08-23 X-ray detector based on semiconductor
EP96929365A EP0788662A1 (en) 1995-08-24 1996-08-23 Semiconductor x ray detector
CA 2203413 CA2203413A1 (en) 1995-08-24 1996-08-23 Dispositif de detection de rayons x a base de semi-conducteurs
PCT/FR1996/001313 WO1997008758A1 (en) 1995-08-24 1996-08-23 Semiconductor x ray detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR9510046A FR2738080B1 (en) 1995-08-24 1995-08-24 SEMICONDUCTOR-BASED X-RAY DETECTION DEVICE

Publications (2)

Publication Number Publication Date
FR2738080A1 true FR2738080A1 (en) 1997-02-28
FR2738080B1 FR2738080B1 (en) 1997-10-31

Family

ID=9482060

Family Applications (1)

Application Number Title Priority Date Filing Date
FR9510046A Expired - Fee Related FR2738080B1 (en) 1995-08-24 1995-08-24 SEMICONDUCTOR-BASED X-RAY DETECTION DEVICE

Country Status (5)

Country Link
EP (1) EP0788662A1 (en)
JP (1) JPH10512398A (en)
CA (1) CA2203413A1 (en)
FR (1) FR2738080B1 (en)
WO (1) WO1997008758A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230309689A1 (en) * 2021-05-14 2023-10-05 Richard D. Cornell Powered Carousel Shelf System for Cabinets

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005060011A1 (en) 2003-12-16 2005-06-30 National University Corporation Shizuoka University Wide range energy radiation detector and manufacturing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3999071A (en) * 1975-08-26 1976-12-21 Etat Francais Nuclear detectors sensitive to alpha, beta, and gamma rays and to thermal neutrons and to methods of treatment of crystals of such detectors
GB1511410A (en) * 1975-12-30 1978-05-17 Inst Phys Tvardoto Tyalo Cadmium telluride transducer or radiation detector
JPH05167057A (en) * 1991-12-18 1993-07-02 Hamamatsu Photonics Kk Radiation sensor
WO1996005521A1 (en) * 1994-08-11 1996-02-22 Helfgott & Karas, P.C. Apparatus, system and method for gamma ray and x-ray detection

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3999071A (en) * 1975-08-26 1976-12-21 Etat Francais Nuclear detectors sensitive to alpha, beta, and gamma rays and to thermal neutrons and to methods of treatment of crystals of such detectors
GB1511410A (en) * 1975-12-30 1978-05-17 Inst Phys Tvardoto Tyalo Cadmium telluride transducer or radiation detector
JPH05167057A (en) * 1991-12-18 1993-07-02 Hamamatsu Photonics Kk Radiation sensor
WO1996005521A1 (en) * 1994-08-11 1996-02-22 Helfgott & Karas, P.C. Apparatus, system and method for gamma ray and x-ray detection

