EP0428215B1 - Segmented photomultiplier tube with high collection efficiency and reduced cross-talk - Google Patents

Segmented photomultiplier tube with high collection efficiency and reduced cross-talk Download PDF

Info

Publication number
EP0428215B1
EP0428215B1 EP90202954A EP90202954A EP0428215B1 EP 0428215 B1 EP0428215 B1 EP 0428215B1 EP 90202954 A EP90202954 A EP 90202954A EP 90202954 A EP90202954 A EP 90202954A EP 0428215 B1 EP0428215 B1 EP 0428215B1
Authority
EP
European Patent Office
Prior art keywords
elementary
multipliers
photocathode
photomultiplier tube
segmented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90202954A
Other languages
German (de)
French (fr)
Other versions
EP0428215A1 (en
Inventor
Hervé Société Civile S.P.I.D. Chopy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Photonis SAS
Koninklijke Philips NV
Original Assignee
Photonis SAS
Koninklijke Philips Electronics NV
Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Photonis SAS, Koninklijke Philips Electronics NV, Philips Electronics NV filed Critical Photonis SAS
Publication of EP0428215A1 publication Critical patent/EP0428215A1/en
Application granted granted Critical
Publication of EP0428215B1 publication Critical patent/EP0428215B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J43/00Secondary-emission tubes; Electron-multiplier tubes
    • H01J43/04Electron multipliers
    • H01J43/045Position sensitive electron multipliers

Definitions

  • the present invention relates to a photomultiplier tube segmented into a plurality of elementary photomultipliers, comprising a photocathode, a plurality of elementary electron multipliers of the "leaf-hole” type, and a plurality of focusing electrodes realizing the convergence of the photoelectrons obtained.
  • a photomultiplier tube segmented into a plurality of elementary photomultipliers comprising a photocathode, a plurality of elementary electron multipliers of the "leaf-hole” type, and a plurality of focusing electrodes realizing the convergence of the photoelectrons obtained.
  • the invention finds a particularly advantageous application in the field of high energy physics, and, more particularly, in that of detection by photoelectric effect of elementary particles in order, for example, to determine the trajectory.
  • detection devices comprising a large number of distinct photomultiplier elements but placed as close as possible to each other so as to limit the losses of useful surface of these devices.
  • a solution to this general technical problem, which also has the advantage of reducing the cost of the aforementioned detection devices, is given by the segmentation of a photomultiplier tube into a plurality of elementary photomultipliers.
  • 0 264 992 describes a segmented photomultiplier tube in which the elementary multipliers result from the partitioning of a single "leaf-hole" multiplier, and whose entry space between the photocathode and the multiplier of electrons is also partitioned, in a sealed manner to the electrons coming from the photocathode in a plurality of elementary entry spaces.
  • This partitioning of the entrance space has the effect of avoiding the photoelectron crosstalk which could occur between the different paths, on the one hand, because the distance between the photocathode and the multiplier must be relatively large to be able to place the antimony generators, for example, far enough from the entrance window of the tube in order to achieve a most homogeneous layer of antimony when developing the photocathode, and, on the other hand, that the focusing electrodes are brought to a high electric potential, of the order of that of the first sheet of the electron multiplier.
  • the partitioned multiplier of the segmented photomultiplier tube known from EP-A-0 264 992 is not free from crosstalk.
  • European patent application No. 0 350 111 which describes a "leaf" multiplier of the same type as that used in the segmented tube of the prior art, it is noted that the partitioning is made between the extracting and multiplying half-dynodes of the same dynode using an electron-tight spacer.
