WO2004112083A1 - Multi anode-type photoelectron intensifier tube and radiation detector - Google Patents

Multi anode-type photoelectron intensifier tube and radiation detector Download PDF

Info

Publication number
WO2004112083A1
WO2004112083A1 PCT/JP2003/007420 JP0307420W WO2004112083A1 WO 2004112083 A1 WO2004112083 A1 WO 2004112083A1 JP 0307420 W JP0307420 W JP 0307420W WO 2004112083 A1 WO2004112083 A1 WO 2004112083A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
cylinder head
curvature
main body
radius
Prior art date
Application number
PCT/JP2003/007420
Other languages
French (fr)
Japanese (ja)
Inventor
Teruhiko Yamaguchi
Suenori Kimura
Minoru Suzuki
Yoshitaka Nakamura
Original Assignee
Hamamatsu Photonics K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics K.K. filed Critical Hamamatsu Photonics K.K.
Priority to PCT/JP2003/007420 priority Critical patent/WO2004112083A1/en
Priority to JP2005500742A priority patent/JPWO2004112083A1/en
Priority to AU2003242281A priority patent/AU2003242281A1/en
Priority to EP03733367A priority patent/EP1638130B1/en
Publication of WO2004112083A1 publication Critical patent/WO2004112083A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J43/00Secondary-emission tubes; Electron-multiplier tubes
    • H01J43/04Electron multipliers
    • H01J43/06Electrode arrangements
    • H01J43/18Electrode arrangements using essentially more than one dynode
    • H01J43/20Dynodes consisting of sheet material, e.g. plane, bent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J43/00Secondary-emission tubes; Electron-multiplier tubes
    • H01J43/04Electron multipliers
    • H01J43/045Position sensitive electron multipliers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J43/00Secondary-emission tubes; Electron-multiplier tubes
    • H01J43/04Electron multipliers
    • H01J43/28Vessels, e.g. wall of the tube; Windows; Screens; Suppressing undesired discharges or currents

Definitions

  • the present invention relates to a multi-anode type photomultiplier and a radiation detector using the multi-anode type photomultiplier.
  • Patent Document 1 Japanese Patent Application Laid-Open No. Hei 5-933781 (hereinafter referred to as Patent Document 1) describes a radiation detector 200 shown in FIG.
  • the radiation detector 200 includes a scintillator matrix 201 and a multi-anode type photomultiplier tube 203.
  • a plurality of scintillators 202 are arranged in a two-dimensional matrix, and generate and output scintillation light according to incident radiation.
  • the multi-anode type photomultiplier tube 203 detects the scintillation light output from the scintillator matrix. By performing a centroid calculation or the like on output signals from a plurality of anode electrodes in the multi-anode type photomultiplier tube 203, a scintillator that has output scintillation light can be determined.
  • Patent Literature 2 Japanese Patent Application Laid-Open No. H11-250853 discloses a multi-anode type photomultiplier tube used for a radiation detector, which is provided with a hollow rectangular prism-shaped side tube made of glass. We have proposed a multi-anode type photomultiplier tube.
  • Such a multi-anode type photomultiplier tube includes a glass incident surface plate and a tube axis connected to a surface on one side of the incident surface plate and substantially perpendicular to the incident surface plate. And a hollow quadrangular prism-shaped side tube made of glass.
  • a photoelectric surface for emitting photoelectrons corresponding to the light incident on the incident surface plate is formed in an area located inside the side tube on a surface of the incident surface plate to which the side tube is connected.
  • a plurality of electron multipliers and a plurality of anode electrodes are provided inside the side tube corresponding to a plurality of regions of the photocathode.
  • Patent Document 3 Japanese Patent Application Laid-Open No. 3-173560
  • the side tube of this photomultiplier tube has a hollow rectangular column-shaped cylinder head with a large cross-sectional diameter and a hollow rectangular column-shaped cylindrical main body with a small cross-sectional diameter.
  • the tube head is connected to one side of the entrance face plate.
  • a single anode electrode is arranged in the cylinder main body. Disclosure of the invention
  • the glass square side tube described in Patent Document 2 is combined with a square column head having a large cross section and a square column body having a small cross section. It is possible to change to a structure having Since the cross-sectional diameter of the tube head is large, it is possible to increase the size of the photocathode formed in a region of the entrance face plate located inside the side tube.
  • the hollow quadrangular prismatic side tube is made of glass, the four corners of the side tube will be curved. For this reason, the area of the region located inside the corner of the side tube in the incident face plate becomes small.
  • the scintillation light from all the scintillators of the scintillator matrix be incident on the photocathode almost uniformly to be converted into photons.
  • the corner of the side tube is greatly curved
  • the incidence efficiency from the scintillator at the position corresponding to the corner of the side tube is lower than the incidence efficiency from other scintillators. For this reason, the scintillation light from the scintillator cannot be made to enter the photocathode almost uniformly.
  • the present invention has been made in order to solve the above-mentioned problems, and a multi-anode type photomultiplier tube which can effectively convert light into a photocathode and convert it into photoelectrons and has high intensity, and
  • An object of the present invention is to provide a radiation detector that can detect scintillation light from all scintillators substantially uniformly by providing an anode-type photomultiplier tube.
  • a multi-anode type photomultiplier comprises a glass incident surface plate, and a tube axis connected to one surface of the incident surface plate and substantially perpendicular to the incident surface plate.
  • a hollow side tube made of glass extending along the light-emitting surface, and a photoelectric surface for emitting photoelectrons corresponding to light incident on the incident surface plate is provided on the one side surface of the incident surface plate.
  • a multi-anode type formed in a region located inside, and provided with a plurality of electron multipliers and a plurality of anode electrodes corresponding to a plurality of regions of the photoelectric surface inside the side tube.
  • the side tube integrally includes a tube head, a funnel-shaped connecting portion, and a tube main body along the tube axis, and the tube main body includes four first tubes. It has a hollow substantially quadrangular prism shape having a curved corner, extends along the pipe axis by a first length, and is substantially perpendicular to the pipe axis of the cylinder main body.
  • the straight cross section has a first size
  • the four first curved corners are each curved at a first radius of curvature
  • the cylinder head has four second curved corners
  • the tubular head has a substantially quadrangular prism shape, extends along the pipe axis by a second length, and a cross section of the cylinder head that is substantially perpendicular to the pipe axis has a second size.
  • the second curved corners are each curved at a second radius of curvature;
  • the length is shorter than the first length, the second size is larger than the first size, the second radius of curvature is smaller than the first radius of curvature, and the funnel-shaped connection is
  • the cylinder head and the cylinder body are coaxially connected, the cylinder head is connected to the one side surface of the incident face plate, and the photoelectric surface is connected to the one side of the incident face plate.
  • the plurality of electron multipliers and the plurality of anode electrodes are formed in a region located on the inner side of the cylinder head, and the plurality of electron multipliers and the plurality of anode electrodes are provided inside the cylinder main body.
  • the cross section of the cylinder head is larger than the cross section of the cylinder main body. Therefore, it is possible to increase the area of the incident face plate connected to the cylinder head located inside the cylinder head. Therefore, the size of the photocathode can be increased, and much light can be effectively incident on the photocathode and converted into photoelectrons.
  • the radius of curvature of the curved corner of the cylinder head is smaller than the radius of curvature of the curved corner of the cylinder body. Therefore, it is possible to increase the area of a region of the incident face plate near the curved corner of the cylinder head and located inside the curved corner. For this reason, the area of the photocathode near the curved corner can be increased, and most of the light incident near the curved corner of the cylinder head can be effectively incident on the photocathode and converted into photoelectrons.
  • the strength of the entire vacuum vessel can be increased.
  • the cylinder head has an outer peripheral surface and an inner peripheral surface, and the outer peripheral surface connects two adjacent second curved corners in a substantially straight line, and the inner peripheral surface has two inner curved surfaces. Two adjacent second curved corners are connected in a curved line, and the inner peripheral surface of the two second curved corners is substantially at a center position between each two adjacent second curved corners. It is preferable to gradually approach the outer peripheral surface as one goes.
  • the area of the region near the curved corner of the cylinder head and inside the curved corner of the incident face plate can be further increased. For this reason, the area of the photocathode near the curved corner can be further increased, and more light incident near the curved corner of the cylinder head can be incident on the photocathode and converted into photoelectrons.
  • the multi-anode type photomultiplier of the present invention further comprises: a focusing electrode plate for focusing the photoelectrons emitted from the photoelectric surface; and an electron focusing device defined between the photoelectric surface and the focusing electrode plate.
  • a partition plate for dividing the space into a plurality of segment spaces corresponding to a plurality of regions of the photocathode, wherein each electron multiplier receives photoelectrons converged by the focusing electrode plate in the corresponding segment space.
  • the partitioning plate extends from the cylinder head to the cylinder main body through the funnel-shaped connecting portion in the side tube, the focusing electrode plate, the plurality of electron multipliers, and the plurality of anodes.
  • an electrode is disposed in the cylinder main body, and a magnetic shield is provided on an outer periphery of the cylinder main body.
  • a plurality of scintillators are arranged in a two-dimensional matrix, each scintillator has an output surface, and each scintillator enters the scintillator.
  • a scintillation light is generated according to the radiation, and the scintillation light is output from the output surface.
  • a radiation detector comprising: a scintillator matrix; and a multi-anode photomultiplier tube for detecting scintillation light output from each scintillator of the scintillator matrix.
  • a light incident surface plate made of glass, and a hollow glass side tube connected to a surface on one side of the light incident surface plate and extending along a tube axis substantially perpendicular to the light incident surface plate;
  • the surface opposite to the one side faces the output surface of all the scintillators of the scintillator matrix, and the photoelectric surface for emitting photoelectrons according to the scintillation light incident on the incident surface plate is provided on the incident surface plate.
  • a plurality of electron multipliers and a plurality of anode electrodes are formed in a region of the one side surface located inside the side tube, and correspond to a plurality of regions of the photocathode.
  • the side pipe is provided integrally with a pipe head, a funnel-shaped connecting part, and a pipe main body along the pipe axis, and the pipe main body is provided with four first pipes.
  • a substantially rectangular pillar shape having a curved corner portion, extending along the tube axis by a first length, and a cross section of the tube main body substantially perpendicular to the tube axis having a first size.
  • the four first curved corners are each curved at a first radius of curvature, and the cylinder head has a hollow substantially quadrangular prism shape having four second curved corners.
  • a section extending substantially along the pipe axis by a second length, a cross section of the cylinder head substantially perpendicular to the pipe axis has a second size, and each of the four second curved corners is Curving at a second radius of curvature, wherein the second length is less than the first length, the second magnitude is greater than the first magnitude, and the second radius is the first radius. Smaller than the radius of curvature of The cylinder head and the cylinder main body are coaxially connected, the cylinder head is connected to the one side surface of the entrance face plate, and the photoelectric surface is connected to the one side surface of the entrance face plate. And wherein the plurality of electron multipliers and the plurality of anode electrodes are formed in a region located inside the tube head, and the plurality of electron multipliers and the plurality of anode electrodes are provided inside the tube main body.
  • the tube of the multi-anode type photomultiplier tube The cross-sectional size of the head is larger than the cross-sectional size of the cylinder body, and the curved corner of the cylinder head is curved with a smaller radius of curvature than the curved corner of the cylinder body. Therefore, most of the output surface of the scintillator located at the outer peripheral portion or the corner of the scintillator matrix can be opposed to the region inside the cylinder head of the incident surface plate. Therefore, the photocathode can receive the scintillation light from all the scintillators at a substantially uniform ratio, and can detect radiation with a substantially uniform sensitivity.
  • FIG. 1 is a perspective view showing a conventional radiation detector.
  • FIG. 2 is a plan view of the multi-anode type photomultiplier according to the first embodiment of the present invention.
  • FIG. 3 is a vertical sectional view of the multi-anode type photomultiplier tube in FIG. 2 taken along the line III-III.
  • FIG. 4 is a perspective view showing a glass container provided in the multi-anode type photomultiplier according to the first embodiment of the present invention.
  • FIG. 5 is a longitudinal sectional view of the glass container of FIG.
  • FIG. 6 is a cross-sectional view taken along the line VI-VI of the glass container in FIG. 5.
  • FIG. 7 is a cross-sectional view taken along the line VI-VI of the glass container in FIG.
  • FIG. 8 is a top view of the glass container in FIG.
  • FIG. 9 is a schematic plan view schematically showing a state where a plurality of radiation detectors according to the first embodiment are arranged.
  • FIG. 10 is a vertical sectional view taken along line X--X in FIG.
  • FIG. 11 is an enlarged view of a main part E in FIG.
  • FIG. 12 is a cross-sectional view of a tube head of a glass container provided in a multi-anode type photomultiplier according to a second embodiment of the present invention.
  • FIG. 13 is a plan view of a multi-anod type photomultiplier according to a comparative example.
  • Fig. 14 shows the XIV-X of the multi-anode type photomultiplier shown in Fig. 13.
  • FIG. 5 is a vertical sectional view taken along the line IV.
  • FIG. 15 is a schematic plan view schematically showing a state in which a plurality of radiation detectors of a comparative example are arranged.
  • FIG. 16 is a vertical sectional view taken along the line XVI-XVI of FIG.
  • FIG. 17 is an enlarged view of the main part H of FIG.
  • FIG. 18 shows that the diameter of the cylinder head in the first and second embodiments is larger than the diameter of the cylinder part of the comparative example, and the radius of curvature of the curved corner of the cylinder head is the cylinder of the comparative example. Since the area of the effective photoelectric region obtained by each of the multi-anode type photomultiplier tubes of the first and second embodiments is smaller than the radius of curvature of the curved portion, the area of the effective anode region is the multi-anode type photomultiplier tube of the comparative example.
  • FIG. 4 is an explanatory view showing that the area is larger than the area of the effective photoelectric region obtained by the above method.
  • FIG. 19 shows that the diameter of the cylinder head of the first and second embodiments is larger than the diameter of the cylinder of the comparative example, and the radius of curvature of the curved corner of the cylinder head is the cylinder of the comparative example. Since the radius of curvature is smaller than the radius of curvature of the curved corner, the scintillator effective area ratio of the four scintillators located near the corner of the scintillator matrix in the radiation detectors of the first and second embodiments is smaller than that of the comparative example.
  • FIG. 4 is an explanatory diagram showing that the scintillator effective area ratio of four scintillators located near the corner of the scintillator matrix in the radiation detector is larger than that.
  • FIG. 20 shows that the diameter of the cylinder head in the first and second embodiments is equal to the diameter of the cylinder part of the comparative example, and the radius of curvature of the curved corner of the cylinder head is the comparative example. Even when the radius of curvature of the cylindrical curved corner portion is smaller than that of the comparative example, the area of the effective photoelectric region obtained by each of the multi-anod type photomultiplier tubes of the first and second embodiments is different from that of the comparative example.
  • FIG. 9 is an explanatory diagram showing that the area is larger than the area of an effective photoelectric region obtained by a C type photomultiplier tube.
  • FIG. 21 shows that the diameter of the cylinder head in the first and second embodiments is equal to the diameter of the cylinder of the comparative example, and the radius of curvature of the curved corner of the cylinder head is the cylinder of the comparative example. Even when the radius of curvature is smaller than the radius of curvature of the curved corner, the scintillator effective area ratio of the four scintillators located near the corner of the scintillator matrix in the radiation detectors of the first and second embodiments is set to be smaller than that of the comparative example.
  • FIG. 4 is an explanatory diagram showing that the scintillator effective area ratio of four scintillators located near the corner of the scintillator matrix in the radiation detector is larger than that.
  • FIG. 2 is a plan view of the multi-anod type photomultiplier tube 1 of the present embodiment.
  • FIG. 3 is a vertical cross-sectional view of the multi-anode type photomultiplier tube 1 taken along the line III_III in FIG.
  • Multi-anode type photomultiplier tube 1 is a 2 x 2 multi-anode type It is.
  • the multi-anode type photomultiplier tube 1 includes a glass container 5 made of transparent glass.
  • the glass container 5 includes a hollow side tube 11 made of transparent glass and an entrance face plate 9 made of transparent glass.
  • the side tube 11 extends along a tube axis substantially perpendicular to the entrance face plate 9.
  • the side tube 11 integrally includes a tube head 17, a funnel-shaped connecting portion 15, and a tube main body 13 along the tube axis.
  • the upper end of the cylinder head 17 of the side tube 11 is joined to the lower surface 9 d of the entrance face plate 9.
  • the area inside the cylinder head 17 of the lower surface 9 d of the entrance face plate 9 is hereinafter referred to as “effective photoelectric area K”.
  • a transparent glass stem 7 is joined to the lower end of the cylinder body 13 to seal the inside of the glass container 5.
  • a photocathode 20 Inside the glass container 5, a photocathode 20, a focusing electrode plate 22, a partition plate 26, an electron multiplying unit 28, and an anode unit 32 are provided. Also, input / output pins 38 are provided through the stem 7.
  • the photoelectric surface 20 is formed in the effective photoelectric region of the incident surface plate 9.
  • the focusing electrode plate 22 is a disk-shaped electrode plate. As shown in FIG. 2, four apertures 24 are formed in the focusing electrode plate 22.
  • the electron multiplier 28 includes four dynode arrays 30.
  • FIG. 3 shows two of the four dynode arrays 30.
  • Each dynode row 30 is composed of 10 dynodes Dy1 to Dy10.
  • the anode section 32 includes four anode electrodes 34.
  • FIG. 3 shows two of the four anode electrodes 34.
  • the anode part 32 is further provided with four shield electrodes 36.
  • FIG. 3 shows two of the four shield electrodes 36.
  • the magnetic shield 40 is provided so as to cover the outer periphery of the cylinder main body 13.
  • the magnetic shield 40 is made of a high magnetic permeability material 42 and a resin coating 44.
  • the glass container 5 of the multi-anod type photomultiplier tube 1 since the glass container 5 of the multi-anod type photomultiplier tube 1 has the shape described below, more light can be effectively incident on the photocathode 20 and a high vacuum Has achieved strength.
  • FIG. 4 is a perspective view of the glass container 5.
  • the tube main body 13 is a hollow substantially quadrangular prism extending along the tube axis, and has four side surfaces 13a and four curved corners 13b.
  • the cross section of the cylinder body 13 substantially perpendicular to the tube axis is substantially square.
  • the cylinder head 17 is also a hollow substantially quadrangular prism extending along the tube axis, and has four side faces 17a and four curved corners 17b.
  • the cross section of the cylinder head 17 that is substantially perpendicular to the tube axis is also substantially square.
  • connection part 15 connects the cylinder main body part 13 to the cylinder head 17 coaxially.
  • the incident surface plate 9 is a substantially square glass plate.
  • the entrance surface plate 9 has an upper surface 9u, a lower surface 9d, four side surfaces 9a, and four curved corners 9b. Both the upper surface 9u and the lower surface 9d are substantially square.
  • the four side faces 9a of the entrance face plate 9 are connected to the four side faces 17a of the cylinder head 17, and the four curved corners 9b of the entrance face plate 9 are the four curved corners of the cylinder head 17 It is connected to 17b.
  • FIG. 5 is a longitudinal sectional view of the glass container 5.
  • the cylinder head 17 has an outer peripheral surface 17o and an inner peripheral surface 17i.
  • Juanne The connector 15 has an outer peripheral surface 15o and an inner peripheral surface 15i.
  • the tube body 13 has an outer peripheral surface 13o and an inner peripheral surface 13i.
  • the outer peripheral surface 17 ⁇ of the cylinder head 17 and the outer peripheral surface 13 ⁇ of the cylinder main body 13 are connected by the outer peripheral surface 15 ⁇ of the funnel-shaped connecting portion 15.
  • the inner peripheral surface 17 i of the cylinder head 17 and the outer peripheral surface 13 i of the cylinder main body 13 are connected by the inner peripheral surface 15 i of the funnel-shaped connecting portion 15.
  • the length L 1 of the tube body 13 in the tube axis direction is longer than the length L 2 of the tube head 17 in the tube axis direction.