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
CUZIN M: "CdTe in photoconductive applications. Fast detector for metrology and X-ray imaging", SEVENTH INTERNATIONAL WORKSHOP ON ROOM TEMPERATURE SEMICONDUCTOR X- AND GAMMA-RAY DETECTORS AND ASSOCIATED ELECTRONICS, RAVELLO, ITALY, 23-28 SEPT. 1991, vol. A322, no. 3, ISSN 0168-9002, NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH, SECTION A (ACCELERATORS, SPECTROMETERS, DETECTORS AND ASSOCIATED EQUIPMENT), 15 NOV. 1992, NETHERLANDS, pages 341 - 351, XP002002835 *
HAGE-ALI M ET AL: "Polarization-free semi-insulating chlorine doped cadmium telluride", NUCLEAR INSTRUMENTS AND METHODS, 15 OCT. 1980, NETHERLANDS, vol. 176, no. 3, ISSN 0029-554X, pages 499 - 502, XP002002834 *
PATENT ABSTRACTS OF JAPAN vol. 017, no. 570 (E - 1448) 15 October 1993 (1993-10-15) *
SAMIMI M ET AL: "Structural defects in high resistivity cadmium telluride", NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH, SECTION A (ACCELERATORS, SPECTROMETERS, DETECTORS AND ASSOCIATED EQUIPMENT), 1 NOV. 1989, NETHERLANDS, vol. A283, no. 2, ISSN 0168-9002, pages 243 - 248, XP002002833 *
SIFFERT P ET AL: "Polarization in cadmium telluride nuclear radiation detectors", 22ND NUCLEAR SCIENCE SYMPOSIUM AND 7TH NUCLEAR POWER SYSTEMS SYMPOSIUM, SAN FRANCISCO, CA, USA, 19-21 NOV. 1975, vol. ns-23, no. 1, ISSN 0018-9499, IEEE TRANSACTIONS ON NUCLEAR SCIENCE, FEB. 1976, USA, pages 159 - 170, XP002002832 *
SIFFERT P: "Cadmium telluride and related materials as X- and gamma-ray detectors: a review of recent progress", GAMMA-RAY DETECTOR PHYSICS AND APPLICATIONS, SAN DIEGO, CA, USA, 29 JULY 1994, vol. 2305, ISSN 0277-786X, PROCEEDINGS OF THE SPIE - THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING, 1994, USA, pages 98 - 109, XP002002836 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230309689A1 (en) * 2021-05-14 2023-10-05 Richard D. Cornell Powered Carousel Shelf System for Cabinets

Also Published As

Publication number Publication date
CA2203413A1 (en) 1997-03-06
FR2738080B1 (en) 1997-10-31
EP0788662A1 (en) 1997-08-13
JPH10512398A (en) 1998-11-24
WO1997008758A1 (en) 1997-03-06

Similar Documents

Publication Publication Date Title
FR2748158A1 (en) FAST RADIATION DETECTOR
EP0763751B1 (en) Method and apparatus for correcting signals in gamma photon spectroscopy
EP1004040B1 (en) Spectrometry measuring device in the field of photon gamma detection
EP0851512A1 (en) High resistivity semiconductor ionizing radiation detector
EP0228933B1 (en) Neutral particles detection and situating device, and its use
Mahmood et al. Investigation of ghosting recovery mechanisms in selenium X-ray detector structures for mammography
EP0593333B1 (en) Detector cell, detector, sensor for spectroscope
US6011264A (en) Apparatus, system and method for gamma ray and x-ray detection
Hochedez et al. Future diamond UV imagers for solar physics
CH628437A5 (en) MICRO-ANALYSIS PROCESS INVOLVING X-RAY.
FR3070490A1 (en) DEVICE AND METHOD FOR ANALYZING NEUTRON INTERROGATION MATERIAL
FR2738080A1 (en) SEMICONDUCTOR-BASED X-RAY DETECTION DEVICE
EP2037241B1 (en) Device for detecting electromagnetic radiation with current limit
EP0907086B1 (en) Device for measuring the rise-time of signals containing noise, arriving from gamma- or x-ray detectors
EP0240384A1 (en) Memory imaging system
EP1186058A1 (en) High dynamic radiation detection device
WO2006059035A1 (en) Semiconductor neutron detector
FR2827966A1 (en) IONIZING RADIATION DETECTOR, WITH A SOLID RADIATION CONVERSION BLADE, AND METHOD FOR MANUFACTURING THIS DETECTOR
EP0302820B1 (en) Detector of ionizing particles
EP0029379A1 (en) X or gamma rays detector, especially for radiology; X ray apparatus comprising such a detector
EP0441853B1 (en) Method and device for the bimensional localization of neutral particles, particularly for low counting ratios
FR2719127A1 (en) Solid state radiation detector and its operation
EP3729143B1 (en) Analysing method using a detector of alpha particles
FR2742878A1 (en) ULTRA-THIN IONIZING RADIATION DETECTOR AND METHODS OF MAKING SAME
Whitney et al. Considerations and designs for a space-compatible, DPA-SSPM based space radiation monitor

Legal Events

Date Code Title Description
AU Other action affecting the ownership or exploitation of an industrial property right
TQ Partial transmission of property
ST Notification of lapse