  • the space between a multiplying half-dynode and the extracting half-dynode of the following dynode is free so that electrons backscattered elastically on the surface of said extracting half-dynode near the limit between two elementary multipliers can pass from an elementary multiplier to the neighboring elementary multiplier to be multiplied there again and, thus, give rise to crosstalk.
  • the technical problem to be solved by the object of the present invention is to produce a segmented photomultiplier tube conforming to the preamble thanks to which any crosstalk would be avoided at the level of the elementary multipliers, and whose input stage would be of simpler realization while ensuring a very good electronic collection and a minimum photoelectron crosstalk.
  • the solution to the technical problem posed consists, according to the present invention, in that the segmented conductive plates each have a dead zone separating active zones with holes corresponding to the different multipliers.
  • said focusing electrodes are produced from the same conductive sheet pierced with through holes, and not individually as in the known tube, with the greatest ease of construction of the tube that this represents.
  • Figure 1 is a sectional view of a segmented photomultiplier tube according to the invention.
  • FIG. 2 is a top view of a segmented conductive plate of the tube of FIG. 1.
  • FIG. 3 is a top view of a conductive sheet producing the focusing electrodes of the tube of FIG. 1.
  • FIG. 1 shows, in section, a photomultiplier tube 10 segmented into two elementary photomultipliers 11, comprising a photocathode 12, two elementary multipliers 13 of the "leaf-hole” type, and two focusing electrodes 14 achieving the convergence of the photoelectrons coming from photocathode 12 on said elementary multipliers 13.
  • the photomultiplier tube 10 ends with an anode 23, for example a collecting plate which can be used as an extracting electrode.
  • the elementary multipliers 13 "with hole sheets" can be analogous to those described in European patent application No. 0 131 339 or in European patent application No. 0 350 111.
  • the homologous sheets 15 of the elementary multipliers 13 are produced on the same conductive plate 16 segmented having a dead zone 17 separating the active zones 18 with holes corresponding to the two multipliers 13.
  • the two extractor half-dynodes and multiplier of the same dynode are separated at the dead zone 17 by a conductive partition 22, electron-tight which avoids crosstalk between the two elementary multipliers 13.
  • the crosstalk between elementary multipliers is prevented by the presence of the dead zone 17 practically impassable even for electrons backscattered elastically on the extractor half-dynode.
  • the collection is therefore complete and the photocathode-elementary multipliers coupling is such that the photocathode 12 is perfectly divided immaterially into two half-photocathodes associated respectively with the elementary multipliers, as indicated by the electronic trajectory 24 of FIG. 1.
  • a slight optical crosstalk may occur (reflection) which can be remedied by placing a separation electrode 25 between the focusing electrodes 14, at the same potential V2 as the focusing electrodes to reduce light reflections from one way on the other.
  • FIG. 3 shows that said focusing electrodes are produced from the same conductive sheet 19, optionally folded at its ends, and pierced with holes 20 for passage of the photoelectrons towards the elementary multipliers, as can be seen in figure 1.
  • the invention has been described in the case of a photomultiplier tube of square section, segmented into 2 elementary photomultipliers. It is understood that it extends to the case of tubes having another section, for example circular, and segmented into 3, 4 or more elementary photomultipliers, the segmentation preferably having an axis of symmetry corresponding to the longitudinal axis of the tube.