  • the outer diameter W 2 of the cylinder head 17 is larger than the outer diameter W 1 of the cylinder body 13.
  • the inner diameter W2 'of the cylinder head 17 is also larger than the inner diameter W1' of the cylinder body 13.
  • the outer diameter of the entrance face plate 9 is equal to the outer diameter W 2 of the cylinder head 17.
  • FIG. 6 is a cross-sectional view of the glass container 5 taken along the line VI-VI in FIG. 5, that is, a cross-sectional view of the cylinder main body 13.
  • the outer peripheral surface 13 o of the cylinder body 13 has a length W1 between the two adjacent curved corners 13 b of the four curved corners 13 b (the outer diameter of the cylinder outer 13). It is connected in a substantially straight line at.
  • the outer peripheral surface 13 ⁇ is curved at a curved corner portion 13b with a radius of curvature (outside radius of curvature) R1.
  • the inner peripheral surface 13 i is curved at the curved corner portion 13 b with a radius of curvature (inner radius of curvature) R 1 ′.
  • the inner radius of curvature R l and the outer radius of curvature R 1 are substantially equal.
  • FIG. 7 is a cross-sectional view of the glass container 5 taken along line VII-VII of FIG. 5, that is, a cross-sectional view of the cylinder head 17.
  • the outer peripheral surface 17 o of the cylinder head 17 connects two adjacent curved corners 17 b in a substantially straight line with a length W 2 (outer diameter of the cylinder head 17).
  • the outer peripheral surface 17o is curved at a curved corner 17b with a radius of curvature (outside radius of curvature) R2.
  • the outer radius of curvature R 2 is smaller than the outer radius of curvature R 1 of the cylinder body 13.
  • the thickness ⁇ 2 of the cylinder head 17 is substantially equal to the thickness ⁇ 1 of the cylinder body 13.
  • the inner peripheral surface 17i is curved by a radius of curvature (inner radius of curvature) R2 'at a curved corner 17b.
  • the inner radius of curvature R 2 ′ is substantially equal to the outer radius of curvature R 2. Therefore, the inner radius of curvature R 2, is also smaller than the inner radius of curvature R 1, of the cylinder body 13.
  • FIG. 8 is a top view of the glass container 5 in FIG.
  • the incident face plate 9 has the same shape and size as the outer shape of the cylinder head 17. That is, the radius of curvature of the curved corner 9 b of the entrance face plate 9 is equal to the outer radius of curvature R 2 of the curved corner 17 b of the cylinder head 17.
  • Each side surface 9a of the entrance face plate 9 is formed by straightening the two curved corners 9b located on both sides with a length W2 (outer diameter of the entrance face plate) equal to the outer diameter W2 of the cylinder head 17.
  • W2 outer diameter of the entrance face plate
  • the area inside the inner peripheral surface 17 i of the cylinder head 17 on the lower surface 9 d of the entrance face plate 9 is the effective photoelectric region K.
  • the glass container 5 having the above shape can be manufactured by the following method. First, an internal mold for preparing the side tube 11 is prepared. The shape of the outer peripheral surface of the inner mold matches the shape of the inner peripheral surface of the side tube 11. A transparent glass is drawn to a desired thickness before the inner mold. As a result, side tube 1 1 Made. Note that the side tube 11 can be made of either soft glass or hard glass. Next, the lower surface 9d of the entrance face plate 9 is fusion-fixed to the upper end of the cylinder head 17 of the side tube 11. As a result, the glass container 5 is manufactured.
  • the photoelectric surface 20 is formed in the effective photoelectric region K of the incident surface plate 9.
  • the focusing electrode plate 22 opposes the photocathode 20 and focuses the photoelectrons emitted from the photocathode 20 so as to be incident on the electron multiplier 28.
  • the four openings 24 are two-dimensionally arranged in two rows and two columns.
  • the partition plate 26 divides the electron focusing space defined between the photocathode 20 and the focusing electrode plate 22 into a 2-row, 2-column segment space N corresponding to a 2-row, 2-column opening 24. It is for.
  • the photocathode 20 has a 2-row, 2-column area corresponding to the 2-row, 2-column segment space N.
  • the photoelectrons emitted from one region of the photocathode 20 are converged by the converging electrode plate 22 while flying in the corresponding segment space N, and the corresponding aperture 24 of the converging electrode plate 22 To reach the electron multiplier section 28.
  • the four dynode rows 30 are arranged so as to face the four openings 24 on a one-to-one basis. Each dynode row 30 is for multiplying the photoelectrons that have entered through the corresponding aperture 24.
  • the dynodes Dy1 to Dy10 are arranged in a line focus type in the tube axis direction.
  • anode electrodes 34 are arranged in one-to-one correspondence with the four dynode rows 30.
  • Each anode electrode 34 is disposed between the dynode Dy9 of the ninth stage and the dynode Dy10 of the tenth stage of the corresponding dynode row 30 so as to face these.
  • Each of the anode electrodes 34 receives the photoelectrons multiplied by the corresponding dynode row 30 and outputs an output signal indicating the amount of photoelectrons.
  • the four shield electrodes 36 are for electrically shielding the four anode electrodes 34 from each other.
  • the input / output pins 38 are connected to the photocathode 20, the focusing electrode plate 22, the electron multiplier section 28, and the anode section 32 by wiring (not shown), and are fixed through the stem 7. ing.
  • 2 ⁇ 2 dynode rows 30 and 2 ⁇ 2 anode electrodes 34 are provided corresponding to the 2 ⁇ 2 segment space N.
  • Each dynode array 30 receives and multiplies photoelectrons emitted from the corresponding area of the photocathode 20.
  • the corresponding anode electrode 34 receives the photoelectron and outputs an output signal indicating the amount of the photoelectron via the input / output pin 38 to the outside.
  • the partition plate 26 extends across the cylinder head 17 of the side tube 11, the funnel-shaped connection portion 15, and the cylinder main body 13.
  • the focusing electrode plate 22, the electron multiplier section 28, and the anode section 32 are arranged in the cylinder main body 13.
  • the magnetic shield 40 is for shielding the focusing electrode plate 22, the electron multiplier 28, and the anode 32 located inside the cylinder body 13 from an external magnetic field.
  • the high magnetic permeability material 42 is made of, for example, permalloy, and directly covers the outer periphery of the tube main body 13.
  • the resin coating 44 covers the outer periphery of the high magnetic permeability material 42.
  • the resin coating 44 is for fixing the high magnetic permeability material 42 to the photomultiplier tube 1.
  • the multi-anode type photomultiplier tube 1 of the present embodiment having the above structure operates as follows.
  • Photocathode 20, focusing electrode plate 22, anode 32, and electron multiplier A predetermined voltage is applied to 28 through an input / output pin 38.
  • an amount of photoelectrons corresponding to the amount of the incident light is emitted from the corresponding region of the photocathode 20.
  • the photoelectrons fly through the segment space N, they are converged by the focusing electrode plate 22, pass through the corresponding aperture 24, and enter the corresponding dynode array 30.
  • the photoelectrons are multiplied by multiple stages, collected at the corresponding anode electrode 34, and output as an output signal via the input / output pin 38. From this output signal, it is possible to know how much light is incident on the region facing the segment space N in the incident face plate 9.
  • the focusing electrode plate 22, the electron multiplier section 28, and the anode section 32 are arranged in the cylinder body section 13, and a magnetic field is provided around the cylinder body section 13.
  • a shield 40 is provided. For this reason, the convergence and multiplication of photoelectrons are performed accurately without being affected by an external magnetic field.
  • the outer diameter W 2 of the cylinder head 17 and the incidence face plate 9 is larger than the outer diameter W 1 of the cylinder body 13, and the cylinder head 17
  • the inner diameter W 2 is also larger than the inner diameter W 1 ′ of the cylinder body 13.
  • the outer radius of curvature R2 of the curved corner portion 17b of the cylinder head 17 is smaller than the outer radius of curvature R1 of the curved corner portion 13b of the cylinder body 13.
  • the inner radius of curvature R 2 ′ of the curved corner 17 b of the cylinder head 17 is smaller than the inner radius of curvature R 1 of the curved corner 13 b of the cylinder body 13. For this reason, the area of the effective photoelectric region K inside the curved corner 17b in the region near the curved corner 17b can be increased. Therefore, around the curved corner 17 b In this case, the area of the photocathode 20 can be increased, and the light that has reached the vicinity of the curved corner 17 b can be effectively incident on the photocathode 20.
  • the strength of the cylinder head 17 is low because the outer diameter and the inner diameter are large and the radius of curvature of the curved corner portion 17b is small.
  • the cylinder main body 13 having a small outer diameter and inner diameter and a large radius of curvature of the curved corner portion 13b supports the cylinder head 17. For this reason, the strength of the entire side tube 11 is sufficiently high.
  • the length L1 of the tube body 13 in the tube axis direction is longer than the length L2 of the tube head 17 in the tube axis direction, the overall strength of the side tube 11 is further increased.
  • the size of the cross section substantially perpendicular to the tube axis of the cylinder head 17 is larger than the size of the cross section substantially perpendicular to the tube axis of the cylinder main body 13.
  • the radius of curvature of the four curved corners 17 b of 7 is smaller than the radius of curvature of the four curved corners 13 b of the cylinder body 13, and the length of the cylinder head 17 along the pipe axis is It is shorter than the length of the main body 13 along the pipe axis.
  • the size of the cylinder head 17 and the radius of curvature of the curved corner portion 17 b are set to desired sizes according to the application, and the length of the cylinder body 13, the length of the cylinder head 17, Adjust the size of the cylinder body 13 and the radius of curvature of the curved corner 13 b according to the size of the cylinder head 17 and the radius of curvature of the curved corner 17 b. This makes it possible to maintain the strength of the entire side tube 11 sufficiently high.
  • FIG. 9 is a schematic plan view schematically showing a state in which a plurality of (in this case, three) radiation detectors 50 according to the present embodiment are arranged one-dimensionally so as to be adjacent to each other.
  • FIG. 10 is a vertical sectional view of the plurality of radiation detectors 50 of FIG. 9 taken along the line X-X.
  • FIG. 11 is an enlarged view showing a main part E shown in FIG. 10 in an enlarged manner.
  • the radiation detector 50 is a multi-anode type photoelectric converter. It has a photomultiplier tube 1 and a scintillator matrix 52.
  • the multi-anode photomultiplier tube 1 has the structure described with reference to FIGS. 2 and 3. In FIG. 10, illustration of the internal structure of the multi-anode type photomultiplier tube 1 is omitted for clarity.
  • the scintillator matrix 52 is for generating scintillation light according to the incidence of radiation. As shown in FIG. 9 and FIG. 10, the scintillator matrix 52 is composed of a plurality of (36 in this example) scintillators 54 arranged in a 6-dimensional X6 row in a two-dimensional matrix. It is arranged and configured. Each scintillator 54 has a rectangular parallelepiped shape having a substantially square cross section, and has a substantially square output surface (lower surface) 54d. When radiation is incident on the scintillator 54, the scintillator 54 generates scintillation light corresponding to the amount of the radiation, and outputs the scintillation light as scattered light from the output surface 54d.
  • the upper surface 9 u of the entrance face plate 9 of the multi-anode type photomultiplier tube 1 is bonded to these output faces 54 d while facing the output faces 54 d of all scintillators 54 of the scintillator matrix 52. I have.
  • FIG. 9 also schematically shows the positional relationship between the output surface 54 d of the 36 scintillators 54 constituting the scintillator matrix 52 and the effective photoelectric area K of the entrance surface plate 9.
  • the scintillator 54 located on the outer peripheral portion of the scintillator matrix 52 It faces the periphery of the cylinder head 17 through the intermediary.
  • the scintillators 54 located at the four corners of the scintillator matrix 52 face the four curved corners 17 b of the cylinder head 17 via the four curved corners 9 b of the entrance face plate 9. are doing.
  • adjacent cylinder heads Parts 17 must be separated by the minimum necessary space S without direct contact. This is to prevent adjacent cylinder heads 17 from being damaged by colliding with each other.
  • the outer diameter W 1 of the tube main body 13 of the multi-anode type photomultiplier tube 1, the outer diameter W 2 of the entrance face plate 9 and the tube head 17, the tube head 17 Has the following relationship with respect to the outer diameter W of the scintillator matrix 52.
  • the thickness of the magnetic shield 40 is M.
  • the magnetic shield thickness M is larger than the space S.
  • the outer diameter W 1 of the cylinder body 13 is equal to the outer diameter W of the scintillator matrix 52.
  • the outer diameter W2 of the entrance face plate 9 and the cylinder head 17 is the thickness of the magnetic shield 40 from the outer diameter Wl of the cylinder body 13, that is, the outer diameter W of the scintillator matrix 52.
  • the difference between M and the minimum required space amount S (M-S) is large.
  • the inner diameter W 2 ′ of the cylinder head 17 is smaller than the outer diameter W 2 by twice the thickness T 2.
  • 2 ⁇ T 2 is slightly larger than (M ⁇ S). Therefore, the inner diameter W 2 ′ of the cylinder head 17 is slightly smaller than the outer diameter W of the scintillator matrix 52.
  • the adjacent cylinder heads 17 have the minimum necessary space. It can be separated by an amount S.
  • the adjacent scintillator matrices 52 are separated from each other by a fixed amount equal to the thickness ⁇ of the magnetic shield 40.
  • the outer diameter W2 of the entrance face plate 9 and the cylinder head 17 is larger than the outer diameter W of the scintillator matrix 52, and the inner diameter W2 'of the cylinder head 17 is larger than the outer diameter W of the scintillator matrix 52. Because of the small size, as shown in Fig. 9, most of the output surface 54d of the scintillator 54 located on the outer periphery of the scintillator matrix 52 Effective photoelectric area K Can face each other.
  • the curvature radii R 2 and R 2 ′ of the curved corner portion 17 b are set to desired small values. Therefore, most of the output surface 54 d of the scintillator 54 located at the four corners of the scintillator matrix 52 can face the effective photoelectric region K inside the curved corner 1 ⁇ b. it can.
  • the cylinder head 17 is required.
  • the cross-sectional areas W 2 and W 2 ′ may be further increased, and the radius of curvature R 2 and R 2 ′ of the curved corner 17 b may be set to a desired value.
  • the length L 1 of the tube body 13, the length L 2 of the tube head 17, the cross-sectional area W 1, W of the tube body 13 The curvature radii R 1, R 1 of the curved corner portion 1 3 b, and the cross-sectional area W 2, W 2 of the cylinder head 17, and the curvature radius R 2, of the curved corner portion 17 b It may be adjusted according to the value of R 2 '.
  • the radiation detector 50 according to the present embodiment having the above structure operates as follows.
  • a radiation specifically, a gamma ray
  • the scintillator 54 When a radiation (specifically, a gamma ray) is incident on one scintillator 54 in one radiation detector 50, the scintillator 54 generates scintillation light.
  • the scintillation light is incident as scattered light from the output surface 54 d of the scintillator 54 on the incident surface plate 9 of the photomultiplier, and is converted into photoelectrons on the photoelectric surface 20.
  • the photoelectrons are multiplied by the electron multiplier section 28 and extracted from the anode section 32 as four output signals.
  • An arithmetic unit (computer), not shown outputs these four output signals. Signal, and calculate the center of gravity to calculate these ratios.
  • the calculation result indicates which scintillator 54 the radiation has entered. Since the plurality of radiation detectors 50 are arranged at regular intervals so as to be adjacent to each other, the distribution of the incident position of radiation can be detected over a wide range
  • the radius of curvature (outer radius of curvature R 2 and inner radius of curvature R 2 ′) of the curved corner 17 b of the cylinder head 17 is small, it is located at each corner of the scintillator matrix 52. Most of the output surface 54 d of the scintillator 54 can face the photocathode 20 inside the curved corner 17 b of the cylinder head 17.
  • the photocathode 20 can receive the scintillation light from all the scintillators 54 at a substantially uniform rate, and can detect radiation with substantially uniform sensitivity.
  • the magnetic shield 40 is provided on the outer periphery of the cylinder main body 13 having the smaller outer diameter of the side tube 11.
  • the outer diameter W2 of the cylinder head 17 can be increased to substantially the same as the outer diameter obtained by combining the outer diameter W1 of the cylinder main body 13 and the thickness M of the magnetic shield 40. Therefore, the size of the photocathode 20 can be increased.
  • the shape of the entire side tube 11 including the magnetic shield 40 may be a shape having almost no step. Can be handled easily.
  • the multi-anode photomultiplier tube 1 according to the present embodiment is the same as the multi-anod photomultiplier tube 1 of the first embodiment, except for the cross-sectional shape of the cylinder head 17.
  • the multi-anode type photomultiplier tube 1 of the present embodiment has the structure shown in FIGS. 2 and 3.
  • the glass container 5 employed in the multi-anode photomultiplier tube 1 of the present embodiment has an outer shape shown in FIG. 4, a vertical cross-sectional shape shown in FIG. 5, and a top shape shown in FIG. are doing.
  • the cross-sectional shape of the cylinder main body 13 that is, the VI-VI cross-sectional shape in FIG. 5) is the shape shown in FIG.
  • the cross-sectional shape of the cylinder head 17 that is, the VII-VII cross-sectional shape in FIG. 5 is not the shape shown in FIG. 7, but the shape shown in FIG.
  • the outer shape of the cylinder head 17 is the same as that of the first embodiment (FIG. 7). That is, the outer peripheral surface 17o connects each two adjacent curved corners 17b in a substantially straight line with a length W2 (outer diameter of the cylinder head 17).
  • the curved corner 17b is curved with a radius of curvature (outer radius of curvature) R2.
  • the outer radius of curvature R 2 is smaller than the outer radius of curvature R 1 of the curved corner portion 13 b of the cylinder body 13.
  • the outer diameter W2 is larger than the outer diameter W1 of the cylinder body 13.
  • the inner peripheral surface 17i of the cylinder head 17 has a pincushion shape as if it were cut out toward the curved corner 17b. That is, the cylinder head 17 The inner peripheral surface 17i connects two adjacent curved corners 17b in a curved shape.
  • ⁇ peripheral surface 17 i ′ is most distant from outer peripheral surface 17 o at the approximate center position between each two adjacent curved corners 17 b, and the corresponding two curved corners 17 As it moves toward b, it gradually approaches the outer peripheral surface 17 o. For this reason, the thickness of the cylinder head 17 (the distance between the outer peripheral surface 17 o and the inner peripheral surface 17 i) T 2 is approximately the center position between two adjacent curved corners 11 b.
  • the inner radius of curvature R 2 is smaller than the outer radius of curvature R 2, and is therefore smaller than the inner radius of curvature R 1 ′ of the cylinder body 13.
  • the maximum value of the wall thickness T2max is substantially equal to the wall thickness T1 of the cylinder body 1.3.
  • the maximum value T 2 max of the thickness of the present embodiment is substantially equal to the thickness T 2 of the first embodiment.
  • the inner diameter W2 is larger than the inner diameter W1 'of the cylinder body 13.
  • the side tube 11 having the above shape can be manufactured by the following method. Prepare an external mold. The shape of the inner peripheral surface of the outer mold matches the shape of the outer peripheral surface of the side tube 11. When glass is blown into the external mold to a desired thickness, side tube 11 of the present embodiment is formed. Note that the side tube 11 of the present embodiment can also be made of soft glass or hard glass.
  • the inner peripheral surface 17i of the cylinder head 17 has a shape that is hollowed toward the curved corner 17b. For this reason, the area near the curved corner portion 17b in the effective photoelectric area K can be further increased as compared with the first embodiment. Therefore, the light that has reached the vicinity of the curved corner 17b can be more effectively made incident on the photocathode 20 and converted into photoelectrons.
  • the radiation detector 50 according to the present embodiment will be described.
  • the radiation detector 50 according to the present embodiment is the same as the first embodiment described with reference to FIGS. 9 to 11 except that the multi-anode type photomultiplier tube 1 according to the present embodiment is employed. This is the same as the radiation detector 50 of the embodiment.