Landscapes

  • Image-Pickup Tubes, Image-Amplification Tubes, And Storage Tubes (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

La présente invention concerne un tube photomultiplicateur segmenté en une pluralité de photomultiplicateurs élémentaires, comportant une photocathode, une pluralité de multiplicateurs d'électrons élémentaires du type "à feuilles à trous", et une pluralité d'électrodes de focalisation réalisant la convergence des photoélectrons issus de la photocathode sur lesdits multiplicateurs élémentaires, dans lequel les feuilles homologues des multiplicateurs élémentaires sont réalisées sur une même plaque conductrice segmentée - EP-A-0 264 992 et FR-A-2 599 557 décrivent de tels tubes photomultiplicateurs segmentés.The present invention relates to a photomultiplier tube segmented into a plurality of elementary photomultipliers, comprising a photocathode, a plurality of elementary electron multipliers of the "leaf-hole" type, and a plurality of focusing electrodes realizing the convergence of the photoelectrons obtained. of the photocathode on said elementary multipliers, in which the homologous sheets of elementary multipliers are produced on the same segmented conductive plate - EP-A-0 264 992 and FR-A-2 599 557 describe such segmented photomultiplier tubes.

L'invention trouve une application particulièrement avantageuse dans le domaine de la physique des hautes énergies, et, plus particulièrement, dans celui de la détection par effet photoélectrique des particules élémentaires afin, par exemple, d'en déterminer la trajectoire. Dans ce but, il est nécessaire de réaliser des dispositifs de détection comportant un grand nombre d'éléments photomultiplicateurs distincts mais accolés le mieux possible les uns aux autres de façon à limiter les pertes de surface utile de ces dispositifs. Une solution à ce problème technique général, qui a aussi l'avantage de diminuer le coût des dispositifs de détection susmentionnés, est donnée par la segmentation d'un tube photomultiplicateur en une pluralité de photomultiplicateurs élémentaires. La demande de brevet européen n° 0 264 992 décrit un tube photomultiplicateur segmenté dans lequel les multiplicateurs élémentaires résultent du cloisonnement d'un multiplicateur "à feuilles à trous" unique, et dont l'espace d'entrée situé entre la photocathode et le multiplicateur d'électrons est également cloisonné, de façon étanche aux électrons issus de la photocathode en une pluralité d'espaces d'entrée élémentaires. Ce cloisonnement de l'espace d'entrée a pour effet d'éviter la diaphotie des photoélectrons qui pourrait se produire entre les différentes voies du fait, d'une part, que la distance entre la photocathode et le multiplicateur doit être relativement grande pour pouvoir placer les générateurs d'antimoine, par exemple, assez loin de la fenêtre d'entrée du tube dans le but de réaliser une couche d'antimoine la plus homogène lors de l'élaboration de la photocathode, et, d'autre part, que les électrodes de focalisation sont portées à un potentiel électrique élevé, de l'ordre de celui de la première feuille du multiplicateur d'électrons.The invention finds a particularly advantageous application in the field of high energy physics, and, more particularly, in that of detection by photoelectric effect of elementary particles in order, for example, to determine the trajectory. For this purpose, it is necessary to produce detection devices comprising a large number of distinct photomultiplier elements but placed as close as possible to each other so as to limit the losses of useful surface of these devices. A solution to this general technical problem, which also has the advantage of reducing the cost of the aforementioned detection devices, is given by the segmentation of a photomultiplier tube into a plurality of elementary photomultipliers. European patent application No. 0 264 992 describes a segmented photomultiplier tube in which the elementary multipliers result from the partitioning of a single "leaf-hole" multiplier, and whose entry space between the photocathode and the multiplier of electrons is also partitioned, in a sealed manner to the electrons coming from the photocathode in a plurality of elementary entry spaces. This partitioning of the entrance space has the effect of avoiding the photoelectron crosstalk which could occur between the different paths, on the one hand, because the distance between the photocathode and the multiplier must be relatively large to be able to place the antimony generators, for example, far enough from the entrance window of the tube in order to achieve a most homogeneous layer of antimony when developing the photocathode, and, on the other hand, that the focusing electrodes are brought to a high electric potential, of the order of that of the first sheet of the electron multiplier.

Par ailleurs, il faut noter que le multiplicateur cloisonné du tube photomultiplicateur segmenté connu de EP-A-0 264 992 n'est pas exempt de diaphotie. En se référant, par exemple, à la demande de brevet européen n°0 350 111 qui décrit un multiplicateur "à feuilles" du même type que celui utilisé dans le tube segmenté de l'état de la technique, on note que le cloisonnement est réalisé entre les demi-dynodes extractrices et multiplicatrices d'une même dynode à l'aide d'une entretoise étanche aux électrons. Par contre, l'espace entre une demi-dynode multiplicatrice et la demi-dynode extractrice de la dynode suivante est libre de sorte que des électrons rétrodiffusés élastiquement sur la surface de ladite demi-dynode extractrice près de la limite entre deux multiplicateurs élémentaires peuvent passer d'un multiplicateur élémentaire au multiplicateur élémentaire voisin pour y être à nouveau multipliés et, ainsi, donner lieu à diaphotie.Furthermore, it should be noted that the partitioned multiplier of the segmented photomultiplier tube known from EP-A-0 264 992 is not free from crosstalk. By referring, for example, to European patent application No. 0 350 111 which describes a "leaf" multiplier of the same type as that used in the segmented tube of the prior art, it is noted that the partitioning is made between the extracting and multiplying half-dynodes of the same dynode using an electron-tight spacer. On the other hand, the space between a multiplying half-dynode and the extracting half-dynode of the following dynode is free so that electrons backscattered elastically on the surface of said extracting half-dynode near the limit between two elementary multipliers can pass from an elementary multiplier to the neighboring elementary multiplier to be multiplied there again and, thus, give rise to crosstalk.

Aussi, le problème technique à résoudre par l'objet de la présente invention est de réaliser un tube photomultiplicateur segmenté conforme au préambule grâce auquel toute diaphotie serait évitée au niveau des multiplicateurs élémentaires, et dont l'étage d'entrée serait de réalisation plus simple tout en assurant une très bonne collection électronique et une diaphotie minimale des photoélectrons.Also, the technical problem to be solved by the object of the present invention is to produce a segmented photomultiplier tube conforming to the preamble thanks to which any crosstalk would be avoided at the level of the elementary multipliers, and whose input stage would be of simpler realization while ensuring a very good electronic collection and a minimum photoelectron crosstalk.

La solution au problème technique posé consiste, selon la présente invention, en ce que les plaques conductrices segmentées présentent chacune une zone morte séparant des zones actives à trous correspondant aux différents multiplicateurs.The solution to the technical problem posed consists, according to the present invention, in that the segmented conductive plates each have a dead zone separating active zones with holes corresponding to the different multipliers.

Ainsi, le fait que les zones actives des feuilles soient séparées par une zone morte ayant une certaine largeur empêche les électrons élastiques rétrodiffusés de traverser ladite zone morte pour passer d'un multiplicateur secondaire à l'autre, car cela supposerait que lesdits électrons puissent effectuer plusieurs sauts successifs avec rétrodiffusion élastique à chaque saut, ce qui correspond à une possibilité tout à fait négligeable. La diaphotie au niveau des multiplicateurs élémentaires pour le tube selon l'invention est donc pratiquement inexistante.Thus, the fact that the active zones of the leaves are separated by a dead zone having a certain width prevents the backscattered elastic electrons from crossing said dead zone to pass from one secondary multiplier to the other, since this would suppose that said electrons can carry out several successive jumps with elastic backscattering at each jump, which corresponds to a completely negligible possibility. Crosstalk at the level of the elementary multipliers for the tube according to the invention is therefore practically non-existent.

D'autre part, comme on le verra plus loin en détail, en appliquant aux électrodes de focalisation un potentiel électrique voisin de la photocathode, on réalise la situation de couplage idéal entre la photocathode et les multiplicateurs élémentaires, et donc d'efficacité de collection parfaite, puisque, dans l'espace situé entre la photocathode et les multiplicateurs élémentaires, le champ électrique accélérateur provient essentiellement de la première feuille des multiplicateurs élémentaires. On peut ainsi définir sans nécessité de cloisonnement matériel, mais aussi sans diaphotie, des photocathodes élémentaires associées aux tubes photomultiplicateurs élémentaires en tant que surface conjuguée sur la photocathode des multiplicateurs élémentaires à travers l'optique électronique d'entrée constituée par chaque électrode de focalisation et la première feuille du multiplicateur élémentaire correspondant.On the other hand, as will be seen in detail below, by applying an electrical potential close to the photocathode to the focusing electrodes, the ideal coupling situation is achieved between the photocathode and the elementary multipliers, and therefore of collection efficiency. perfect, since, in the space between the photocathode and the elementary multipliers, the accelerating electric field comes essentially from the first sheet of the elementary multipliers. It is thus possible to define, without the need for material partitioning, but also without crosstalk, elementary photocathodes associated with the elementary photomultiplier tubes as a conjugate surface on the photocathode of the elementary multipliers through the electronic input optics constituted by each focusing electrode and the first sheet of the corresponding elementary multiplier.

L'absence de cloisonnement matériel dans l'espace d'entrée du tube photomultiplicateur segmenté selon l'invention constitue déjà en soi un avantage important en comparaison des tubes de l'état de la technique.The absence of material partitioning in the entry space of the segmented photomultiplier tube according to the invention already constitutes in itself an important advantage in comparison with the tubes of the prior art.

Avantageusement, lesdites électrodes de focalisation sont réalisées à partir d'une même feuille conductrice percée de trous de passage, et non pas de manière individuelle comme dans le tube connu, avec la plus grande facilité de construction du tube que cela représente.Advantageously, said focusing electrodes are produced from the same conductive sheet pierced with through holes, and not individually as in the known tube, with the greatest ease of construction of the tube that this represents.

La description qui va suivre en regard des dessins annexés, donnés à titre d'exemples non limitatifs, fera bien comprendre en quoi consiste l'invention et comment elle peut être réalisée.The description which follows with reference to the appended drawings, given by way of nonlimiting examples, will make it clear what the invention consists of and how it can be implemented.

La figure 1 est une vue en coupe d'un tube photomultiplicateur segmenté selon l'invention.Figure 1 is a sectional view of a segmented photomultiplier tube according to the invention.