  • the cylinder head 17 since the cylinder head 17 has the cross-sectional shape shown in FIG. 12, it is located at each corner of the scintillator matrix 52. Most of the output surface 54 d of the scintillator 54 can face the photoelectric surface 20 inside the curved corner 17 b of the cylinder head 17. Therefore, the scintillation light from all the scintillators 54 can be photoelectrically converted at a uniform rate, and radiation can be detected with a uniform sensitivity.
  • FIG. 13 is a plan view of a multi-anode type photomultiplier tube 101 of a comparative example.
  • FIG. 14 is a vertical sectional view taken along line XIV-XIV in FIG.
  • the multi-anode type photomultiplier tube 101 of the comparative example has the same configuration as the side tube 111 and the incident face plate 109 used. This is the same as the multi-anode type photomultiplier tube 1 of the first embodiment.
  • the side tube 111 is formed of only a single cylindrical portion 112, and this cylindrical portion 112 is joined to the lower surface 109d of the entrance face plate 109.
  • the tubular portion 112 has a hollow rectangular column shape like the tubular main portion 13 of the first and second embodiments.
  • the cross section of the cylindrical portion 1 1 2 that is substantially perpendicular to the pipe axis is substantially square. It is.
  • the cylindrical portion 112 has four side surfaces 112a and four curved corners 112b.
  • the cylindrical portion 112 has a substantially uniform thickness.
  • the outer diameter of the cylindrical portion 112 is Wc
  • the wall thickness is Tc
  • the inner diameter is Wc
  • ( Wc-2XTc)
  • the outer radius of curvature of the curved corner portion 112b is Rc
  • the inner radius of curvature is Is R c '.
  • the outer radius of curvature Rc and the inner radius of curvature Rc ' are substantially equal.
  • the outer diameter Wc is smaller than the outer diameter R2 of the cylinder head 13 of the first and second embodiments. Also, the inner diameter Wc 'is smaller than the inner diameter R2 of the cylinder head 17 of the first and second embodiments.
  • the entrance face plate 109 has the same shape and size as the outer shape of the cylindrical portion 112. That is, the incident surface plate 109 is a substantially square plate.
  • the entrance surface plate 109 has four curved corners 109 b curved with a radius of curvature Rc and two adjacent curved corners 109 b with a length equal to the outer diameter Wc.
  • the photoelectric surface 120 is formed in the effective photoelectric region K located inside the cylindrical portion 112 of the lower surface 109 d of the incident surface plate 109.
  • a magnetic shield 40 covers the outer periphery of the lower portion of the cylindrical portion 112.
  • the magnetic shield 40 is composed of a highly magnetically permeable material 42 and a resin film 44 as in the first and second embodiments.
  • FIG. 15 a radiation detector 150 of a comparative example employing the multi-anode type photomultiplier tube 101 of the comparative example will be described with reference to FIGS. 15 to 17.
  • FIG. 15 a radiation detector 150 of a comparative example employing the multi-anode type photomultiplier tube 101 of the comparative example will be described with reference to FIGS. 15 to 17.
  • FIG. 15 a radiation detector 150 of a comparative example employing the multi-anode type photomultiplier tube 101 of the comparative example will be described with reference to FIGS. 15 to 17.
  • FIG. 15 is a schematic plan view schematically showing a state where a plurality of radiation detectors 150 of the comparative example are arranged one-dimensionally so as to be adjacent to each other.
  • FIG. 16 is a vertical sectional view taken along the line XVI-XVI of FIG.
  • FIG. 17 is an enlarged view showing the main part H shown in FIG. 16 in an enlarged manner.
  • the scintillator matrix 52 is adhered to the incident face plate 109 of the multi-anode type photomultiplier tube 101 of the comparative example.
  • the multi-anode type photomultiplier tube 101 has the structure described with reference to FIG. 13 and FIG. In FIG. 16, the internal structure of the multi-anode photomultiplier tube 101 is not shown for clarity.
  • FIG. 15 shows the position of the output surface 54 d of the 36 scintillators 54 constituting the scintillator matrix 52 and the effective photoelectric area K of the entrance face plate 109.
  • the relationship is schematically shown.
  • the scintillator 54 located on the outer peripheral portion of the scintillator matrix 52 is multi-layered.
  • the anode-type photomultiplier tube 101 faces the peripheral portion of the cylindrical portion 112 via the peripheral portion of the incident face plate 109 of the anode type photomultiplier tube 101.
  • the scintillators 54 located at the four corners of the scintillator matrix 52 pass through the four curved corners 109 b of the entrance face plate 109 of the multi-anod photomultiplier tube 101. And the four curved corners 1 1 2 b of the cylinder 1 1 2 are opposed to each other.
  • the outer diameter W c of the entrance face plate 109 and the outer diameter W c of the cylindrical portion 112 are the outer diameter W of the scintillator matrix 52 (for example, , 39 mm) and the thickness M of the magnetic shield 40 have the following relationship.
  • the outer diameter Wc of the entrance face plate 109 and the cylindrical portion 112 is equal to the outer diameter W of the scintillator matrix 52.
  • the inner diameter Wc of the cylindrical portion 112 is smaller than the outer diameter Wc by twice the thickness Tc. Therefore, the outer diameter W of the scintillator matrix 52 is smaller by 2 ⁇ Tc.
  • the output surface 54 d of the scintillator 54 located at the outer periphery of the scintillator matrix 52 has an effective photoelectric area K inside the cylinder head 17.
  • the area of the part not facing is large.
  • the output surface 54 d of the scintillator 54 located at the four corners of the scintillator matrix 52 is curved.
  • the area of the part that is not opposed to the effective photoelectric region K inside the corner 1 1 2b is also large.
  • the outer diameter Wc of the cylindrical portion 112 is equal to the outer diameter W of the scintillator matrix 52.
  • the outer diameter W1 of the cylinder main body 13 is equal to the outer diameter W of the scintillator matrices 52, and the cylinder head 17 Outside diameter W 2 is larger than the outside diameter W of scintillator matrix 52. Therefore, the outer diameter W2 of the cylinder head 17 in the first and second embodiments is larger than the outer diameter Wc of the cylinder portion 112 of the comparative example.
  • the inner diameter W 2 ′ of the cylinder head 17 in the first and second embodiments is larger than the inner diameter W c of the cylinder part 112 of the comparative example.
  • the radii of curvature R 2 and R 2 ′ of the curved corners 17 b of the cylinder head 17 in the first and second embodiments are the radii of curvature of the curved corners 1 12 b of the comparative example. Less than R c, R c '.
  • the outer diameter W2 of the cylinder head 17 is made larger than the outer diameter Wc of the comparative example
  • the inner diameter W2 of the cylinder head 17 is made larger than the inner diameter Wc of the comparative example
  • Department The first and second curvature radii R 2, R 2 ′ of the 17 curved corners 17 b are made smaller than the curvature radii 1 (:, R c ′ of the curved corners 1 1 2 13 of the comparative example.
  • FIG. 18 shows the area of the effective photoelectric region K of the multi-anode type photomultiplier tube 1 in the first and second embodiments in comparison with the area of the effective photoelectric region K in the comparative example. ing. Assuming that the area of the effective photoelectric region K of the comparative example is 100%, the area of the effective photoelectric region K is 110% in the first embodiment, and the effective photoelectric region K is 2% in the second embodiment. The area of K increases to 114%.
  • the area of the effective photoelectric region K can be made larger than that of the comparative example.
  • the inner peripheral surface 17 i of the cylinder head 17 has a pincushion shape that is hollowed toward the curved corner 17 b, The area of the effective photoelectric region K inside the curved corner 17 b near the corner 17 b can be further increased.
  • FIG. 19 shows the relationship between the effective photoelectric area K of the first and second embodiments and the comparative example in FIG. 18 and the output surface 54 d of all the scintillators 54 of the scintillator matrix 52. The positional relationship is shown. The ratio (percentage) of the area of the portion of the output surface 54 d of each scintillator facing the effective photoelectric region K is hereinafter referred to as the scintillator effective area ratio.
  • FIG. 19 shows values of the scintillator effective area ratios of four scintillators 54 located near one corner of the scintillator matrix 52.
  • the scintillator The effective area ratio is remarkably low in the scintillator 54 located on the outer periphery of the scintillator matrix 52. Further, since the curvature radii Rc and Rc 'of the curved corners 112b are large, the scintillator effective area ratio is further reduced near the curved corners 112b. For this reason, in the comparative example, there is a large difference in sensitivity between the central portion of the scintillator matrix 52 and the peripheral portion, particularly, the corner portion.
  • the outer diameter W 2 of the cylinder head 17 is larger than the outer diameter W of the scintillator matrix 52, it is located on the outer periphery of the scintillator matrix 52.
  • the scintillator effective area ratio in the scintillator 54 is higher than in the comparative example.
  • the curvature radii R2 and R2 'of the curved corner 17b are small, the scintillator effective area ratio near the curved corner 17b is significantly higher than that of the comparative example. Therefore, the sensitivity can be made substantially uniform between the center portion, the peripheral portion, and the corner portion of the scintillator matrix 52.
  • the effective area ratio of the scintillator near the curved corner 17b is further improved. Therefore, the sensitivity at the center, the periphery, and the corners of the scintillator matrix 52 can be made more uniform.
  • the ratio of the area of the portion of the output surface 54 d of each scintillator 54 facing the photocathode 20 is determined for all scintillators 54. It can be a substantially uniform large value. For this reason, the photocathode 20 can receive the scintillation light from all the scintillators 54 at a substantially uniform ratio, and can detect radiation with a substantially uniform sensitivity.
  • the magnetic shield 40 is not provided in the multi-anode type photomultiplier tube 101 of the comparative example.
  • the outer diameter Wc of the cylindrical portion 112 of the comparative example is equal to the outer diameter W2 of the cylindrical head 17 in the first and second embodiments, that is, It is assumed that the value is larger than the outer diameter W of the scintillator matrix 52 by (M ⁇ S).
  • the radiation detectors 150 of the comparative example are arranged so that the adjacent scintillator matrices 52 are separated from each other by a space M.
  • the adjacent cylinders 1 1 2 are separated from each other by a minimum space S.
  • the radius of curvature R 2, R 2 ′ of the curved corner portion 17 b of the cylinder head 17 is the curvature radius R c of the curved corner portion 1 12 b of the comparative example. If it is smaller than R c ′, the area of the effective photoelectric region K can be made larger than that of the comparative example, and the scintillator effective area ratio in all scintillators can be made more uniform than that of the comparative example.
  • the outer diameter W 2 of the cylinder head 17 in the first and second embodiments is equal to the outer diameter W c of the comparative example, and the ratio is smaller than the inner diameter W 2 of the cylinder head 17.
  • the inner diameter Wc of the comparative example is equal to the radius of curvature R2, R2 of the curved corner portion 17b of the cylinder head 17 in the first and second embodiments, the curved corner portion of the comparative example is the same.
  • the radius of curvature R c, R c ′ of 1 12 b is smaller, the area of the effective photoelectric region K in the first and second embodiments is, as shown in FIG. With respect to the area of K (100%), they are 104% and 108%, respectively.
  • the scintillator effective area ratio near the curved corner 17b is higher in the first and second embodiments than in the comparative example.
  • the multi-anode type photomultiplier tube and radiation detector according to the present invention are not limited to the above-described embodiments, and various modifications and improvements can be made within the scope described in the claims.
  • the shape of the incident face plate and the cross-sectional shapes of the cylinder head and the cylinder main body need not be substantially square as long as they are substantially square, and may be, for example, rectangular.
  • the thickness of the cylinder head may be smaller than the thickness of the cylinder body.
  • the wall thickness T2 of the cylinder head 17 becomes slightly thinner near the curved corner 17b and the inner radius of curvature R2 'is slightly smaller than the outer radius of curvature R2.
  • the thickness T1 of the cylinder body 13 may be slightly reduced near the curved corner 13b, and the inner radius of curvature R1 'may be slightly smaller than the outer radius of curvature R1.
  • the multi-anode type photomultiplier tube is not limited to the 2 ⁇ 2 type, but may be any type in which an arbitrary number of dynode rows / anode electrodes are arranged.
  • Each dynode row is not limited to the line focus type and may be another type.
  • a plurality of radiation detectors may be arranged not two-dimensionally but two-dimensionally or three-dimensionally.
  • the multi-anode type photomultiplier tube does not need to be provided with a magnetic shield.
  • a multi-anode type photomultiplier tube may be used other than a radiation detector. Industrial applicability
  • the multi-anode type photomultiplier tube and radiation detector of the present invention can be widely used in various fields such as other radiation detection and other photodetection, in addition to being usable in the medical field as a Pozitron C-claw. it can.

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

A measurement tube (11) integrally comprises along its tube axis a tube head section (17), a funnel-shaped connection section (15), and a tube main body section (13). The size of a cross section substantially perpendicular to the tube axis of the tube head section is larger than the size of a cross section substantially perpendicular to the tube axis of the tube main body section. The curvature radius of each bent corner of the tube head section is smaller than the curvature radius of each bent corner of the tube main body section. The length of the tube head section along its tube axis is shorter than the length of the tube main body section along its tube axis. A photoelectric surface (20) is formed in a region located inside the tube head section on a face on the side to which the tube head section of an incidence face plate (9) is connected. A multi anode-type photoelectron intensifier tube (1) enables effective incidence of light in the photoelectric surface and has high strength.

Description

明細書 マルチアノード型光電子増倍管、 及び、 放射線検出器 技術分野  Description Multi-anode type photomultiplier tube and radiation detector
本発明はマルチアノード型光電子増倍管、 及ぴ、 当該マルチアノード 型光電子増倍管を用いた放射線検出器に関する。 背景技術  The present invention relates to a multi-anode type photomultiplier and a radiation detector using the multi-anode type photomultiplier. Background art
特開平 5— 9 3 7 8 1号 (以下、 特許文献 1という) には、 第 1図に 示す放射線検出器 2 0 0が記載されている。この放射線検出器 2 0 0は、 シンチレ一タマトリ ックス 2 0 1 とマルチアノード型光電子増倍管 2 0 3とを備えている。  Japanese Patent Application Laid-Open No. Hei 5-933781 (hereinafter referred to as Patent Document 1) describes a radiation detector 200 shown in FIG. The radiation detector 200 includes a scintillator matrix 201 and a multi-anode type photomultiplier tube 203.
シンチレ一タマトリ ックス 2 0 1には、 複数のシンチレータ 2 0 2が 2次元マ トリ ックス状に配置され、 入射した放射線に応じてシンチレ一 シヨン光を発生し出力する。 マルチアノード型光電子増倍管 2 0 3が、 シンチレ一タマトリッタスから出力されたシンチレーション光を検出す る。 マルチアノード型光電子増倍管 2 0 3内の複数のアノード電極から の出力信号に対して重心演算等を行うことにより、 シンチレーシヨン光 を出力したシンチレータを割り出すことができる。  In the scintillator matrix 201, a plurality of scintillators 202 are arranged in a two-dimensional matrix, and generate and output scintillation light according to incident radiation. The multi-anode type photomultiplier tube 203 detects the scintillation light output from the scintillator matrix. By performing a centroid calculation or the like on output signals from a plurality of anode electrodes in the multi-anode type photomultiplier tube 203, a scintillator that has output scintillation light can be determined.
特開平 1 1一 2 5 0 8 5 3号 (以下、 特許文献 2という) は、 放射線 検出器に用いられるマルチアノード型光電子増倍管として、 ガラス製の 中空の四角柱状の側管を備えたマルチアノード型光電子增倍管を提案し ている。  Japanese Patent Application Laid-Open No. H11-250853 (hereinafter referred to as Patent Literature 2) discloses a multi-anode type photomultiplier tube used for a radiation detector, which is provided with a hollow rectangular prism-shaped side tube made of glass. We have proposed a multi-anode type photomultiplier tube.
かかるマルチアノード型光電子増倍管は、 ガラス製の入射面板と、 入 射面板の一つの側の面に接続され入射面板に略垂直な管軸に沿つて延ぴ るガラス製の中空の四角柱状の側管とを備えている。 入射面板に入射し た光に応じた光電子を放出するための光電面が入射面板の側管が接続さ れた側の面のうち側管の内側に位置した領域に形成されている。 光電面 の複数の領域に対応して複数の電子増倍部と複数のァノ一ド電極とが側 管の内部に設けられている。 Such a multi-anode type photomultiplier tube includes a glass incident surface plate and a tube axis connected to a surface on one side of the incident surface plate and substantially perpendicular to the incident surface plate. And a hollow quadrangular prism-shaped side tube made of glass. A photoelectric surface for emitting photoelectrons corresponding to the light incident on the incident surface plate is formed in an area located inside the side tube on a surface of the incident surface plate to which the side tube is connected. A plurality of electron multipliers and a plurality of anode electrodes are provided inside the side tube corresponding to a plurality of regions of the photocathode.
一方、 特開平 3— 1 7 3 0 5 6号公報 (以下、 特許文献 3という) に は、 分割型の光電子増倍管が記載されている。 この光電子増倍管の側管 は、 断面径の大きな中空の四角柱状筒頭部と断面径の小さな中空の四角 柱状筒本体部とを有している。 筒頭部が入射面板の一つの側の面に接続 されている。 筒本体部内に単一のアノード電極が配置されている。 発明の開示  On the other hand, Japanese Patent Application Laid-Open No. 3-173560 (hereinafter referred to as Patent Document 3) describes a split-type photomultiplier tube. The side tube of this photomultiplier tube has a hollow rectangular column-shaped cylinder head with a large cross-sectional diameter and a hollow rectangular column-shaped cylindrical main body with a small cross-sectional diameter. The tube head is connected to one side of the entrance face plate. A single anode electrode is arranged in the cylinder main body. Disclosure of the invention
ここで、 特許文献 2に記載されたガラス製の四角柱状側管を、 特許文 献 3の側管と同様、 断面径の大きな四角柱状筒頭部と断面径の小さな四 角柱状筒本体部とを有する構造に変更することが考えられる。 筒頭部の 断面径が大きいため、 入射面板のうち側管の内側に位置した領域に形成 される光電面の大きさを大きくすることができる。  Here, similarly to the side tube of Patent Document 3, the glass square side tube described in Patent Document 2 is combined with a square column head having a large cross section and a square column body having a small cross section. It is possible to change to a structure having Since the cross-sectional diameter of the tube head is large, it is possible to increase the size of the photocathode formed in a region of the entrance face plate located inside the side tube.
しかしながら、 特許文献 3の側管のように筒頭部の管軸方向長さを筒 本体部の管軸方向長さより長くしたのでは、 側管全体の強度が不十分と なる。  However, if the length of the tube head in the tube axis direction is longer than the length of the tube body in the tube axis direction as in the side tube of Patent Document 3, the strength of the entire side tube becomes insufficient.
一方、 中空の四角柱状の側管をガラスで製造すると、 側管が有する 4 つの角部は湾曲した形状となる。 このため、 入射面板のうち側管の角部 の内側に位置した領域の面積が小さくなってしまう。  On the other hand, if the hollow quadrangular prismatic side tube is made of glass, the four corners of the side tube will be curved. For this reason, the area of the region located inside the corner of the side tube in the incident face plate becomes small.
ここで、 放射線検出器においては、 シンチレ一タマトリックスの全シ ンチレータからのシンチレーション光を略均一に光電面に入射させ光電 子に変換させることが重要である。 ところが、 側管の角部が大きく湾曲 していると、 シンチレ一タマトリックスを構成する複数のシンチレータ の内、 側管の角部に対応する位置にあるシンチレータからの入射効率が 他のシンチレータからの入射効率に比べて低くなってしまう。このため、 シンチレータからのシンチレーション光を略均一に光電面に入射させる ことができない。 Here, in the radiation detector, it is important that the scintillation light from all the scintillators of the scintillator matrix be incident on the photocathode almost uniformly to be converted into photons. However, the corner of the side tube is greatly curved In this case, among the plurality of scintillators constituting the scintillator matrix, the incidence efficiency from the scintillator at the position corresponding to the corner of the side tube is lower than the incidence efficiency from other scintillators. For this reason, the scintillation light from the scintillator cannot be made to enter the photocathode almost uniformly.