La figure 2 est une vue de dessus d'une plaque conductrice segmentée du tube de la figure 1.FIG. 2 is a top view of a segmented conductive plate of the tube of FIG. 1.

La figure 3 est une vue de dessus d'une feuille conductrice réalisant les électrodes de focalisation du tube de la figure 1.FIG. 3 is a top view of a conductive sheet producing the focusing electrodes of the tube of FIG. 1.

La figure 1 montre, en coupe, un tube photomultiplicateur 10 segmenté en deux photomultiplicateurs élémentaires 11, comportant une photocathode 12, deux multiplicateurs élémentaires 13 du type "à feuilles à trous", et deux électrodes 14 de focalisation réalisant la convergence des photoélectrons issus de la photocathode 12 sur lesdits multiplicateurs élémentaires 13.FIG. 1 shows, in section, a photomultiplier tube 10 segmented into two elementary photomultipliers 11, comprising a photocathode 12, two elementary multipliers 13 of the "leaf-hole" type, and two focusing electrodes 14 achieving the convergence of the photoelectrons coming from photocathode 12 on said elementary multipliers 13.

Le tube photomultiplicateur 10 se termine par une anode 23 par exemple une plaque collectrice que l'on peut utiliser comme électrode extractrice.The photomultiplier tube 10 ends with an anode 23, for example a collecting plate which can be used as an extracting electrode.

Les multiplicateurs élémentaires 13 "à feuilles à trous" peuvent être analogues à ceux décrits dans la demande de brevet européen n° 0 131 339 ou dans la demande de brevet européen n°0 350 111.The elementary multipliers 13 "with hole sheets" can be analogous to those described in European patent application No. 0 131 339 or in European patent application No. 0 350 111.

Comme le montrent les figures 1 et 2, les feuilles homologues 15 des multiplicateurs élémentaires 13 sont réalisées sur une même plaque conductrice 16 segmentée présentant une zone morte 17 séparant les zones actives 18 à trous correspondant aux deux multiplicateurs 13. Les deux demi-dynodes extractrice et multiplicatrice d'une même dynode sont séparées au niveau de la zone morte 17 par une cloison 22 conductrice, étanche aux électrons qui évite la diaphotie entre les deux multiplicateurs élémentaires 13. Entre une demi-dynode multiplicatrice et la demi-dynode extractrice suivante, pour lesquelles un tel cloisonnement n'existe pas, la diaphotie entre multiplicateurs élémentaires est empêchée par la présence de la zone morte 17 pratiquement infranchissable même pour des électrons rétrodiffusés élastiquement sur la demi-dynode extractrice.As shown in FIGS. 1 and 2, the homologous sheets 15 of the elementary multipliers 13 are produced on the same conductive plate 16 segmented having a dead zone 17 separating the active zones 18 with holes corresponding to the two multipliers 13. The two extractor half-dynodes and multiplier of the same dynode are separated at the dead zone 17 by a conductive partition 22, electron-tight which avoids crosstalk between the two elementary multipliers 13. Between a half-dynode multiplier and the following extractor half-dynode, for which such a partitioning does not exist, the crosstalk between elementary multipliers is prevented by the presence of the dead zone 17 practically impassable even for electrons backscattered elastically on the extractor half-dynode.

En fonctionnement, la photocathode 12 est portée au potentiel électrique V₁, que l'on prendra égal à 0V, la première feuille 21 des multiplicateurs 13 est à un potentiel V₃ de quelques centaines de Volts, par exemple 300V, tandis que les électrodes 14 de focalisation sont portées à un potentiel V₂ nul ou faiblement positif, et d'une façon générale, inférieur à 20% du potentiel V₃, par exemple de 10% de V₃. Si les électrodes 14 de focalisation sont à V₂=0V, tous les électrons émis par la photocathode sont capturés sélectivement soit par l'un, soit par l'autre des multiplicateurs élémentaires 13. La collection est donc complète et le couplage photocathode-multiplicateurs élémentaires est tel que la photocathode 12 est parfaitement divisée de façon immatérielle en deux demi-photocathodes associées respectivement aux multiplicateurs élémentaires, ainsi que l'indique la trajectoire électronique 24 de la figure 1.In operation, the photocathode 12 is brought to the electric potential V₁, which will be taken equal to 0V, the first sheet 21 of the multipliers 13 is at a potential V₃ of a few hundred volts, for example 300V, while the electrodes 14 of focusing are brought to a zero or weakly positive potential V₂, and in general, less than 20% of the potential V₃, for example 10% of V₃. If the focusing electrodes 14 are at V₂ = 0V, all the electrons emitted by the photocathode are selectively captured either by one or by the other of the elementary multipliers 13. The collection is therefore complete and the photocathode-elementary multipliers coupling is such that the photocathode 12 is perfectly divided immaterially into two half-photocathodes associated respectively with the elementary multipliers, as indicated by the electronic trajectory 24 of FIG. 1.