本発明は、 上述の課題を解決するためになされたもので、 光電面に光 を有効に入射させ光電子に変換することができしかも高い強度を有する マルチアノード型光電子増倍管、 及び、 かかるマルチアノード型光電子 増倍管を備えたことにより全シンチレータからのシンチレーション光を 略均一に検出することができる放射線検出器を提供することを目的とす る。 ―  The present invention has been made in order to solve the above-mentioned problems, and a multi-anode type photomultiplier tube which can effectively convert light into a photocathode and convert it into photoelectrons and has high intensity, and An object of the present invention is to provide a radiation detector that can detect scintillation light from all scintillators substantially uniformly by providing an anode-type photomultiplier tube. ―
上記課題を解決するために、 本発明のマルチアノード型光電子増倍管 は、 ガラス製の入射面板と、 該入射面板の一つの側の面に接続され該入 射面板に略垂直な管軸に沿って延びるガラス製の中空の側管とを備え、 該入射面板に入射した光に応じた光電子を放出するための光電面が該入 射面板の該一つの側の面のうち該側管の内側に位置した領域に形成され、 該光電面の複数の領域に対応して複数の電子増倍部と複数のァノ一ド電 極とが該側管の内部に設けられているマルチアノード型光電子増倍管に おいて、 該側管が、 筒頭部と漏斗状接続部と筒本体部とを、 該管軸に沿 つて一体的に備え、 該筒本体部が、 4つの第 1の湾曲角部を有する中空 の略四角柱形状を有し、 該管軸に沿って第 1の長さだけ延び、 該筒本体 部の該管軸に略垂直な断面が第 1の大きさを有し、 該 4つの第 1の湾曲 角部がそれぞれ第 1の曲率半径にて湾曲し、 該筒頭部が、 4つの第 2の 湾曲角部を有する中空の略四角柱形状を有し、 該管軸に沿って第 2の長 さだけ延び、 該筒頭部の該管軸に略垂直な断面が第 2の大きさを有し、 該 4つの第 2の湾曲角部がそれぞれ第 2の曲率半径にて湾曲し、 該第 2 の長さが該第 1の長さより短く、 該第 2の大きさが該第 1の大きさより 大きく、 該第 2の曲率半径が該第 1の曲率半径より小さく、 該漏斗状接 続部が、 該筒頭部と該筒本体部とを同軸状に接続し、 該筒頭部が該入射 面板の該一つの側の面に接続され、 該光電面が該入射面板の該一つの側 の面であって該筒頭部の内側に位置した領域に形成され、 該複数の電子 増倍部と該複数のアノード電極とが該筒本体部の内部に設けられている ことを特徴とする。 In order to solve the above-mentioned problems, a multi-anode type photomultiplier according to the present invention comprises a glass incident surface plate, and a tube axis connected to one surface of the incident surface plate and substantially perpendicular to the incident surface plate. A hollow side tube made of glass extending along the light-emitting surface, and a photoelectric surface for emitting photoelectrons corresponding to light incident on the incident surface plate is provided on the one side surface of the incident surface plate. A multi-anode type formed in a region located inside, and provided with a plurality of electron multipliers and a plurality of anode electrodes corresponding to a plurality of regions of the photoelectric surface inside the side tube. In a photomultiplier tube, the side tube integrally includes a tube head, a funnel-shaped connecting portion, and a tube main body along the tube axis, and the tube main body includes four first tubes. It has a hollow substantially quadrangular prism shape having a curved corner, extends along the pipe axis by a first length, and is substantially perpendicular to the pipe axis of the cylinder main body. The straight cross section has a first size, the four first curved corners are each curved at a first radius of curvature, and the cylinder head has four second curved corners The tubular head has a substantially quadrangular prism shape, extends along the pipe axis by a second length, and a cross section of the cylinder head that is substantially perpendicular to the pipe axis has a second size. The second curved corners are each curved at a second radius of curvature; The length is shorter than the first length, the second size is larger than the first size, the second radius of curvature is smaller than the first radius of curvature, and the funnel-shaped connection is The cylinder head and the cylinder body are coaxially connected, the cylinder head is connected to the one side surface of the incident face plate, and the photoelectric surface is connected to the one side of the incident face plate. The plurality of electron multipliers and the plurality of anode electrodes are formed in a region located on the inner side of the cylinder head, and the plurality of electron multipliers and the plurality of anode electrodes are provided inside the cylinder main body.
本発明のマルチアノード型光電子増倍管によれば、 筒頭部の断面の大 きさが筒本体部の断面の大きさに比べ大きい。 したがって、 筒頭部に接 続された入射面板のうち筒頭部の内側に位置した領域を大きくすること ができる。 したがって、 光電面の大きさを大きくすることができ、 多く の光を光電面に有効に入射させ光電子に変換することができる。  According to the multi-anode type photomultiplier of the present invention, the cross section of the cylinder head is larger than the cross section of the cylinder main body. Therefore, it is possible to increase the area of the incident face plate connected to the cylinder head located inside the cylinder head. Therefore, the size of the photocathode can be increased, and much light can be effectively incident on the photocathode and converted into photoelectrons.
しかも、 筒頭部の湾曲角部の曲率半径が筒本体部の湾曲角部の曲率半 径より小さい。 したがって、 入射面板のうち筒頭部の湾曲角部付近であ つて湾曲角部の内側に位置する領域の面積を大きくすることができる。 このため、 湾曲角部付近の光電面の面積を大きくすることができ、 筒頭 部の湾曲角部付近に入射した光の多くを有効に光電面に入射させ光電子 に変換することができる。  In addition, the radius of curvature of the curved corner of the cylinder head is smaller than the radius of curvature of the curved corner of the cylinder body. Therefore, it is possible to increase the area of a region of the incident face plate near the curved corner of the cylinder head and located inside the curved corner. For this reason, the area of the photocathode near the curved corner can be increased, and most of the light incident near the curved corner of the cylinder head can be effectively incident on the photocathode and converted into photoelectrons.
また、 筒本体部の管軸方向の長さが筒頭部より長いため、 真空容器全 体の強度を大きくすることができる。  In addition, since the length of the tube main body in the tube axis direction is longer than the tube head, the strength of the entire vacuum vessel can be increased.
筒頭部の断面の大きさ及び筒頭部の湾曲角部の曲率半径を所望の値に 設定すると共に、 筒本体部の長さ、 筒頭部の長さ, 筒本体部の断面の大 きさ、 及ぴ、 筒本体部の湾曲角部の曲率半径を、 筒頭部の断面の大きさ 及び筒頭部の湾曲角部の曲率半径に対応して調整することにより、 光電 面の面積を所望の大きさにし筒頭部の湾曲角部付近の光を有効に光電面 に入射させつつ、 側管全体の強度を十分高く維持することができる。 ここで、 該筒頭部は、 外周面と内周面とを有し、 該外周面は各 2つの 隣り合う第 2の湾曲角部を略直線状に結ぴ、 該内周面は各 2つの隣り合 う第 2の湾曲角部を曲線状に結び、 該内周面は各 2つの隣り合う第 2の 湾曲角部の間の略中心位置から該各 2つの該第 2の湾曲角部へ向かうに 連れて該外周面に徐々に近づいていくことが好ましい。 入射面板のうち 筒頭部の湾曲角部付近であって湾曲角部の内側に位置する領域の面積を 更に大きくすることができる。 このため、 湾曲角部付近の光電面の面積 を更に大きくすることができ、 筒頭部の湾曲角部付近に入射した光を一 層多く光電面に入射させ光電子に変換することができる。 Set the cross-sectional size of the cylinder head and the radius of curvature of the curved corner of the cylinder head to the desired values, and also increase the length of the cylinder main body, the length of the cylinder head, and the cross-section of the cylinder main body. By adjusting the radius of curvature of the curved corner of the cylinder body in accordance with the cross-sectional size of the cylinder head and the radius of curvature of the curved corner of the cylinder head, the area of the photocathode can be reduced. With the desired size, the light near the curved corner of the tube head can be effectively incident on the photocathode, and the strength of the entire side tube can be maintained sufficiently high. Here, the cylinder head has an outer peripheral surface and an inner peripheral surface, and the outer peripheral surface connects two adjacent second curved corners in a substantially straight line, and the inner peripheral surface has two inner curved surfaces. Two adjacent second curved corners are connected in a curved line, and the inner peripheral surface of the two second curved corners is substantially at a center position between each two adjacent second curved corners. It is preferable to gradually approach the outer peripheral surface as one goes. The area of the region near the curved corner of the cylinder head and inside the curved corner of the incident face plate can be further increased. For this reason, the area of the photocathode near the curved corner can be further increased, and more light incident near the curved corner of the cylinder head can be incident on the photocathode and converted into photoelectrons.
ここで、 本発明のマルチアノード型光電子増倍管は、 更に、 該光電面 から放出された光電子を収束する収束電極板と、 該光電面と該収束電極 板との間に規定される電子収束空間を該光電面の複数の領域に対応した 複数のセグメント空間に分割するための仕切板とを備え、 各電子増倍部 力 対応するセグメント空間において該収束電極板により収束された光 電子を受け取り、 該仕切板が、 該側管内において該筒頭部から該漏斗状 接続部を経て該筒本体部まで延在し、 該収束電極板、 該複数の電子増倍 部、 及び、 該複数のアノード電極が、 該筒本体部内に配置され、 該筒本 体部の外周に磁気シールドが設けられていることが好ましい。 収束電極 板、 複数の電子増倍部、 及び、 複数のアノード電極を筒本体部内に配置 し筒本体部の外周に磁気シールドを設けることにより、 光電子を収束す る動作及ぴ増倍する動作を外部磁界の影響を受けることなく正確に行う ことができる。  Here, the multi-anode type photomultiplier of the present invention further comprises: a focusing electrode plate for focusing the photoelectrons emitted from the photoelectric surface; and an electron focusing device defined between the photoelectric surface and the focusing electrode plate. A partition plate for dividing the space into a plurality of segment spaces corresponding to a plurality of regions of the photocathode, wherein each electron multiplier receives photoelectrons converged by the focusing electrode plate in the corresponding segment space. The partitioning plate extends from the cylinder head to the cylinder main body through the funnel-shaped connecting portion in the side tube, the focusing electrode plate, the plurality of electron multipliers, and the plurality of anodes. It is preferable that an electrode is disposed in the cylinder main body, and a magnetic shield is provided on an outer periphery of the cylinder main body. By arranging a focusing electrode plate, a plurality of electron multipliers, and a plurality of anode electrodes in the cylinder main body and providing a magnetic shield around the outer periphery of the cylinder main body, the operation of converging and multiplying photoelectrons is performed. It can be performed accurately without being affected by an external magnetic field.
また、 別の観点によれば、 本発明の放射線検出器は、 複数のシンチレ ータが 2次元マトリックス状に配置され、 各シンチレータが出力面を有 し、 各シンチレ一タが該シンチレータに入射した放射線に応じてシンチ レーション光を発生し該シンチレーション光を該出力面から出力するシ ンチレータマトリックスと、 該シンチレ一タマトリツタスの各シンチレ ータから出力されたシンチレーション光を検出するためのマルチアノ一 ド型光電子増倍管とを備える放射線検出器において、 該マルチアノード 型光電子増倍管が、 ガラス製の入射面板と、 該入射面板の一つの側の面 に接続され該入射面板に略垂直な管軸に沿って延びるガラス製の中空の 側管とを備え、 該入射面板の該一つの側の面とは反対側の面が該シンチ レータマトリッタスの全シンチレータの出力面に対向し、 該入射面板に 入射したシンチレーション光に応じた光電子を放出するための光電面が 該入射面板の該一つの側の面のうち該側管の内側に位置した領域に形成 され、 該光電面の複数の領域に対応して複数の電子増倍部と複数のァノ ード電極とが該側管の内部に設けられており、 該側管が、 筒頭部と漏斗 状接続部と筒本体部とを、該管軸に沿って一体的に備え、該筒本体部が、 4つの第 1の湾曲角部を有する中空の略四角柱形状を有し、 該管軸に沿 つて第 1の長さだけ延ぴ、 該筒本体部の該管軸に略垂直な断面が第 1の 大きさを有し、 該 4つの第 1の湾曲角部がそれぞれ第 1の曲率半径にて 湾曲し、 該筒頭部が、 4つの第 2の湾曲角部を有する中空の略四角柱形 状を有し、 該管軸に沿って第 2の長さだけ延び、 該筒頭部の該管軸に略 垂直な断面が第 2の大きさを有し、 該 4つの第 2の湾曲角部がそれぞれ 第 2の曲率半径にて湾曲し、 該第 2の長さが該第 1の長さより短く、 該 第 2の大きさが該第 1の大きさより大きく、 該第 2の曲率半径が該第 1 の曲率半径より小さく、 該漏斗状接続部が、 該筒頭部と該筒本体部とを 同軸状に接続し、 該筒頭部が該入射面板の該一つの側の面に接続され、 該光電面が該入射面板の該一つの側の面であって該筒頭部の内側に位置 した領域に形成され、 該複数の電子増倍部と該複数のアノード電極とが 該筒本体部の内部に設けられていることを特徴とする。 According to another aspect, in the radiation detector of the present invention, a plurality of scintillators are arranged in a two-dimensional matrix, each scintillator has an output surface, and each scintillator enters the scintillator. A scintillation light is generated according to the radiation, and the scintillation light is output from the output surface. A radiation detector comprising: a scintillator matrix; and a multi-anode photomultiplier tube for detecting scintillation light output from each scintillator of the scintillator matrix. A light incident surface plate made of glass, and a hollow glass side tube connected to a surface on one side of the light incident surface plate and extending along a tube axis substantially perpendicular to the light incident surface plate; The surface opposite to the one side faces the output surface of all the scintillators of the scintillator matrix, and the photoelectric surface for emitting photoelectrons according to the scintillation light incident on the incident surface plate is provided on the incident surface plate. A plurality of electron multipliers and a plurality of anode electrodes are formed in a region of the one side surface located inside the side tube, and correspond to a plurality of regions of the photocathode. The side pipe is provided integrally with a pipe head, a funnel-shaped connecting part, and a pipe main body along the pipe axis, and the pipe main body is provided with four first pipes. A substantially rectangular pillar shape having a curved corner portion, extending along the tube axis by a first length, and a cross section of the tube main body substantially perpendicular to the tube axis having a first size. The four first curved corners are each curved at a first radius of curvature, and the cylinder head has a hollow substantially quadrangular prism shape having four second curved corners. A section extending substantially along the pipe axis by a second length, a cross section of the cylinder head substantially perpendicular to the pipe axis has a second size, and each of the four second curved corners is Curving at a second radius of curvature, wherein the second length is less than the first length, the second magnitude is greater than the first magnitude, and the second radius is the first radius. Smaller than the radius of curvature of The cylinder head and the cylinder main body are coaxially connected, the cylinder head is connected to the one side surface of the entrance face plate, and the photoelectric surface is connected to the one side surface of the entrance face plate. And wherein the plurality of electron multipliers and the plurality of anode electrodes are formed in a region located inside the tube head, and the plurality of electron multipliers and the plurality of anode electrodes are provided inside the tube main body.
本発明の放射線検出器によれば、 マルチアノード型光電子増倍管の筒 頭部の断面の大きさが筒本体部の断面の大きさに比べ大きく、 かつ、 筒 頭部の湾曲角部が筒本体部の湾曲角部に比べ小さな曲率半径にて湾曲し ている。 したがって、 シンチレ一タマトリックスの外周部や隅部に位置 しているシンチレータの出力面の大部分を入射面板のうち筒頭部の内側 の領域に対向させることができる。 したがって、 光電面は、 全シンチレ ータからのシンチレーション光を略均一な割合で受け取ることができ、 放射線の検出を略均一な感度で行うことができる。 図面の簡単な説明 According to the radiation detector of the present invention, the tube of the multi-anode type photomultiplier tube The cross-sectional size of the head is larger than the cross-sectional size of the cylinder body, and the curved corner of the cylinder head is curved with a smaller radius of curvature than the curved corner of the cylinder body. Therefore, most of the output surface of the scintillator located at the outer peripheral portion or the corner of the scintillator matrix can be opposed to the region inside the cylinder head of the incident surface plate. Therefore, the photocathode can receive the scintillation light from all the scintillators at a substantially uniform ratio, and can detect radiation with a substantially uniform sensitivity. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 従来の放射線検出器を示す斜視図である。  FIG. 1 is a perspective view showing a conventional radiation detector.
第 2図は、 本発明の第 1の実施の形態によるマルチアノード型光電子 増倍管の平面図である。  FIG. 2 is a plan view of the multi-anode type photomultiplier according to the first embodiment of the present invention.
第 3図は、 第 2図におけるマルチアノード型光電子増倍管の I I I一 I I I線縦断面図である。  FIG. 3 is a vertical sectional view of the multi-anode type photomultiplier tube in FIG. 2 taken along the line III-III.
第 4図は、 本発明の第 1の実施の形態によるマルチアノード型光電子 増倍管が備えるガラス容器を示す斜視図である。  FIG. 4 is a perspective view showing a glass container provided in the multi-anode type photomultiplier according to the first embodiment of the present invention.
第 5図は、 第 4図のガラス容器の縦断面図である。  FIG. 5 is a longitudinal sectional view of the glass container of FIG.
第 6図は、 第 5図におけるガラス容器の V I - V I線横断面図である 第 7図は、 第 5図におけるガラス容器の V I I - V I I線横断面図で ある。  FIG. 6 is a cross-sectional view taken along the line VI-VI of the glass container in FIG. 5. FIG. 7 is a cross-sectional view taken along the line VI-VI of the glass container in FIG.
第 8図は、 第 5図におけるガラス容器の上面図である。  FIG. 8 is a top view of the glass container in FIG.
第 9図は、 第 1の実施の形態の放射線検出器を複数個配置した状態を 模式的に示す模式平面図である。  FIG. 9 is a schematic plan view schematically showing a state where a plurality of radiation detectors according to the first embodiment are arranged.
第 1 0図は、 第 9図における X— X線縦断面図である。  FIG. 10 is a vertical sectional view taken along line X--X in FIG.
第 1 1図は、 第 1 0図における要部 Eの拡大図である。 第 1 2図は、 本発明の第 2の実施の形態によるマルチアノード型光電 子増倍管が備えるガラス容器の筒頭部の横断面図である。 FIG. 11 is an enlarged view of a main part E in FIG. FIG. 12 is a cross-sectional view of a tube head of a glass container provided in a multi-anode type photomultiplier according to a second embodiment of the present invention.
第 1 3図は、比較例によるマルチアノ一ド型光電子増倍管の平面図 である。  FIG. 13 is a plan view of a multi-anod type photomultiplier according to a comparative example.
第 1 4図は、 第 1 3図のマルチアノード型光電子増倍管の X I V— X Fig. 14 shows the XIV-X of the multi-anode type photomultiplier shown in Fig. 13.
I V線縦断面図である。 FIG. 5 is a vertical sectional view taken along the line IV.
第 1 5図は、 比較例の放射線検出器を複数個配置した状態を模式的に 示す模式平面図である。  FIG. 15 is a schematic plan view schematically showing a state in which a plurality of radiation detectors of a comparative example are arranged.
第 1 6図は、 第 1 5図の X V I—X V I線縦断面図である。  FIG. 16 is a vertical sectional view taken along the line XVI-XVI of FIG.
第 1 7図は、 第 1 6図の要部 Hの拡大図である。  FIG. 17 is an enlarged view of the main part H of FIG.
第 1 8図は、 第 1及ぴ第 2の実施の形態における筒頭部の径が比較例 の筒部の径より大きく、 かつ、 筒頭部の湾曲角部の曲率半径が比較例の 筒部湾曲角部の曲率半径より小さいために、 第 1及び第 2の実施の形態 のマルチアノード型光電子増倍管のそれぞれによって得られる有効光電 領域の面積が比較例のマルチアノード型光電子増倍管によって得られる 有効光電領域の面積より大きいことを示す説明図である。  FIG. 18 shows that the diameter of the cylinder head in the first and second embodiments is larger than the diameter of the cylinder part of the comparative example, and the radius of curvature of the curved corner of the cylinder head is the cylinder of the comparative example. Since the area of the effective photoelectric region obtained by each of the multi-anode type photomultiplier tubes of the first and second embodiments is smaller than the radius of curvature of the curved portion, the area of the effective anode region is the multi-anode type photomultiplier tube of the comparative example. FIG. 4 is an explanatory view showing that the area is larger than the area of the effective photoelectric region obtained by the above method.
第 1 9図は、 第 1及び第 2の実施の形態における筒頭部の径が比較例 の筒部の径より大きく、 かつ、 筒頭部の湾曲角部の曲率半径が比較例の 筒部湾曲角部の曲率半径より小さいために、 第 1及ぴ第 2の実施の形態 の放射線検出器におけるシンチレ一タマトリッタスの隅部付近に位置し ている 4つのシンチレータのシンチレータ有効面積割合が比較例の放射 線検出器におけるシンチレ一タマトリッタスの隅部付近に位置している 4つのシンチレータのシンチレータ有効面積割合より大きいことを示す 説明図である。  FIG. 19 shows that the diameter of the cylinder head of the first and second embodiments is larger than the diameter of the cylinder of the comparative example, and the radius of curvature of the curved corner of the cylinder head is the cylinder of the comparative example. Since the radius of curvature is smaller than the radius of curvature of the curved corner, the scintillator effective area ratio of the four scintillators located near the corner of the scintillator matrix in the radiation detectors of the first and second embodiments is smaller than that of the comparative example. FIG. 4 is an explanatory diagram showing that the scintillator effective area ratio of four scintillators located near the corner of the scintillator matrix in the radiation detector is larger than that.
第 2 0図は、第 1及ぴ第 2の実施の形態における筒頭部の径が比較 例の筒部の径と等しく、 かつ、 筒頭部の湾曲角部の曲率半径が比較例 の筒部湾曲角部の曲率半径より小さい場合にも、第 1及び第 2の実施 の形態のマルチアノ一ド型光電子増倍管のそれぞれによって得られ る有効光電領域の面積が比較例のマルチアノ一ド型光電子増倍管に よって得られる有効光電領域の面積より大きいことを示す説明図で あな。 FIG. 20 shows that the diameter of the cylinder head in the first and second embodiments is equal to the diameter of the cylinder part of the comparative example, and the radius of curvature of the curved corner of the cylinder head is the comparative example. Even when the radius of curvature of the cylindrical curved corner portion is smaller than that of the comparative example, the area of the effective photoelectric region obtained by each of the multi-anod type photomultiplier tubes of the first and second embodiments is different from that of the comparative example. FIG. 9 is an explanatory diagram showing that the area is larger than the area of an effective photoelectric region obtained by a C type photomultiplier tube.
第 2 1図は、 第 1及び第 2の実施の形態における筒頭部の径が比較例 の筒部の径と等しく、 かつ、 筒頭部の湾曲角部の曲率半径が比較例の筒 部湾曲角部の曲率半径より小さい場合にも、 第 1及び第 2の実施の形態 の放射線検出器におけるシンチレ一タマトリッタスの隅部付近に位置し ている 4つのシンチレータのシンチレータ有効面積割合が比較例の放射 線検出器におけるシンチレ一タマトリッタスの隅部付近に位置している 4つのシンチレータのシンチレータ有効面積割合より大きいことを示す 説明図である。 発明を実施するための最良の形態  FIG. 21 shows that the diameter of the cylinder head in the first and second embodiments is equal to the diameter of the cylinder of the comparative example, and the radius of curvature of the curved corner of the cylinder head is the cylinder of the comparative example. Even when the radius of curvature is smaller than the radius of curvature of the curved corner, the scintillator effective area ratio of the four scintillators located near the corner of the scintillator matrix in the radiation detectors of the first and second embodiments is set to be smaller than that of the comparative example. FIG. 4 is an explanatory diagram showing that the scintillator effective area ratio of four scintillators located near the corner of the scintillator matrix in the radiation detector is larger than that. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の実施形態に係るマルチアノード型光電子増倍管及び放射線検 出器を図面を参照して説明する。  A multi-anode type photomultiplier tube and a radiation detector according to an embodiment of the present invention will be described with reference to the drawings.
まず、 本発明の第 1の実施の形態によるマルチアノード型光電子增倍 管及び放射線検出器について第 2図乃至第 1 1図に基づき説明する。 まず、 本実施の形態のマルチアノード型光電子増倍管について、 説明 する。  First, a multi-anode type photomultiplier tube and a radiation detector according to a first embodiment of the present invention will be described with reference to FIG. 2 to FIG. First, the multi-anode type photomultiplier according to the present embodiment will be described.
第 2図は、 本実施の形態のマルチアノ一ド型光電子増倍管 1の平面図 である。  FIG. 2 is a plan view of the multi-anod type photomultiplier tube 1 of the present embodiment.
第 3図は、 マルチアノード型光電子増倍管 1の第 2図における I I I _ I I I線縦断面図である。  FIG. 3 is a vertical cross-sectional view of the multi-anode type photomultiplier tube 1 taken along the line III_III in FIG.
マルチアノード型光電子增倍管 1は、 2 x 2のマルチアノードタイプ である。 Multi-anode type photomultiplier tube 1 is a 2 x 2 multi-anode type It is.
第 2図及び第 3図に示すように、マルチアノード型光電子増倍管 1は、 透明ガラス製のガラス容器 5を備えている。  As shown in FIGS. 2 and 3, the multi-anode type photomultiplier tube 1 includes a glass container 5 made of transparent glass.
第 3図に示すように、 ガラス容器 5は、 透明ガラス製の中空の側管 1 1と透明ガラス製の入射面板 9とからなる。  As shown in FIG. 3, the glass container 5 includes a hollow side tube 11 made of transparent glass and an entrance face plate 9 made of transparent glass.
側管 1 1は、 入射面板 9に略垂直な管軸に沿って延びている。 側管 1 1は、 筒頭部 1 7とファンネル形状接続部 1 5と筒本体部 1 3とを管軸 に沿って一体的に備えている。 側管 1 1の筒頭部 1 7の上端が入射面板 9の下面 9 dに接合されている。 入射面板 9の下面 9 dのうち筒頭部 1 7の内側の領域を、 以下、 「有効光電領域 K」 という。  The side tube 11 extends along a tube axis substantially perpendicular to the entrance face plate 9. The side tube 11 integrally includes a tube head 17, a funnel-shaped connecting portion 15, and a tube main body 13 along the tube axis. The upper end of the cylinder head 17 of the side tube 11 is joined to the lower surface 9 d of the entrance face plate 9. The area inside the cylinder head 17 of the lower surface 9 d of the entrance face plate 9 is hereinafter referred to as “effective photoelectric area K”.
透明ガラス製のステム 7が筒本体部 1 3の下端に接合され、 ガラス容 器 5の内部を密閉している。  A transparent glass stem 7 is joined to the lower end of the cylinder body 13 to seal the inside of the glass container 5.
ガラス容器 5の内部には、光電面 2 0、収束電極板 2 2、仕切板 2 6、 電子増倍部 2 8、 及び、 アノード部 3 2が設けられている。 また、 入出 力ピン 3 8がステム 7を貫通して設けられている。  Inside the glass container 5, a photocathode 20, a focusing electrode plate 22, a partition plate 26, an electron multiplying unit 28, and an anode unit 32 are provided. Also, input / output pins 38 are provided through the stem 7.
光電面 2 0は、 入射面板 9の有効光電領域 Κに形成されている。  The photoelectric surface 20 is formed in the effective photoelectric region of the incident surface plate 9.
収束電極板 2 2は、ディスク型の電極板である。収束電極板 2 2には、 第 2図に示すように、 4つの開口 2 4が形成されている。  The focusing electrode plate 22 is a disk-shaped electrode plate. As shown in FIG. 2, four apertures 24 are formed in the focusing electrode plate 22.
電子増倍部 2 8は、 4個のダイノード列 3 0を備えている。 なお、 第 3図は、 4個のダイノード列 3 0のうちの 2個を示している。 各ダイノ 一ド列 3 0は 1 0個のダイノ一ド D y 1〜D y 1 0からなる。  The electron multiplier 28 includes four dynode arrays 30. FIG. 3 shows two of the four dynode arrays 30. Each dynode row 30 is composed of 10 dynodes Dy1 to Dy10.
アノード部 3 2は、 4個のアノード電極 3 4を備えている。 なお、 第 3図は、 4個のァノード電極 3 4のうちの 2個を示している。  The anode section 32 includes four anode electrodes 34. FIG. 3 shows two of the four anode electrodes 34.
アノード部 3 2には、 さらに、 4個のシールド電極 3 6が設けられて いる。 なお、 第 3図は、 4個のシールド電極 3 6のうちの 2個を示して いる。 磁気シールド 4 0が、 筒本体部 1 3の外周を覆うように設けられてい る。磁気シールド 4 0は、高透磁率材料 4 2と樹脂被膜 4 4とからなる。 本実施の形態では、 マルチアノ一ド型光電子増倍管 1のガラス容器 5 を以下に説明する形状としたため、 より多くの光を光電面 2 0に有効に 入射させることができ、 しかも、 高い真空強度を達成している。 The anode part 32 is further provided with four shield electrodes 36. FIG. 3 shows two of the four shield electrodes 36. The magnetic shield 40 is provided so as to cover the outer periphery of the cylinder main body 13. The magnetic shield 40 is made of a high magnetic permeability material 42 and a resin coating 44. In the present embodiment, since the glass container 5 of the multi-anod type photomultiplier tube 1 has the shape described below, more light can be effectively incident on the photocathode 20 and a high vacuum Has achieved strength.
ガラス容器 5の形状について、 第 4図〜第 8図を参照して説明する。 まず、 ガラス容器 5の形状の概略を、 第 4図を参照して、 説明する。 第 4図はガラス容器 5の斜視図である。  The shape of the glass container 5 will be described with reference to FIGS. First, the outline of the shape of the glass container 5 will be described with reference to FIG. FIG. 4 is a perspective view of the glass container 5.
筒本体部 1 3は、 管軸に沿って延びる中空の略四角柱形状であり、 4 つの側面 1 3 aと 4つの湾曲角部 1 3 bとを有している。 筒本体部 1 3 の管軸に略垂直な断面は略正方形状である。  The tube main body 13 is a hollow substantially quadrangular prism extending along the tube axis, and has four side surfaces 13a and four curved corners 13b. The cross section of the cylinder body 13 substantially perpendicular to the tube axis is substantially square.
筒頭部 1 7も、 管軸に沿って延びる中空の略四角柱形状であり、 4つ の側面 1 7 aと 4つの湾曲角部 1 7 bとを有している。 筒頭部 1 7の管 軸に略垂直な断面も略正方形状である。  The cylinder head 17 is also a hollow substantially quadrangular prism extending along the tube axis, and has four side faces 17a and four curved corners 17b. The cross section of the cylinder head 17 that is substantially perpendicular to the tube axis is also substantially square.
ファンネル形状 (漏斗状) 接続部 1 5は、 筒本体部 1 3を筒頭部 1 7 に対し同軸状に接続している。  Funnel shape (funnel shape) The connection part 15 connects the cylinder main body part 13 to the cylinder head 17 coaxially.
入射面板 9は、 略正方形のガラス板である。 入射面板 9は、 上面 9 u と下面 9 dと 4つの側面 9 aと 4つの湾曲角部 9 bとを有している。 上 面 9 uと下面 9 dとは両方とも略正方形状である。  The incident surface plate 9 is a substantially square glass plate. The entrance surface plate 9 has an upper surface 9u, a lower surface 9d, four side surfaces 9a, and four curved corners 9b. Both the upper surface 9u and the lower surface 9d are substantially square.
入射面板 9の 4つの側面 9 aが筒頭部 1 7の 4つの側面 1 7 aに連な り、 入射面板 9の 4つの湾曲角部 9 bが筒頭部 1 7の 4つの湾曲角部 1 7 bに連なっている。  The four side faces 9a of the entrance face plate 9 are connected to the four side faces 17a of the cylinder head 17, and the four curved corners 9b of the entrance face plate 9 are the four curved corners of the cylinder head 17 It is connected to 17b.
以下、 ガラス容器 5の形状を、 第 5図〜第 8図を参照して、 より詳細 に説明する。  Hereinafter, the shape of the glass container 5 will be described in more detail with reference to FIG. 5 to FIG.
第 5図は、 ガラス容器 5の縦断面図である。  FIG. 5 is a longitudinal sectional view of the glass container 5.
筒頭部 1 7は外周面 1 7 oと内周面 1 7 i とを有している。 フアンネ ル形状接続部 1 5は外周面 1 5 oと内周面 1 5 i とを有している。 筒本 体部 1 3は外周面 1 3 oと内周面 1 3 i とを有している。 筒頭部 1 7の 外周面 1 7 οと筒本体部 1 3の外周面 1 3 οとは、 ファンネル形状接続 部 1 5の外周面 1 5 οによって連結されている。 筒頭部 1 7の内周面 1 7 i と筒本体部 1 3の內周面 1 3 i とは、 ファンネル形状接続部 1 5の 内周面 1 5 iによって連結されている。 The cylinder head 17 has an outer peripheral surface 17o and an inner peripheral surface 17i. Juanne The connector 15 has an outer peripheral surface 15o and an inner peripheral surface 15i. The tube body 13 has an outer peripheral surface 13o and an inner peripheral surface 13i. The outer peripheral surface 17 ο of the cylinder head 17 and the outer peripheral surface 13 ο of the cylinder main body 13 are connected by the outer peripheral surface 15 ο of the funnel-shaped connecting portion 15. The inner peripheral surface 17 i of the cylinder head 17 and the outer peripheral surface 13 i of the cylinder main body 13 are connected by the inner peripheral surface 15 i of the funnel-shaped connecting portion 15.
筒本体部 1 3の管軸方向の長さ L 1は筒頭部 1 7の管軸方向の長さ L 2より長い。  The length L 1 of the tube body 13 in the tube axis direction is longer than the length L 2 of the tube head 17 in the tube axis direction.
筒頭部 1 7の外径 W 2は筒本体部 1 3の外径 W1より大きい。 筒頭部 1 7の内径W2' も筒本体部 1 3の内径 W1 ' より大きい。  The outer diameter W 2 of the cylinder head 17 is larger than the outer diameter W 1 of the cylinder body 13. The inner diameter W2 'of the cylinder head 17 is also larger than the inner diameter W1' of the cylinder body 13.
入射面板 9の外径は筒頭部 1 7の外径 W 2と等しい。  The outer diameter of the entrance face plate 9 is equal to the outer diameter W 2 of the cylinder head 17.
第 6図は、 第 5図におけるガラス容器 5の V I—V I線横断面図、 す なわち、 筒本体部 1 3の横断面図である。  FIG. 6 is a cross-sectional view of the glass container 5 taken along the line VI-VI in FIG. 5, that is, a cross-sectional view of the cylinder main body 13.
筒本体部 1 3の外周面 1 3 oは、 4つの湾曲角部 1 3 bのうちの各 2 つの隣り合う湾曲角部 1 3 b間を長さ W1 (筒本外部 1 3の外径) にて 略直線状に結んでいる。 外周面 1 3 οは、 湾曲角部 1 3 bにおいて、 曲 率半径 (外側曲率半径) R 1にて湾曲している。  The outer peripheral surface 13 o of the cylinder body 13 has a length W1 between the two adjacent curved corners 13 b of the four curved corners 13 b (the outer diameter of the cylinder outer 13). It is connected in a substantially straight line at. The outer peripheral surface 13ο is curved at a curved corner portion 13b with a radius of curvature (outside radius of curvature) R1.
筒本体部 1 3の内周面 1 3 iは、 外周面 1 3 oとの距離 (筒本体部 1 3の肉厚 T 1 )が略一様となるよう、外周面 1 3 οに沿って延ぴている。 すなわち、 内周面 1 3 iは、 各 2つの隣り合う湾曲角部 1 3 bを長さ W 1 ' ( = W1 - 2 X T 1 :筒本体部 1 3の内径) にて略直線状に結んでい る。 内周面 1 3 iは、 湾曲角部 1 3 bにおいて、 曲率半径 (内側曲率半 径) R 1 ' にて湾曲している。 内側曲率半径 R l, と外側曲率半径 R 1 とは略等しい。  The inner peripheral surface 13 i of the cylinder main body 13 extends along the outer peripheral surface 13 ο so that the distance from the outer peripheral surface 13 o (thickness T 1 of the cylinder main body 13) is substantially uniform. Prolonged. That is, the inner peripheral surface 13 i connects each two adjacent curved corners 13 b in a substantially straight line with a length W 1 ′ (= W1-2 XT 1: inner diameter of the cylinder body 13). Out. The inner peripheral surface 13 i is curved at the curved corner portion 13 b with a radius of curvature (inner radius of curvature) R 1 ′. The inner radius of curvature R l and the outer radius of curvature R 1 are substantially equal.
第 7図は、第 5図におけるガラス容器 5の V I I— V I I線横断面図、 すなわち、 筒頭部 1 7の横断面図である。 筒頭部 1 7の外周面 1 7 oは、 各 2つの隣り合う湾曲角部 1 7 bを長 さ W 2 (筒頭部 1 7の外径)で略直線状に結んでいる。外周面 1 7 oは、 湾曲角部 1 7 bにおいて、 曲率半径 (外側曲率半径) R 2にて湾曲して いる。 外側曲率半径 R 2は、 筒本体部 1 3の外側曲率半径 R 1より小さ い。 FIG. 7 is a cross-sectional view of the glass container 5 taken along line VII-VII of FIG. 5, that is, a cross-sectional view of the cylinder head 17. The outer peripheral surface 17 o of the cylinder head 17 connects two adjacent curved corners 17 b in a substantially straight line with a length W 2 (outer diameter of the cylinder head 17). The outer peripheral surface 17o is curved at a curved corner 17b with a radius of curvature (outside radius of curvature) R2. The outer radius of curvature R 2 is smaller than the outer radius of curvature R 1 of the cylinder body 13.
筒頭部 1 7の内周面 1 7 iは、 外周面 1 7 oとの距離 (筒頭部 1 7の 肉厚 T 2 ) が略一様となるよう、 外周面 1 7 oに沿って延ぴている。 す なわち、内周面 1 7 iは、各 2つの隣り合う湾曲角部 1 7 bを長さ W 2, ( = W 2 _ 2 x T 2 :筒頭部 1 7の内径) で略直線状に結んでいる。 筒 頭部 1 7の肉厚 Τ 2は、 筒本体部 1 3の肉厚 Τ 1と略等しい。 内周面 1 7 iは、 湾曲角部 1 7 bにおいて、 曲率半径 (内側曲率半径) R 2 ' に て湾曲している。 内側曲率半径 R 2 ' は外側曲率半径 R 2と略等しい。 したがって、 内側曲率半径 R 2, も筒本体部 1 3の内側曲率半径 R 1, より小さい。  The inner peripheral surface 17 i of the cylinder head 17 extends along the outer peripheral surface 17 o so that the distance from the outer peripheral surface 17 o (thickness T 2 of the cylinder head 17) is substantially uniform. Prolonged. That is, the inner peripheral surface 17 i is substantially straight with two adjacent curved corners 17 b each having a length W 2, (= W 2 _ 2 x T 2: inner diameter of the cylinder head 17). Are tied together. The thickness Τ2 of the cylinder head 17 is substantially equal to the thickness Τ1 of the cylinder body 13. The inner peripheral surface 17i is curved by a radius of curvature (inner radius of curvature) R2 'at a curved corner 17b. The inner radius of curvature R 2 ′ is substantially equal to the outer radius of curvature R 2. Therefore, the inner radius of curvature R 2, is also smaller than the inner radius of curvature R 1, of the cylinder body 13.
第 8図は、 第 5図におけるガラス容器 5の上面図である。  FIG. 8 is a top view of the glass container 5 in FIG.