On observe cependant qu'avec des potentiels V₁ et V₂ égaux, la réponse temporelle du tube n'est pas très bonne car le temps de transit des photoélectrons peut varier notablement en fonction de l'endroit de la photocathode 12 où ils sont émis. C'est pour remédier à cet inconvénient qu'on envisage également de porter les électrodes 14 de focalisation à un potentiel V₂ de quelques dizaines de Volts, 25 à 50V dans l'exemple, ce qui améliore le temps de réponse des photoélectrons émis à la périphérie de la photocathode sans dégrader sensiblement l'efficacité de collection.However, it is observed that with equal potentials V₂ and V,, the temporal response of the tube is not very good because the transit time of the photoelectrons can vary significantly depending on the location of the photocathode 12 where they are emitted. It is to remedy this drawback that it is also envisaged to bring the focusing electrodes 14 to a potential V₂ of a few tens of Volts, 25 to 50V in the example, which improves the response time of the photoelectrons emitted to the periphery of the photocathode without significantly degrading the collection efficiency.

Il peut se produire une légère diaphotie d'origine optique (réflexion) à laquelle on peut remédier en plaçant entre les électrodes 14 de focalisation une électrode 25 de séparation, au même potentiel V₂ que les électrodes de focalisation pour réduire des réflexions de lumière d'une voie sur l'autre.A slight optical crosstalk may occur (reflection) which can be remedied by placing a separation electrode 25 between the focusing electrodes 14, at the same potential V₂ as the focusing electrodes to reduce light reflections from one way on the other.

La figure 3 montre que lesdites électrodes de focalisation sont réalisées à partir d'une même feuille conductrice 19, éventuellement repliée à ses extrémités, et percée de trous 20 de passage des photoélectrons vers les multiplicateurs élémentaires, ainsi qu'on peut le voir à la figure 1.FIG. 3 shows that said focusing electrodes are produced from the same conductive sheet 19, optionally folded at its ends, and pierced with holes 20 for passage of the photoelectrons towards the elementary multipliers, as can be seen in figure 1.

L'invention a été décrite dans le cas d'un tube photomultiplicateur de section carrée, segmentée en 2 photomultiplicateurs élémentaires. Il est bien entendu qu'elle s'étend aux cas de tubes présentant une autre section, par exemple circulaire, et segmenté en 3, 4 ou plus photomultiplicateurs élémentaires, la segmentation ayant de préférence un axe de symétrie correspondant à l'axe longitudinal du tube.The invention has been described in the case of a photomultiplier tube of square section, segmented into 2 elementary photomultipliers. It is understood that it extends to the case of tubes having another section, for example circular, and segmented into 3, 4 or more elementary photomultipliers, the segmentation preferably having an axis of symmetry corresponding to the longitudinal axis of the tube.

Claims (4)

  1. A photomultiplier tube (10) segmented into a plurality of elementary photomultipliers (11), comprising a photocathode (12), a plurality of elementary electron multipliers (13) of the "apertured sheet" type, and a plurality of focusing electrodes (14) providing the convergence of the photoelectrons emitted by the photocathode (12) towards the elementary multipliers (13), the homologous sheets (15) of the elementary multipliers being formed on the same segmented conductive wafer (16), characterized in that the segmented conductive wafers each have a neutral zone (17) separating active apertured zones (18) associated with the different multipliers (13).
  2. A photomultiplier tube as claimed in Claim 1, characterized in that the said focusing electrodes (14) are formed from the same conductive sheet (19) into which feedthrough apertures (20) are punched through which the photoelectrons are transmitted towards the elementary multipliers (13).
  3. A photomultiplier tube as claimed in Claim 2, characterized in that it includes at least one separating electrode (25) which is situated between the focusing electrodes (14).
  4. The use of a photomultiplier tube as claimed in any one of the Claims 1, 2 or 3, characterized in that, the photocathode (12) being brought to the potential V₁, the potential V₂ of the focusing electrodes (14) ranges between V₁ and V₁ increased by 20% of the difference between the potential V₃ of the first sheet (21) of the elementary multipliers (13) and the potential V₁ of the photocathode (12).
EP90202954A 1989-11-14 1990-11-08 Segmented photomultiplier tube with high collection efficiency and reduced cross-talk Expired - Lifetime EP0428215B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8914902A FR2654552A1 (en) 1989-11-14 1989-11-14 SEGMENTED PHOTOMULTIPLIER TUBE WITH HIGH COLLECTION EFFICIENCY AND LIMITED DIAPHYT.
FR8914902 1989-11-14

Publications (2)

Publication Number Publication Date
EP0428215A1 EP0428215A1 (en) 1991-05-22
EP0428215B1 true EP0428215B1 (en) 1995-02-15

Family

ID=9387371

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90202954A Expired - Lifetime EP0428215B1 (en) 1989-11-14 1990-11-08 Segmented photomultiplier tube with high collection efficiency and reduced cross-talk

Country Status (5)

Country Link
US (1) US5126629A (en)
EP (1) EP0428215B1 (en)
JP (1) JPH03173056A (en)
DE (1) DE69016932T2 (en)
FR (1) FR2654552A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0582076A (en) * 1991-05-22 1993-04-02 Hamamatsu Photonics Kk Photo-tube and radiation sensing device using same
FR2693592B1 (en) * 1992-07-08 1994-09-23 Philips Photonique Photomultiplier tube segmented into N independent channels arranged around a central axis.
JPH06150876A (en) * 1992-11-09 1994-05-31 Hamamatsu Photonics Kk Photomultiplier and electron multiplier
JP3401044B2 (en) * 1993-04-28 2003-04-28 浜松ホトニクス株式会社 Photomultiplier tube
EP0622828B1 (en) * 1993-04-28 1997-07-09 Hamamatsu Photonics K.K. Photomultiplier
FR2712427B1 (en) * 1993-11-09 1996-02-02 Philips Photonique Segmented photomultiplier tube, with paths symmetrical about an axial plane.
FR2733629B1 (en) * 1995-04-26 1997-07-18 Philips Photonique ELECTRON MULTIPLIER FOR MULTI-WAY PHOTOMULTIPLIER TUBE
EP1369900A4 (en) * 2001-02-23 2008-02-20 Hamamatsu Photonics Kk Photomultiplier
WO2004112083A1 (en) * 2003-06-11 2004-12-23 Hamamatsu Photonics K.K. Multi anode-type photoelectron intensifier tube and radiation detector
US7285783B2 (en) * 2003-06-11 2007-10-23 Hamamatsu Photonics K.K. Multi-anode type photomultiplier tube and radiation detector
US7489077B2 (en) * 2004-03-24 2009-02-10 Hamamatsu Photonics K.K. Multi-anode type photomultiplier tube
US8206974B2 (en) 2005-05-19 2012-06-26 Netbio, Inc. Ruggedized apparatus for analysis of nucleic acid and proteins
JPWO2007129492A1 (en) * 2006-04-14 2009-09-17 浜松ホトニクス株式会社 Photomultiplier tube
KR20150143860A (en) 2007-04-04 2015-12-23 네트바이오, 인코포레이티드 Methods for rapid multiplexed amplification of target nucleic acids
EP2443254A2 (en) 2009-06-15 2012-04-25 NetBio, Inc. Improved methods for forensic dna quantitation