入射面板 9は、 筒頭部 1 7の外形と同一の形状及び大きさを有してい る。 すなわち、 入射面板 9の湾曲角部 9 bの曲率半径は、 筒頭部 1 7の 湾曲角部 1 7 bの外側曲率半径 R 2と等しい。 入射面板 9の各側面 9 a は、 両側に位置する 2つの湾曲角部 9 bを、 筒頭部 1 7の外径 W 2と等 しい長さ W 2 (入射面板の外径) にて直線状に結んでいる。 入射面板 9 の下面 9 dのうち、 筒頭部 1 7の内周面 1 7 iより内側の領域が有効光 電領域 Kである。  The incident face plate 9 has the same shape and size as the outer shape of the cylinder head 17. That is, the radius of curvature of the curved corner 9 b of the entrance face plate 9 is equal to the outer radius of curvature R 2 of the curved corner 17 b of the cylinder head 17. Each side surface 9a of the entrance face plate 9 is formed by straightening the two curved corners 9b located on both sides with a length W2 (outer diameter of the entrance face plate) equal to the outer diameter W2 of the cylinder head 17. Are tied together. The area inside the inner peripheral surface 17 i of the cylinder head 17 on the lower surface 9 d of the entrance face plate 9 is the effective photoelectric region K.
上記形状を有するガラス容器 5は以下の方法で作製することができる。 まず、 側管 1 1を作製するための内部金型を用意する。 内部金型の外周 面の形状は側管 1 1の内周面の形状と一致している。 この内部金型のま わりに透明ガラスを所望の厚みで引きまわす。 この結果、 側管 1 1が作 製される。 なお、 側管 1 1は、 軟質ガラスでも硬質ガラスでも作製する ことができる。 次に、 側管 1 1の筒頭部 1 7の上端に入射面板 9の下面 9 dを融着固定する。 この結果、 ガラス容器 5が作製される。 The glass container 5 having the above shape can be manufactured by the following method. First, an internal mold for preparing the side tube 11 is prepared. The shape of the outer peripheral surface of the inner mold matches the shape of the inner peripheral surface of the side tube 11. A transparent glass is drawn to a desired thickness before the inner mold. As a result, side tube 1 1 Made. Note that the side tube 11 can be made of either soft glass or hard glass. Next, the lower surface 9d of the entrance face plate 9 is fusion-fixed to the upper end of the cylinder head 17 of the side tube 11. As a result, the glass container 5 is manufactured.
次に、 本実施の形態のマルチアノード型光電子増倍管の内部構造につ いて、 第 2図及び第 3図に戻って説明する。  Next, the internal structure of the multi-anode type photomultiplier according to the present embodiment will be described with reference to FIGS. 2 and 3.
既述のように、 光電面 2 0は、 入射面板 9の有効光電領域 Kに形成さ れている。  As described above, the photoelectric surface 20 is formed in the effective photoelectric region K of the incident surface plate 9.
収束電極板 2 2は、 光電面 2 0に対向し、 光電面 2 0から放出された 光電子を収束して電子増倍部 2 8に入射させるためのものである。 4つ の開口 2 4は、 2次元状に 2行 2列で配置されている。  The focusing electrode plate 22 opposes the photocathode 20 and focuses the photoelectrons emitted from the photocathode 20 so as to be incident on the electron multiplier 28. The four openings 24 are two-dimensionally arranged in two rows and two columns.
仕切板 2 6は、 光電面 2 0と収束電極板 2 2との間に規定される電子 収束空間を、 2行 2列の開口 2 4に対応した 2行 2列のセグメント空間 Nに分割するためのものである。 光電面 2 0は、 この 2行 2列のセグメ ント空間 Nに対応する 2行 2列の領域を有している。 光電面 2 0の 1つ の領域から放出された光電子は、 対応するセグメント空間 N内を飛翔す る間に、 収束電極板 2 2にて収束され、 収束電極板 2 2の対応する開口 2 4を通過して電子増倍部 2 8に到達する。  The partition plate 26 divides the electron focusing space defined between the photocathode 20 and the focusing electrode plate 22 into a 2-row, 2-column segment space N corresponding to a 2-row, 2-column opening 24. It is for. The photocathode 20 has a 2-row, 2-column area corresponding to the 2-row, 2-column segment space N. The photoelectrons emitted from one region of the photocathode 20 are converged by the converging electrode plate 22 while flying in the corresponding segment space N, and the corresponding aperture 24 of the converging electrode plate 22 To reach the electron multiplier section 28.
電子増倍部 2 8において、 4個のダイノード列 3 0は、 4つの開口 2 4に 1対 1で対向するように配置されている。 各ダイノード列 3 0は、 対応する開口 2 4を通過して入射してきた光電子を増倍するためのもの である。 ダイノード D y 1〜D y 1 0は管軸方向にラインフォーカス型 に配置されている。  In the electron multiplier section 28, the four dynode rows 30 are arranged so as to face the four openings 24 on a one-to-one basis. Each dynode row 30 is for multiplying the photoelectrons that have entered through the corresponding aperture 24. The dynodes Dy1 to Dy10 are arranged in a line focus type in the tube axis direction.
ァノード部 3 2において、 4個のァノード電極 3 4は 4個のダイノー ド列 3 0に 1対 1に対応して配置されている。 各アノード電極 3 4は、 対応するダイノード列 3 0のうちの 9段目のダイノード D y 9と 1 0段 目のダイノード D y 1 0の間にこれらに対向するように配置されている 各ァノード電極 3 4は、 対応するダイノ一ド列 3 0で増倍された光電子 を受け取り、 光電子の量を示す出力信号を出力する。 In the anode section 32, four anode electrodes 34 are arranged in one-to-one correspondence with the four dynode rows 30. Each anode electrode 34 is disposed between the dynode Dy9 of the ninth stage and the dynode Dy10 of the tenth stage of the corresponding dynode row 30 so as to face these. Each of the anode electrodes 34 receives the photoelectrons multiplied by the corresponding dynode row 30 and outputs an output signal indicating the amount of photoelectrons.
4個のシールド電極 3 6は、 4個のアノード電極 3 4を互いに電気的 にシールドするためのものである。  The four shield electrodes 36 are for electrically shielding the four anode electrodes 34 from each other.
入出力ピン 3 8は、 光電面 2 0、 収束電極板 2 2、 電子增倍部 2 8、 及び、 アノード部 3 2と図示しない配線にて接続されており、 ステム 7 を貫通して固定されている。  The input / output pins 38 are connected to the photocathode 20, the focusing electrode plate 22, the electron multiplier section 28, and the anode section 32 by wiring (not shown), and are fixed through the stem 7. ing.
このように、 本実施の形態では、 2 X 2個のダイノード列 3 0及ぴ 2 X 2個のァノード電極 3 4が、 2 X 2のセグメント空間 Nに対応して設 けられている。 各ダイノード列 3 0が光電面 2 0の対応する領域から放 出された光電子を受け取り増倍する。 対応するアノード電極 3 4が光電 子を受け取りその量を示す出力信号を入出力ピン 3 8を介して外部に出 力する。  As described above, in the present embodiment, 2 × 2 dynode rows 30 and 2 × 2 anode electrodes 34 are provided corresponding to the 2 × 2 segment space N. Each dynode array 30 receives and multiplies photoelectrons emitted from the corresponding area of the photocathode 20. The corresponding anode electrode 34 receives the photoelectron and outputs an output signal indicating the amount of the photoelectron via the input / output pin 38 to the outside.
仕切板 2 6は、 側管 1 1の筒頭部 1 7、 ファンネル形状接続部 1 5、 及び、 筒本体部 1 3にわたつて延在している。 一方、 収束電極板 2 2、 電子増倍部 2 8、 及び、 アノード部 3 2は、 筒本体部 1 3内に配置され ている。  The partition plate 26 extends across the cylinder head 17 of the side tube 11, the funnel-shaped connection portion 15, and the cylinder main body 13. On the other hand, the focusing electrode plate 22, the electron multiplier section 28, and the anode section 32 are arranged in the cylinder main body 13.
磁気シールド 4 0は、 筒本体部 1 3内部に位置している収束電極板 2 2、 電子増倍部 2 8、 及び、 アノード部 3 2を外部磁界からシールドす るためのものである。 高透磁率材料 4 2は、 例えば、 パーマロイ製で、 筒本体部 1 3の外周を直接覆っている。 樹脂被膜 4 4は、 高透磁率材料 4 2の外周を覆っている。 樹脂被膜 4 4は、 高透磁率材料 4 2を光電子 増倍管 1に対して固定するためのものである。  The magnetic shield 40 is for shielding the focusing electrode plate 22, the electron multiplier 28, and the anode 32 located inside the cylinder body 13 from an external magnetic field. The high magnetic permeability material 42 is made of, for example, permalloy, and directly covers the outer periphery of the tube main body 13. The resin coating 44 covers the outer periphery of the high magnetic permeability material 42. The resin coating 44 is for fixing the high magnetic permeability material 42 to the photomultiplier tube 1.
上記の構造を備える本実施の形態のマルチアノード型光電子増倍管 1 は、 以下のように動作する。  The multi-anode type photomultiplier tube 1 of the present embodiment having the above structure operates as follows.
光電面 2 0、 収束電極板 2 2、 アノード部 3 2、 及ぴ、 電子増倍部 2 8には入出力ピン 3 8を介して所定の電圧が印加される。入射面板 9のうち 1つのセグメント空間 Nに対応する領域に光が入射すると、 光電面 2 0の対応する領域から、 この入射した光の量に応じた量の光 電子が放出される。 この光電子は、 このセグメント空間 Nを飛翔する 際、 収束電極板 2 2で収束され、 対応する開口 2 4を通過して対応す るダイノード列 3 0に入射する。 光電子は、 ここで多段増倍されて、 対応するァノード電極 3 4で集められ、 出力信号として入出力ピン 3 8を介して出力される。 この出力信号により、 入射面板 9のうちどの セグメント空間 Nに対向する領域にどれだけの量の光が入射したか がわかる。 Photocathode 20, focusing electrode plate 22, anode 32, and electron multiplier A predetermined voltage is applied to 28 through an input / output pin 38. When light enters a region corresponding to one segment space N of the incident surface plate 9, an amount of photoelectrons corresponding to the amount of the incident light is emitted from the corresponding region of the photocathode 20. When the photoelectrons fly through the segment space N, they are converged by the focusing electrode plate 22, pass through the corresponding aperture 24, and enter the corresponding dynode array 30. Here, the photoelectrons are multiplied by multiple stages, collected at the corresponding anode electrode 34, and output as an output signal via the input / output pin 38. From this output signal, it is possible to know how much light is incident on the region facing the segment space N in the incident face plate 9.
また、 本実施の形態では、 収束電極板 2 2、 電子増倍部 2 8、 及び、 アノード部 3 2が筒本体部 1 3内に配置されており、 筒本体部 1 3の外 周に磁気シールド 4 0が設けられている。 このため、 光電子の収束及び 増倍が、 外部磁界の影響を受けることなく正確に行われる。  Further, in the present embodiment, the focusing electrode plate 22, the electron multiplier section 28, and the anode section 32 are arranged in the cylinder body section 13, and a magnetic field is provided around the cylinder body section 13. A shield 40 is provided. For this reason, the convergence and multiplication of photoelectrons are performed accurately without being affected by an external magnetic field.
本実施の形態のマルチアノード型光電子増倍管 1では、 筒頭部 1 7及 び入射面板 9の外径 W 2が筒本体部 1 3の外径 W 1より大きく、 筒頭部 1 7の内径 W 2, も筒本体部 1 3の内径 W 1 ' より大きい。 このため、 入射面板 9の下面 9 dのうちの有効光電領域 Kの面積を大きくすること ができ、 多くの光を光電面 2 0に入射させ光電子に変換させることがで きる。  In the multi-anode type photomultiplier tube 1 of the present embodiment, the outer diameter W 2 of the cylinder head 17 and the incidence face plate 9 is larger than the outer diameter W 1 of the cylinder body 13, and the cylinder head 17 The inner diameter W 2 is also larger than the inner diameter W 1 ′ of the cylinder body 13. For this reason, the area of the effective photoelectric region K of the lower surface 9d of the incident surface plate 9 can be increased, and a large amount of light can be incident on the photoelectric surface 20 and converted into photoelectrons.
しかも、 本実施の形態では、 筒頭部 1 7の湾曲角部 1 7 bの外側曲率 半径 R 2が筒本体部 1 3の湾曲角部 1 3 bの外側曲率半径 R 1より小さ い。 また、 筒頭部 1 7の湾曲角部 1 7 bの内側曲率半径 R 2 ' が筒本体 部 1 3の湾曲角部 1 3 bの内側曲率半径 R 1, より小さい。 このため、 湾曲角部 1 7 b付近の領域のうち湾曲角部 1 7 bの内側の有効光電領域 Kの面積を大きくすることができる。 したがって、 湾曲角部 1 7 b付近 における光電面 2 0の面積を大きくし、 湾曲角部 1 7 b付近に到達した 光を有効に光電面 2 0に入射させることができる。 Moreover, in the present embodiment, the outer radius of curvature R2 of the curved corner portion 17b of the cylinder head 17 is smaller than the outer radius of curvature R1 of the curved corner portion 13b of the cylinder body 13. Also, the inner radius of curvature R 2 ′ of the curved corner 17 b of the cylinder head 17 is smaller than the inner radius of curvature R 1 of the curved corner 13 b of the cylinder body 13. For this reason, the area of the effective photoelectric region K inside the curved corner 17b in the region near the curved corner 17b can be increased. Therefore, around the curved corner 17 b In this case, the area of the photocathode 20 can be increased, and the light that has reached the vicinity of the curved corner 17 b can be effectively incident on the photocathode 20.
なお、 筒頭部 1 7は、 外径及び内径が大きくかつ湾曲角部 1 7 bの曲 率半径が小さいためその強度は低い。 しかしながら、 外径及ぴ内径が小 さくかつ湾曲角部 1 3 bの曲率半径が大きい筒本体部 1 3が筒頭部 1 7 を支持している。このため、側管 1 1全体の強度は十分高くなっている。 しかも、 筒本体部 1 3の管軸方向長さ L 1が筒頭部 1 7の管軸方向長さ L 2より長いため、 側管 1 1全体の強度は一層高くなつている。  The strength of the cylinder head 17 is low because the outer diameter and the inner diameter are large and the radius of curvature of the curved corner portion 17b is small. However, the cylinder main body 13 having a small outer diameter and inner diameter and a large radius of curvature of the curved corner portion 13b supports the cylinder head 17. For this reason, the strength of the entire side tube 11 is sufficiently high. In addition, since the length L1 of the tube body 13 in the tube axis direction is longer than the length L2 of the tube head 17 in the tube axis direction, the overall strength of the side tube 11 is further increased.
以上のように、 本実施の形態では、 筒頭部 1 7の管軸に略垂直な断面 の大きさが筒本体部 1 3の管軸に略垂直な断面の大きさより大きく、 筒 頭部 1 7が有する 4つの湾曲角部 1 7 bの曲率半径が筒本体部 1 3の 4 つの湾曲角部 1 3 bの曲率半径より小さく、 筒頭部 1 7の管軸に沿った 長さが筒本体部 1 3の管軸に沿った長さより短い。 したがって、 筒頭部 1 7の大きさ及び湾曲角部 1 7 bの曲率半径を用途に応じた所望の大き さとすると共に、 筒本体部 1 3の長さ、 筒頭部 1 7の長さ, 筒本体部 1 3の大きさ、 及ぴ、 湾曲角部 1 3 bの曲率半径を、 筒頭部 1 7の大きさ 及ぴ湾曲角部 1 7 bの曲率半径の値に対応して調整することにより、 側 管 1 1全体の強度を十分高く維持することができる。  As described above, in the present embodiment, the size of the cross section substantially perpendicular to the tube axis of the cylinder head 17 is larger than the size of the cross section substantially perpendicular to the tube axis of the cylinder main body 13. The radius of curvature of the four curved corners 17 b of 7 is smaller than the radius of curvature of the four curved corners 13 b of the cylinder body 13, and the length of the cylinder head 17 along the pipe axis is It is shorter than the length of the main body 13 along the pipe axis. Therefore, the size of the cylinder head 17 and the radius of curvature of the curved corner portion 17 b are set to desired sizes according to the application, and the length of the cylinder body 13, the length of the cylinder head 17, Adjust the size of the cylinder body 13 and the radius of curvature of the curved corner 13 b according to the size of the cylinder head 17 and the radius of curvature of the curved corner 17 b. This makes it possible to maintain the strength of the entire side tube 11 sufficiently high.
次に、 第 1の実施の形態による放射線検出器 5 0について第 9図〜第 1 1図に基づき説明する。  Next, a radiation detector 50 according to the first embodiment will be described with reference to FIGS. 9 to 11.
第 9図は、本実施の形態による放射線検出器 5 0を複数個(この場合、 3個) 互いに隣り合うように 1次元状に配置した状態を模式的に示す模 式平面図である。 第 1 0図は、 第 9図の複数の放射線検出器 5 0の X— X線縦断面図である。 第 1 1図は、 第 1 0図に示す要部 Eを拡大して示 す拡大図である。  FIG. 9 is a schematic plan view schematically showing a state in which a plurality of (in this case, three) radiation detectors 50 according to the present embodiment are arranged one-dimensionally so as to be adjacent to each other. FIG. 10 is a vertical sectional view of the plurality of radiation detectors 50 of FIG. 9 taken along the line X-X. FIG. 11 is an enlarged view showing a main part E shown in FIG. 10 in an enlarged manner.
第 1 0図に示すように、 放射線検出器 5 0は、 マルチアノード型光電 子増倍管 1とシンチレ一タマトリックス 5 2とを備えている。 マルチア ノ一ド型光電子増倍管 1は第 2図及び第 3図を参照して説明した構造を 有している。 なお、 第 1 0図では、 明瞭化を図るため、 マルチアノード 型光電子増倍管 1の内部構造の図示を省略している。 As shown in FIG. 10, the radiation detector 50 is a multi-anode type photoelectric converter. It has a photomultiplier tube 1 and a scintillator matrix 52. The multi-anode photomultiplier tube 1 has the structure described with reference to FIGS. 2 and 3. In FIG. 10, illustration of the internal structure of the multi-anode type photomultiplier tube 1 is omitted for clarity.
シンチレ一タマトリックス 5 2は、 放射線の入射に応じシンチレーシ ョン光を発生するためのものである。第 9図及び第 1 0図に示すように、 シンチレ一タマトリックス 5 2は、 複数 (この例では、 3 6個) のシン チレータ 5 4が 2次元マトリックス状に 6列 X 6行に並んで配置されて 構成されている。 各シンチレータ 5 4は、 略正方形状断面を有する直方 体形状をしており、 略正方形状の出力面 (下面) 5 4 dを有している。 シンチレータ 5 4は、 これに放射線が入射するとその放射線の量に応じ たシンチレーション光を発生しこのシンチレーション光を散乱光として 出力面 5 4 dから出力する。  The scintillator matrix 52 is for generating scintillation light according to the incidence of radiation. As shown in FIG. 9 and FIG. 10, the scintillator matrix 52 is composed of a plurality of (36 in this example) scintillators 54 arranged in a 6-dimensional X6 row in a two-dimensional matrix. It is arranged and configured. Each scintillator 54 has a rectangular parallelepiped shape having a substantially square cross section, and has a substantially square output surface (lower surface) 54d. When radiation is incident on the scintillator 54, the scintillator 54 generates scintillation light corresponding to the amount of the radiation, and outputs the scintillation light as scattered light from the output surface 54d.
マルチアノード型光電子増倍管 1の入射面板 9の上面 9 uは、 シンチ レータマトリックス 5 2の全シンチレータ 5 4の出力面 5 4 dに対向し た状態でこれら出力面 5 4 dに接着されている。  The upper surface 9 u of the entrance face plate 9 of the multi-anode type photomultiplier tube 1 is bonded to these output faces 54 d while facing the output faces 54 d of all scintillators 54 of the scintillator matrix 52. I have.