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2728014A (en) * 1951-04-26 1955-12-20 Rca Corp Electron lens for multiplier phototubes with very low spherical aberration
CH358872A (en) * 1958-07-11 1961-12-15 Zeiss Jena Veb Carl Secondary electron multiplier
JPS593825B2 (en) * 1978-09-13 1984-01-26 浜松ホトニクス株式会社 photomultiplier tube
FR2549288B1 (en) * 1983-07-11 1985-10-25 Hyperelec ELECTRON MULTIPLIER ELEMENT, ELECTRON MULTIPLIER DEVICE COMPRISING THE MULTIPLIER ELEMENT AND APPLICATION TO A PHOTOMULTIPLIER TUBE
FR2599557A1 (en) * 1986-06-03 1987-12-04 Radiotechnique Compelec MULTIPLICATION DIRECTED MULTIPLICATION ELECTRONIC PLATE, MULTIPLIER ELEMENT COMPRISING SAID PLATE, MULTIPLIER DEVICE COMPRISING SAID ELEMENT AND APPLICATION OF SAID DEVICE TO A PHOTOMULTIPLIER TUBE
FR2604824A1 (en) * 1986-10-03 1988-04-08 Radiotechnique Compelec SEGMENTED PHOTOMULTIPLIER TUBE
FR2634062A1 (en) * 1988-07-05 1990-01-12 Radiotechnique Compelec "SHEET" TYPE DYNODE, ELECTRON MULTIPLIER AND PHOTOMULTIPLIER TUBE COMPRISING SUCH DYNODES

Also Published As

Publication number Publication date
JPH03173056A (en) 1991-07-26
EP0428215A1 (en) 1991-05-22
US5126629A (en) 1992-06-30
FR2654552A1 (en) 1991-05-17
DE69016932T2 (en) 1995-09-07
DE69016932D1 (en) 1995-03-23

Similar Documents

Publication Publication Date Title
EP0428215B1 (en) Segmented photomultiplier tube with high collection efficiency and reduced cross-talk
EP0131339B1 (en) Electron multiplier element, electron multiplying device made up of this element and its application to a photomultiplier tube
EP0742954B1 (en) Ionising radiation detector having proportional microcounters
EP0855086B1 (en) High-resolution position detector for high-flux ionising particle streams
FR2693592A1 (en) Photomultiplier tube segmented in N independent channels arranged around a central axis.
EP0550335B1 (en) System to control the form of a charged particle beam
EP0230694B1 (en) Multiplying element with high collection efficiency, multiplying device equipped with such an element and application to a photomultiplier
EP0264992A1 (en) Segmented photomultiplier tube
EP0350111B1 (en) Sheet-type dynode, electron multiplier and photomultiplier having such dynodes
FR2712427A1 (en) Segmented photomultiplier tube having symmetrical channels with respect to an axial plane.
EP0389051B1 (en) Photomultiplier tube with a large collection homogeneity
WO2007003723A2 (en) Multi-channel electron multiplier tube
FR2641900A1 (en) PHOTOMULTIPLIER TUBE COMPRISING A LARGE FIRST DYNODE AND A STACKABLE DYNODY MULTIPLIER
WO2016162351A1 (en) Multiband photocathode and associated detector
EP0734043B1 (en) Double-gated flat display screen
FR2875331A1 (en) Multiple section photoelectric electron-multiplier tube, has transparent window with cavities provided as hollow parts with surfaces receiving photo-emissive layer to form photocathode, where each surface forms photocathode zone
EP0806788A1 (en) Anode of a flat display screen with protection ring
EP0423886A1 (en) Multi-path photomultiplier with high inter-signal resolution
EP0345888B1 (en) Coupling device between the first dynode of a photomultiplier and a sheet multiplier
FR2599557A1 (en) MULTIPLICATION DIRECTED MULTIPLICATION ELECTRONIC PLATE, MULTIPLIER ELEMENT COMPRISING SAID PLATE, MULTIPLIER DEVICE COMPRISING SAID ELEMENT AND APPLICATION OF SAID DEVICE TO A PHOTOMULTIPLIER TUBE
FR2466820A1 (en) ELECTRONIC DISPLAY DEVICE WITH FLAT PANEL
FR2504728A1 (en) Electron multiplier for photomultiplier tube - has electron deflecting grid assembly having elements repeated at same or sub-multiple of dynode structure spacing
FR2855906A1 (en) Electron multiplier for photomultiplier tube, has anode with set of electrically insulated conductors, and arranged between two dynodes where two conductors are located at level close to level of one dynode
FR2481004A1 (en) Photo multiplier with grid anode - is formed by ladder network of coplanar spaced leaf collectors in parallel planes
EP0877407A1 (en) Anode of a flat display screen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19911118

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: N.V. PHILIPS' GLOEILAMPENFABRIEKEN

Owner name: PHILIPS PHOTONIQUE

17Q First examination report despatched

Effective date: 19940419

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 69016932

Country of ref document: DE

Date of ref document: 19950323

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950511

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19971103

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19971118

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19980123

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981108

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19981108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990730

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990901