第 9図は、 シンチレ一タマトリックス 5 2を構成する 3 6個のシンチ レータ 5 4の出力面 5 4 dと入射面板 9の有効光電領域 Kとの位置関係 も模式的に示している。 この図より明らかなように、 シンチレータマト リックス 5 2の 3 6個のシンチレータ 5 4のうちシンチレ一タマトリツ タス 5 2の外周部に位置しているシンチレータ 5 4は、 入射面板 9の周 縁部を介して筒頭部 1 7の周縁部に対向している。 特に、 シンチレータ マトリックス 5 2の 4つの隅に位置しているシンチレータ 5 4は、 入射 面板 9の 4つの湾曲角部 9 bを介して筒頭部 1 7の 4つの湾曲角部 1 7 bに対向している。  FIG. 9 also schematically shows the positional relationship between the output surface 54 d of the 36 scintillators 54 constituting the scintillator matrix 52 and the effective photoelectric area K of the entrance surface plate 9. As is clear from this figure, among the 36 scintillators 54 of the scintillator matrix 52, the scintillator 54 located on the outer peripheral portion of the scintillator matrix 52, It faces the periphery of the cylinder head 17 through the intermediary. In particular, the scintillators 54 located at the four corners of the scintillator matrix 52 face the four curved corners 17 b of the cylinder head 17 via the four curved corners 9 b of the entrance face plate 9. are doing.
ここで、 複数の放射線検出器 5 0を並べるにあたり、 隣り合う筒頭 部 1 7が直接接触せず必要最小限のスペース Sだけ離間している必 要がある。 隣り合う筒頭部 1 7が互いにぶつかりあって損傷してしま うことを防止するためである。 Here, when arranging multiple radiation detectors 50, adjacent cylinder heads Parts 17 must be separated by the minimum necessary space S without direct contact. This is to prevent adjacent cylinder heads 17 from being damaged by colliding with each other.
このため、 本実施の形態では、 マルチアノード型光電子增倍管 1の 筒本体部 1 3の外径 W 1、 入射面板 9及ぴ筒頭部 1 7の外径 W 2、 筒 頭部 1 7の内径 W 2 ' は、 シンチレータマトリックス 5 2の外径 Wに 対し、 以下の関係を有している。 なお、 磁気シールド 4 0の厚みを M とする。 また、 磁気シールド厚み Mはスペース Sより大きいとする。 筒本体部 1 3の外径 W 1はシンチレ一タマトリックス 5 2の外径 Wと 等しい。 入射面板 9及ぴ筒頭部 1 7の外径 W 2は、 筒本体部 1 3の外径 W l、 すなわち、 シンチレ一タマトリックス 5 2の外径 Wより、 磁気シ 一ルド 4 0の厚み Mと必要最小限のスペース量 Sとの差分 (M— S ) だ け大きい。 なお、 筒頭部 1 7の内径 W 2 ' は、 外径 W 2より肉厚 T 2の 2倍だけ小さい。 ここで、 2 x T 2の方が (M—S ) よりわずかに大き いとする。 したがって、 筒頭部 1 7の内径 W 2 ' はシンチレ一タマトリ ックス 5 2の外径 Wよりわずかに小さい。  For this reason, in the present embodiment, the outer diameter W 1 of the tube main body 13 of the multi-anode type photomultiplier tube 1, the outer diameter W 2 of the entrance face plate 9 and the tube head 17, the tube head 17 Has the following relationship with respect to the outer diameter W of the scintillator matrix 52. The thickness of the magnetic shield 40 is M. The magnetic shield thickness M is larger than the space S. The outer diameter W 1 of the cylinder body 13 is equal to the outer diameter W of the scintillator matrix 52. The outer diameter W2 of the entrance face plate 9 and the cylinder head 17 is the thickness of the magnetic shield 40 from the outer diameter Wl of the cylinder body 13, that is, the outer diameter W of the scintillator matrix 52. The difference between M and the minimum required space amount S (M-S) is large. The inner diameter W 2 ′ of the cylinder head 17 is smaller than the outer diameter W 2 by twice the thickness T 2. Here, it is assumed that 2 × T 2 is slightly larger than (M−S). Therefore, the inner diameter W 2 ′ of the cylinder head 17 is slightly smaller than the outer diameter W of the scintillator matrix 52.
上記寸法を有する放射線検出器 5 0を隣り合う磁気シールド 4 0が互 いに略接触するように配置すると、 第 1 1図に示すように、 隣り合う筒 頭部 1 7を必要最小限のスペース量 Sだけ離間させることができる。 ま た、 この結果、 隣り合うシンチレ一タマトリックス 5 2は、 互いに、 磁 気シールド 4 0の厚み Μに等しい一定量だけ離間する。  When the radiation detectors 50 having the above dimensions are arranged so that the adjacent magnetic shields 40 are substantially in contact with each other, as shown in FIG. 11, the adjacent cylinder heads 17 have the minimum necessary space. It can be separated by an amount S. As a result, the adjacent scintillator matrices 52 are separated from each other by a fixed amount equal to the thickness の of the magnetic shield 40.
また、 入射面板 9及び筒頭部 1 7の外径 W 2がシンチレ一タマトリツ タス 5 2の外径 Wより大きく、 筒頭部 1 7の内径 W 2 ' がシンチレータ マトリックス 5 2の外径 Wよりわずかに小さいため、 第 9図に示すよう に、 シンチレ一タマトリックス 5 2の外周部に位置しているシンチレ一 タ 5 4の出力面 5 4 dの大部分を筒頭部 1 7の内側の有効光電領域 Kに 対向させることができる。 The outer diameter W2 of the entrance face plate 9 and the cylinder head 17 is larger than the outer diameter W of the scintillator matrix 52, and the inner diameter W2 'of the cylinder head 17 is larger than the outer diameter W of the scintillator matrix 52. Because of the small size, as shown in Fig. 9, most of the output surface 54d of the scintillator 54 located on the outer periphery of the scintillator matrix 52 Effective photoelectric area K Can face each other.
更に、 本実施の形態では、 湾曲角部 1 7 bの曲率半径 R 2及ぴ R 2 ' を所望の小さい値に設定している。 このため、 シンチレ一タマトリック ス 5 2の 4つの隅に位置しているシンチレータ 5 4の出力面 5 4 dの大 部分を湾曲角部 1 Ί bの内側の有効光電領域 Kに対向させることができ る。  Furthermore, in the present embodiment, the curvature radii R 2 and R 2 ′ of the curved corner portion 17 b are set to desired small values. Therefore, most of the output surface 54 d of the scintillator 54 located at the four corners of the scintillator matrix 52 can face the effective photoelectric region K inside the curved corner 1 Ίb. it can.
さらに、 本実施の形態によれば、 シンチレ一タマトリックス 5 2を 構成するシンチレータ 5 4の個数を増やしたい場合等、光電面 2 0の 面積を更に大きく したい場合には、 筒頭部 1 7の断面積 W 2 , W 2 ' を一層大きく し、 湾曲角部 1 7 bの曲率半径 R 2 , R 2 ' を所望の値 に設定すれば良い。 そして、 側管 1 1全体の強度を維持すべく、 筒本 体部 1 3の長さ L 1、 '筒頭部 1 7の長さ L 2 , 筒本体部 1 3の断面積 W 1 , W 1 ' 、 及ぴ、 湾曲角部 1 3 bの曲率半径 R 1 , R 1, を、 筒 頭部 1 7の断面積 W 2, W 2, 及び湾曲角部 1 7 bの曲率半径 R 2, R 2 ' の値に対応して調整すれば良い。 光電面 2 0の面積を大きく し 湾曲角部 1 7 b付近の光を有効に光電面 2 0に入射させつつ、側管 1 1全体の強度を十分高く維持することができる。  Further, according to the present embodiment, when the area of the photocathode 20 needs to be further increased, for example, when the number of scintillators 54 constituting the scintillator matrix 52 is to be increased, the cylinder head 17 is required. The cross-sectional areas W 2 and W 2 ′ may be further increased, and the radius of curvature R 2 and R 2 ′ of the curved corner 17 b may be set to a desired value. Then, in order to maintain the strength of the entire side tube 11, the length L 1 of the tube body 13, the length L 2 of the tube head 17, the cross-sectional area W 1, W of the tube body 13 The curvature radii R 1, R 1 of the curved corner portion 1 3 b, and the cross-sectional area W 2, W 2 of the cylinder head 17, and the curvature radius R 2, of the curved corner portion 17 b It may be adjusted according to the value of R 2 '. By increasing the area of the photocathode 20, the light in the vicinity of the curved corner 17b can be made to effectively enter the photocathode 20, and the intensity of the entire side tube 11 can be kept sufficiently high.
上記構造を有する本実施の形態の放射線検出器 5 0は、 以下のよう に、 動作する。  The radiation detector 50 according to the present embodiment having the above structure operates as follows.
1つの放射線検出器 5 0における 1つのシンチレータ 5 4に放射 線 (具体的には、 ガンマ線) が入射すると、 そのシンチレータ 5 4が シンチレーション光を発生する。 シンチレーション光は、 散乱光とし て、 当該シンチレータ 5 4の出力面 5 4 dから光電子増倍管の入射面 板 9に入射し、 光電面 2 0で光電子に変換される。 光電子は電子増倍 部 2 8で増倍され、 ァノード部 3 2から 4つの出力信号として取り出 される。 図示しない演算装置 (コンピュータ) が、 この 4つの出力信 号を受け取り、 これらの比を演算する重心位置演算を実行する。 この 演算結果により、放射線がどのシンチレータ 5 4に入射したかがわか る。複数個の放射線検出器 5 0が互いに隣り合うように一定の間隔に て配置されているため、放射線の入射位置分布を広範囲に亘つて検出 することができる。 When a radiation (specifically, a gamma ray) is incident on one scintillator 54 in one radiation detector 50, the scintillator 54 generates scintillation light. The scintillation light is incident as scattered light from the output surface 54 d of the scintillator 54 on the incident surface plate 9 of the photomultiplier, and is converted into photoelectrons on the photoelectric surface 20. The photoelectrons are multiplied by the electron multiplier section 28 and extracted from the anode section 32 as four output signals. An arithmetic unit (computer), not shown, outputs these four output signals. Signal, and calculate the center of gravity to calculate these ratios. The calculation result indicates which scintillator 54 the radiation has entered. Since the plurality of radiation detectors 50 are arranged at regular intervals so as to be adjacent to each other, the distribution of the incident position of radiation can be detected over a wide range.
本実施の形態では、 筒頭部 1 7の外径 W 2及ぴ内径 W 2, が大きいた め、 シンチレ一タマトリックス 5 2の外周部に位置しているシンチレ一 タ 5 4の出力面 5 4 dの大部分を筒頭部 1 7の内側の有効光電領域 K、 すなわち、 光電面 2 0に対向させることができる。  In the present embodiment, since the outer diameter W 2 and inner diameter W 2 of the cylinder head 17 are large, the output surface 5 of the scintillator 54 located on the outer periphery of the scintillator matrix 52 Most of 4d can be opposed to the effective photoelectric area K inside the cylinder head 17, that is, the photoelectric surface 20.
また、 筒頭部 1 7の湾曲角部 1 7 bの曲率半径 (外側曲率半径 R 2及 ぴ内側曲率半径 R 2 ' )が小さいため、シンチレ一タマトリックス 5 2の 各隅部に位置しているシンチレータ 5 4の出力面 5 4 dのうちの大部分 を筒頭部 1 7の湾曲角部 1 7 bの内側の.光電面 2 0に対向させることが できる。  In addition, since the radius of curvature (outer radius of curvature R 2 and inner radius of curvature R 2 ′) of the curved corner 17 b of the cylinder head 17 is small, it is located at each corner of the scintillator matrix 52. Most of the output surface 54 d of the scintillator 54 can face the photocathode 20 inside the curved corner 17 b of the cylinder head 17.
したがって、 シンチレ一タマトリックス 5 2の中央部に位置している シンチレータ 5 4からの出力光の全てを光電面 2 0に入射させるのみな らず、 外周部に位置しているシンチレータ 5 4からの出力光の略全部を 光電面 2 0に入射させることができる。 このため、 光電面 2 0は、 全シ ンチレータ 5 4からのシンチレーション光を略均一な割合で受け取るこ とができ、 放射線の検出を略均一な感度で行うことができる。  Therefore, not only does all of the output light from the scintillator 54 located at the center of the scintillator matrix 52 impinge on the photocathode 20 but also from the scintillator 54 located at the outer periphery. Almost all of the output light can be made incident on the photocathode 20. For this reason, the photocathode 20 can receive the scintillation light from all the scintillators 54 at a substantially uniform rate, and can detect radiation with substantially uniform sensitivity.
特に、 本実施の形態では、 磁気シールド 4 0が側管 1 1のうち外径の 小さい方の筒本体部 1 3の外周に設けられている。 このため、 筒頭部 1 7の外径 W 2を筒本体部 1 3の外径 W 1と磁気シールド 4 0の厚み Mと を合わせた外径と略同程度まで大きくすることができる。 したがって、 光電面 2 0の大きさを大きくすることができる。 また、 磁気シールド 4 0を含めた側管 1 1全体の形状を段差がほとんどない形状とすることが でき、 扱いやすくなつている。 In particular, in the present embodiment, the magnetic shield 40 is provided on the outer periphery of the cylinder main body 13 having the smaller outer diameter of the side tube 11. For this reason, the outer diameter W2 of the cylinder head 17 can be increased to substantially the same as the outer diameter obtained by combining the outer diameter W1 of the cylinder main body 13 and the thickness M of the magnetic shield 40. Therefore, the size of the photocathode 20 can be increased. In addition, the shape of the entire side tube 11 including the magnetic shield 40 may be a shape having almost no step. Can be handled easily.
以下、 第 2の実施の形態によるマルチアノ一ド型光電子増倍管 1及び 放射線検出器 5 0について説明する。  Hereinafter, a multi-anod type photomultiplier tube 1 and a radiation detector 50 according to the second embodiment will be described.
まず、 本実施の形態によるマルチアノード型光電子増倍管 1について 第 2図〜第 6図、 及び、 第 8図を参照して説明する。  First, the multi-anode type photomultiplier tube 1 according to the present embodiment will be described with reference to FIGS. 2 to 6 and FIG.
本実施の形態によるマルチアノード型光電子増倍管 1は、 筒頭部 1 7 の断面形状を除き、 第 1の実施の形態のマルチアノ一ド型光電子増倍管 1と同一である。  The multi-anode photomultiplier tube 1 according to the present embodiment is the same as the multi-anod photomultiplier tube 1 of the first embodiment, except for the cross-sectional shape of the cylinder head 17.
すなわち、 本実施の形態のマルチアノード型光電子増倍管 1は、 第 2 図及ぴ第 3図に示す構造を有している。 また、 本実施の形態のマルチア ノード型光電子増倍管 1が採用するガラス容器 5は、第 4図に示す外形、 第 5図に示す縦断面形状、 及び、 第 8図に示す上面形状を有している。 また、 筒本体部 1 3の横断面形状 (すなわち、 第 5図の V I—V I断面 形状) は、 第 6図に示す形状となっている。 しかしながら、 筒頭部 1 7 の横断面形状 (すなわち、 第 5図の V I I— V I I断面形状) は、 第 7 図に示す形状ではなく、 第 1 2図に示す形状となっている。  That is, the multi-anode type photomultiplier tube 1 of the present embodiment has the structure shown in FIGS. 2 and 3. Further, the glass container 5 employed in the multi-anode photomultiplier tube 1 of the present embodiment has an outer shape shown in FIG. 4, a vertical cross-sectional shape shown in FIG. 5, and a top shape shown in FIG. are doing. Further, the cross-sectional shape of the cylinder main body 13 (that is, the VI-VI cross-sectional shape in FIG. 5) is the shape shown in FIG. However, the cross-sectional shape of the cylinder head 17 (that is, the VII-VII cross-sectional shape in FIG. 5) is not the shape shown in FIG. 7, but the shape shown in FIG.
以下、 本実施の形態における筒頭部 1 7の断面形状について第 1 2図 を参照して説明する。  Hereinafter, the cross-sectional shape of the cylinder head 17 in the present embodiment will be described with reference to FIG.
本実施の形態においては、 筒頭部 1 7の外側形状は第 1の実施の形態 (第 7図) と同一である。 すなわち、 外周面 1 7 oは、 各 2つの隣り合 う湾曲角部 1 7 bを長さ W 2 (筒頭部 1 7の外径) で略直線状に結んで いる。 湾曲角部 1 7 bは、 曲率半径 (外側曲率半径) R 2にて湾曲して いる。 外側曲率半径 R 2は筒本体部 1 3の湾曲角部 1 3 bの外側曲率半 径 R 1より小さい。 外径 W 2は筒本体部 1 3の外径 W 1より大きい。 一方、 筒頭部 1 7の内周面 1 7 iは、 湾曲角部 1 7 bに向かってえぐ られたようなピンクッション形状をしている。 すなわち、 筒頭部 1 7の 内周面 1 7 iは、 各 2つの隣り合う湾曲角部 1 7 bを曲線状に結んでい る。 ここで、 內周面 1 7 i 'は、 各 2つの隣り合う湾曲角部 1 7 b間の略 中心位置で外周面 1 7 oから最も離間しており、 対応する 2つの湾曲角 部 1 7 bへ向かうに連れて外周面 1 7 oに徐々に近づいていく。 このた め、 筒頭部 1 7の肉厚 (外周面 1 7 oと内周面 1 7 iの間の距離) T 2 は、 2つの隣り合う湾曲角部 1 1 b間の略中心位置で最大値 T 2 m a X を採り、 湾曲角部 1 7 bに近づくにつれ徐々に小さくなつていく。 この ため、 内周面 1 7 iの湾曲角部 1 7 bにおける内側曲率半径 R 2, は、 外側曲率半径 R 2より小さく、 したがって、 筒本体部 1 3における内側 曲率半径 R 1 ' より小さい。 なお、 肉厚の最大値 T 2 m a Xは、 筒本体 部 1. 3の肉厚 T 1と略等しい。 また、 本実施の形態の肉厚の最大値 T 2 m a xは、 第 1の実施の形態の肉厚 T 2と略等しい。 なお、 本実施の形 態の内径 W 2 ' を W 2, =W 2 - 2 X T 2 m a Xと定義する。 内径 W 2, は筒本体部 1 3の内径 W 1 ' より大きい。 In the present embodiment, the outer shape of the cylinder head 17 is the same as that of the first embodiment (FIG. 7). That is, the outer peripheral surface 17o connects each two adjacent curved corners 17b in a substantially straight line with a length W2 (outer diameter of the cylinder head 17). The curved corner 17b is curved with a radius of curvature (outer radius of curvature) R2. The outer radius of curvature R 2 is smaller than the outer radius of curvature R 1 of the curved corner portion 13 b of the cylinder body 13. The outer diameter W2 is larger than the outer diameter W1 of the cylinder body 13. On the other hand, the inner peripheral surface 17i of the cylinder head 17 has a pincushion shape as if it were cut out toward the curved corner 17b. That is, the cylinder head 17 The inner peripheral surface 17i connects two adjacent curved corners 17b in a curved shape. Here, 內 peripheral surface 17 i ′ is most distant from outer peripheral surface 17 o at the approximate center position between each two adjacent curved corners 17 b, and the corresponding two curved corners 17 As it moves toward b, it gradually approaches the outer peripheral surface 17 o. For this reason, the thickness of the cylinder head 17 (the distance between the outer peripheral surface 17 o and the inner peripheral surface 17 i) T 2 is approximately the center position between two adjacent curved corners 11 b. It takes the maximum value T 2 ma X and gradually decreases as it approaches the curved corner 17 b. For this reason, the inner radius of curvature R 2, at the curved corner 17 b of the inner peripheral surface 17 i, is smaller than the outer radius of curvature R 2, and is therefore smaller than the inner radius of curvature R 1 ′ of the cylinder body 13. Note that the maximum value of the wall thickness T2max is substantially equal to the wall thickness T1 of the cylinder body 1.3. Further, the maximum value T 2 max of the thickness of the present embodiment is substantially equal to the thickness T 2 of the first embodiment. The inner diameter W 2 ′ in the present embodiment is defined as W 2, = W 2 −2 XT 2 max. The inner diameter W2, is larger than the inner diameter W1 'of the cylinder body 13.
上記形状を有する側管 1 1は、 以下の方法により作製することができ る。 外部金型を用意する。 外部金型の内周面の形状は、 側管 1 1の外周 面の形状と一致している。 外部金型内にガラスを所望の厚みになるよう に吹き込むと、 本実施の形態の側管 1 1が形成される。 なお、 本実施の 形態の側管 1 1も、 軟質ガラスでも硬質ガラスでも作製することができ る。  The side tube 11 having the above shape can be manufactured by the following method. Prepare an external mold. The shape of the inner peripheral surface of the outer mold matches the shape of the outer peripheral surface of the side tube 11. When glass is blown into the external mold to a desired thickness, side tube 11 of the present embodiment is formed. Note that the side tube 11 of the present embodiment can also be made of soft glass or hard glass.
本実施の形態によれば、 筒頭部 1 7の内周面 1 7 iが湾曲角部 1 7 b に向かってえぐられたような形状となっている。 このため、 有効光電領 域 Kのうち湾曲角部 1 7 b付近の面積を、 第 1の実施の形態に比べ更に 大きくすることができる。 したがって、 湾曲角部 1 7 b付近に到達した 光をより有効に光電面 2 0に入射させ光電子に変換させることができる。 次に、 本実施の形態による放射線検出器 5 0について説明する。 本実施の形態による放射線検出器 5 0は、 本実施の形態によるマルチ アノード型光電子増倍管 1を採用した点を除き、 第 9図〜第 1 1図を参 照して説明した第 1の実施の形態の放射線検出器 5 0と同一である。 本実施の形態による放射線検出器 5 0によれば、 筒頭部 1 7が第 1 2 図に示す断面形状を有しているため、 シンチレ一タマトリックス 5 2の 各隅部に位置しているシンチレータ 5 4の出力面 5 4 dのうちの大部分 を筒頭部 1 7の湾曲角部 1 7 bの内側の光電面 2 0に対向させることが できる。 したがって、 全シンチレータ 5 4からのシンチレーシヨン光を 均一な割合で光電変換することができ、 放射線の検出を均一な感度で行 うことができる。 According to the present embodiment, the inner peripheral surface 17i of the cylinder head 17 has a shape that is hollowed toward the curved corner 17b. For this reason, the area near the curved corner portion 17b in the effective photoelectric area K can be further increased as compared with the first embodiment. Therefore, the light that has reached the vicinity of the curved corner 17b can be more effectively made incident on the photocathode 20 and converted into photoelectrons. Next, the radiation detector 50 according to the present embodiment will be described. The radiation detector 50 according to the present embodiment is the same as the first embodiment described with reference to FIGS. 9 to 11 except that the multi-anode type photomultiplier tube 1 according to the present embodiment is employed. This is the same as the radiation detector 50 of the embodiment. According to the radiation detector 50 according to the present embodiment, since the cylinder head 17 has the cross-sectional shape shown in FIG. 12, it is located at each corner of the scintillator matrix 52. Most of the output surface 54 d of the scintillator 54 can face the photoelectric surface 20 inside the curved corner 17 b of the cylinder head 17. Therefore, the scintillation light from all the scintillators 54 can be photoelectrically converted at a uniform rate, and radiation can be detected with a uniform sensitivity.
以下、 第 1及び第 2の実施の形態のマルチアノ一ド型光電子増倍管 1 及ぴ放射線検出器 5 0により得られる効果を、 比較例のマルチアノード 型光電子増倍管及び放射線検出器と比較して詳しく説明する。  Hereinafter, the effects obtained by the multi-anod type photomultiplier tube 1 and the radiation detector 50 of the first and second embodiments are compared with the multi-anode type photomultiplier tube and the radiation detector of the comparative example. And will be described in detail.
まず、 比較例のマルチアノード型光電子増倍管 1 0 1について第 1 3 図及ぴ第 1 4図を参照して説明する。  First, a multi-anode type photomultiplier tube 101 of a comparative example will be described with reference to FIGS. 13 and 14.
第 1 3図は、 比較例のマルチアノード型光電子増倍管 1 0 1の平面図 である。  FIG. 13 is a plan view of a multi-anode type photomultiplier tube 101 of a comparative example.
第 1 4図は、 第 1 3図における X I V— X I V線縦断面図である。 第 1 3図及ぴ第 1 4図に示すように、 比較例のマルチアノード型光電 子増倍管 1 0 1は、 採用している側管 1 1 1及び入射面板 1 0 9の形状 を除き、 第 1の実施の形態のマルチアノード型光電子増倍管 1と同一で ある。 側管 1 1 1は単一の筒部 1 1 2のみから形成されており、 この筒 部 1 1 2が入射面板 1 0 9の下面 1 0 9 dに接合されている。 筒部 1 1 2は、 第 1及び第 2の実施の形態の筒本体部 1 3同様、 中空の四角柱状 をしている。  FIG. 14 is a vertical sectional view taken along line XIV-XIV in FIG. As shown in FIGS. 13 and 14, the multi-anode type photomultiplier tube 101 of the comparative example has the same configuration as the side tube 111 and the incident face plate 109 used. This is the same as the multi-anode type photomultiplier tube 1 of the first embodiment. The side tube 111 is formed of only a single cylindrical portion 112, and this cylindrical portion 112 is joined to the lower surface 109d of the entrance face plate 109. The tubular portion 112 has a hollow rectangular column shape like the tubular main portion 13 of the first and second embodiments.
第 1 3図に示すように、 筒部 1 1 2の管軸に略垂直な断面は略正方形 状である。 筒部 1 1 2は、 4つの側面 1 1 2 aと 4つの湾曲角部 1 1 2 bとを備えている。 筒部 1 1 2は略均一な肉厚を有している。 なお、 筒 部 1 1 2の外径を Wc、肉厚を T c、内径を Wc, (=Wc一 2 X T c )、 湾曲角部 1 1 2 bの外側曲率半径を R c、内側曲率半径を R c 'とする。 なお、 外側曲率半径 R cと内側曲率半径 R c ' とは略等しい。 外径 Wc は第 1、 第 2の実施の形態の筒頭部 1 3の外径 R 2より小さい。 また、 内径 Wc ' も第 1、 第 2の実施の形態の筒頭部 1 7の内径 R 2, より小 さい。 外側曲率半径 R cと内側曲率半径 R c ' とは、 第 1、 第 2の実施 の形態の外側曲率半径 R 2と内側曲率半径 R 2 ' より大きい。 As shown in Fig. 13, the cross section of the cylindrical portion 1 1 2 that is substantially perpendicular to the pipe axis is substantially square. It is. The cylindrical portion 112 has four side surfaces 112a and four curved corners 112b. The cylindrical portion 112 has a substantially uniform thickness. The outer diameter of the cylindrical portion 112 is Wc, the wall thickness is Tc, the inner diameter is Wc, (= Wc-2XTc), the outer radius of curvature of the curved corner portion 112b is Rc, and the inner radius of curvature is Is R c '. The outer radius of curvature Rc and the inner radius of curvature Rc 'are substantially equal. The outer diameter Wc is smaller than the outer diameter R2 of the cylinder head 13 of the first and second embodiments. Also, the inner diameter Wc 'is smaller than the inner diameter R2 of the cylinder head 17 of the first and second embodiments. The outer radius of curvature Rc and the inner radius of curvature Rc 'are larger than the outer and inner radius of curvature R2 and R2' of the first and second embodiments.
入射面板 1 09は、 筒部 1 1 2の外形と同一の形状及ぴ大きさを有し ている。 すなわち、 入射面板 1 0 9は、 略正方形状の板である。 入射面 板 1 09は、 曲率半径 R cで湾曲している 4つの湾曲角部 1 0 9 bと、 隣り合う 2つの湾曲角部 1 0 9 bを外径 Wcと等しい長さで結ぶ 4つの 側面 1 0 9 aとを有している。 光電面 1 20が、 入射面板 1 0 9の下面 1 0 9 dのうち筒部 1 1 2の内側に位置した有効光電領域 Kに形成され ている。  The entrance face plate 109 has the same shape and size as the outer shape of the cylindrical portion 112. That is, the incident surface plate 109 is a substantially square plate. The entrance surface plate 109 has four curved corners 109 b curved with a radius of curvature Rc and two adjacent curved corners 109 b with a length equal to the outer diameter Wc. Side surface 109 a. The photoelectric surface 120 is formed in the effective photoelectric region K located inside the cylindrical portion 112 of the lower surface 109 d of the incident surface plate 109.
また、磁気シールド 40が筒部 1 1 2の下側部分の外周を覆っている。 磁気シールド 40は、 第 1、 第 2の実施の形態同様、 高透磁性材料 42 と樹脂皮膜 44とカゝらなる。  Further, a magnetic shield 40 covers the outer periphery of the lower portion of the cylindrical portion 112. The magnetic shield 40 is composed of a highly magnetically permeable material 42 and a resin film 44 as in the first and second embodiments.
次に、 かかる比較例のマルチアノード型光電子増倍管 1 0 1を採用し た比較例の放射線検出器 1 50について第 1 5図〜第 1 7図を参照して 説明する。  Next, a radiation detector 150 of a comparative example employing the multi-anode type photomultiplier tube 101 of the comparative example will be described with reference to FIGS. 15 to 17. FIG.
第 1 5図は、 比較例の放射線検出器 1 5 0が複数個隣り合うように 1次元状に配置された状態を模式的に示す模式平面図である。 第 1 6 図は、 第 1 5図の XV I — XV I線縦断面図である。 第 1 7図は、 第 1 6図に示す要部 Hを拡大して示す拡大図である。 比較例の放射線検出器 1 5 0では、 シンチレ一タマトリックス 5 2が 比較例のマルチアノード型光電子增倍管 1 0 1の入射面板 1 0 9に接着 されている。 マルチアノード型光電子增倍管 1 0 1は第 1 3図及び第 1 4図を参照して説明した構造を備えている。 なお、 第 1 6図では、 明瞭 化を図るため、 マルチアノード型光電子増倍管 1 0 1の内部構造の図示 を省略している。 FIG. 15 is a schematic plan view schematically showing a state where a plurality of radiation detectors 150 of the comparative example are arranged one-dimensionally so as to be adjacent to each other. FIG. 16 is a vertical sectional view taken along the line XVI-XVI of FIG. FIG. 17 is an enlarged view showing the main part H shown in FIG. 16 in an enlarged manner. In the radiation detector 150 of the comparative example, the scintillator matrix 52 is adhered to the incident face plate 109 of the multi-anode type photomultiplier tube 101 of the comparative example. The multi-anode type photomultiplier tube 101 has the structure described with reference to FIG. 13 and FIG. In FIG. 16, the internal structure of the multi-anode photomultiplier tube 101 is not shown for clarity.
第 1 5図も、 第 9図と同様、 シンチレ一タマトリックス 5 2を構成す る 3 6個のシンチレータ 5 4の出力面 5 4 dと入射面板 1 0 9の有効光 電領域 Kとの位置関係を模式的に示している。 この図より明らかなよう に、比較例の放射線検出器 1 5 0でも、第 1及ぴ第 2の実施の形態同様、 シンチレ一タマトリックス 5 2の外周部に位置しているシンチレータ 5 4がマルチアノード型光電子増倍管 1 0 1の入射面板 1 0 9の周縁部を 介して筒部 1 1 2の周縁部に対向している。 特に、 シンチレ一タマトリ ックス 5 2の 4つの隅に位置しているシンチレータ 5 4がマルチアノ一 ド型光電子増倍管 1 0 1の入射面板 1 0 9の 4つの湾曲角部 1 0 9 bを 介して筒部 1 1 2の 4つの湾曲角部 1 1 2 bに対向している。  Similarly to FIG. 9, FIG. 15 shows the position of the output surface 54 d of the 36 scintillators 54 constituting the scintillator matrix 52 and the effective photoelectric area K of the entrance face plate 109. The relationship is schematically shown. As is clear from this figure, in the radiation detector 150 of the comparative example, as in the first and second embodiments, the scintillator 54 located on the outer peripheral portion of the scintillator matrix 52 is multi-layered. The anode-type photomultiplier tube 101 faces the peripheral portion of the cylindrical portion 112 via the peripheral portion of the incident face plate 109 of the anode type photomultiplier tube 101. In particular, the scintillators 54 located at the four corners of the scintillator matrix 52 pass through the four curved corners 109 b of the entrance face plate 109 of the multi-anod photomultiplier tube 101. And the four curved corners 1 1 2 b of the cylinder 1 1 2 are opposed to each other.
ここで、 比較例では、 入射面板 1 0 9及ぴ筒部 1 1 2の外径 W c及 ぴ筒部 1 1 2の内径 W c, は、 シンチレ一タマトリックス 5 2の外径 W (例えば、 3 9 m m ) 及ぴ磁気シールド 4 0の厚み Mに対し以下の 関係を有している。  Here, in the comparative example, the outer diameter W c of the entrance face plate 109 and the outer diameter W c of the cylindrical portion 112 are the outer diameter W of the scintillator matrix 52 (for example, , 39 mm) and the thickness M of the magnetic shield 40 have the following relationship.
入射面板 1 0 9及び筒部 1 1 2の外径 W cはシンチレ一タマトリック ス 5 2の外径 Wと等しい。 筒部 1 1 2の内径 W c, は外径 W cより肉厚 T cの 2倍分だけ小さい。 このため、 シンチレ一タマトリックス 5 2の 外径 Wより 2 X T cだけ小さい。  The outer diameter Wc of the entrance face plate 109 and the cylindrical portion 112 is equal to the outer diameter W of the scintillator matrix 52. The inner diameter Wc of the cylindrical portion 112 is smaller than the outer diameter Wc by twice the thickness Tc. Therefore, the outer diameter W of the scintillator matrix 52 is smaller by 2 × Tc.
かかる寸法を有する比較例の放射線検出器 1 5 0を隣り合う磁気シー ルド 4 0が互いに略接触するように配置すると、第 1 7図に示すように、 隣り合う筒部 1 1 2が、 磁気シールド 4 0の厚み Mに等しい量だけ離間 してしまう。 隣り合う筒部 1 1 2は必要最小限のスペース Sだけ離間し ていればよいため、 (M— S )の量のデッドスペースが余分に生じてしま つていることがわかる。 その一方で、 入射面板 1 0 9及ぴ筒部 1 1 2の 外径 W cがシンチレ一タマトリックス 5 2の外径 Wと等しく、 筒部 1 1 2の内径 W c, がシンチレ一タマトリックス 5 2の外径 Wよりカなり小 さい。 このため、 第 1 5図に示すように、 シンチレ一タマトリックス 5 2の外周部に位置しているシンチレータ 5 4の出力面 5 4 dのうち筒頭 部 1 7の内側の有効光電領域 Kに対向していない部分の面積が大きい。 また、 湾曲角部 1 1 2 bの曲率半径 R c及び R c ' が大きいので、 シン チレ一タマトリ ックス 5 2の 4つの隅に位置しているシンチレータ 5 4 の出力面 5 4 dのうち湾曲角部 1 1 2 bの内側の有効光電領域 Kに対向 していない部分の面積も大きい。 When the radiation detector 150 of the comparative example having such dimensions is arranged so that the adjacent magnetic shields 40 are substantially in contact with each other, as shown in FIG. 17, Adjacent cylinders 1 1 2 are separated by an amount equal to the thickness M of the magnetic shield 40. Since the adjacent cylinders 1 1 and 2 need only be separated from each other by the minimum necessary space S, it can be seen that an extra (M−S) amount of dead space is generated. On the other hand, the outer diameter Wc of the entrance face plate 109 and the cylindrical portion 112 is equal to the outer diameter W of the scintillator matrix 52, and the inner diameter Wc of the cylindrical portion 112 is equal to the scintillator matrix. 5 Smaller than outer diameter W of 2. For this reason, as shown in FIG. 15, the output surface 54 d of the scintillator 54 located at the outer periphery of the scintillator matrix 52 has an effective photoelectric area K inside the cylinder head 17. The area of the part not facing is large. In addition, since the curvature radii R c and R c ′ of the curved corners 1 1 2 b are large, the output surface 54 d of the scintillator 54 located at the four corners of the scintillator matrix 52 is curved. The area of the part that is not opposed to the effective photoelectric region K inside the corner 1 1 2b is also large.
このように、 比較例では筒部 1 1 2の外径 W cはシンチレ一タマトリ ックス 5 2の外径 Wと等しい。 これに対し、 第 1及び第 2の実施の形態 では、 既述のように、 筒本体部 1 3の外径 W 1はシンチレータマトリツ タス 5 2の外径 Wと等しく、 筒頭部 1 7の外径 W 2はシンチレ一タマト リックス 5 2の外径 Wより大きい。 したがって、 第 1及ぴ第 2の実施の 形態における筒頭部 1 7の外径 W 2の方が比較例の筒部 1 1 2の外径 W cより大きい。 また、 第 1及ぴ第 2の実施の形態における筒頭部 1 7の 内径 W 2 'の方が比較例の筒部 1 1 2の内径 W c,より大きレ、。 しかも、 第 1及ぴ第 2の実施の形態における筒頭部 1 7の湾曲角部 1 7 bの曲率 半径 R 2、 R 2 ' の方が比較例の湾曲角部 1 1 2 bの曲率半径 R c、 R c ' より小さレヽ。  Thus, in the comparative example, the outer diameter Wc of the cylindrical portion 112 is equal to the outer diameter W of the scintillator matrix 52. On the other hand, in the first and second embodiments, as described above, the outer diameter W1 of the cylinder main body 13 is equal to the outer diameter W of the scintillator matrices 52, and the cylinder head 17 Outside diameter W 2 is larger than the outside diameter W of scintillator matrix 52. Therefore, the outer diameter W2 of the cylinder head 17 in the first and second embodiments is larger than the outer diameter Wc of the cylinder portion 112 of the comparative example. In addition, the inner diameter W 2 ′ of the cylinder head 17 in the first and second embodiments is larger than the inner diameter W c of the cylinder part 112 of the comparative example. Moreover, the radii of curvature R 2 and R 2 ′ of the curved corners 17 b of the cylinder head 17 in the first and second embodiments are the radii of curvature of the curved corners 1 12 b of the comparative example. Less than R c, R c '.
以下、 筒頭部 1 7の外径 W 2を比較例の外径 W cより大きくし、 筒頭 部 1 7の内径 W 2, を比較例の内径 W c, より大きくし、 かつ、 筒頭部 1 7の湾曲角部 1 7 bの曲率半径 R 2、 R 2 ' を比較例の湾曲角部 1 1 2 13の曲率半径1 (:、 R c ' より小さくしたことによって得られる第 1 及び第 2の実施の形態の優れた効果について、 第 1 8図及ぴ第 1 9図を 参照して説明する。 Hereinafter, the outer diameter W2 of the cylinder head 17 is made larger than the outer diameter Wc of the comparative example, the inner diameter W2 of the cylinder head 17 is made larger than the inner diameter Wc of the comparative example, and Department The first and second curvature radii R 2, R 2 ′ of the 17 curved corners 17 b are made smaller than the curvature radii 1 (:, R c ′ of the curved corners 1 1 2 13 of the comparative example. The excellent effects of the second embodiment will be described with reference to FIGS. 18 and 19.
第 1 8図は、 第 1及び第 2の実施の形態におけるマルチアノード型光 電子増倍管 1の有効光電領域 Kの面積を、 比較例における有効光電領域 Kの面積に対して比較して示している。 比較例の有効光電領域 Kの面積 を 1 0 0 %とすると、 第 1の実施の形態では有効光電領域 Kの面積は 1 1 0 %になり、 さらに、 第 2の実施の形態では有効光電領域 Kの面積は 1 1 4 %にまで大きくなる。  FIG. 18 shows the area of the effective photoelectric region K of the multi-anode type photomultiplier tube 1 in the first and second embodiments in comparison with the area of the effective photoelectric region K in the comparative example. ing. Assuming that the area of the effective photoelectric region K of the comparative example is 100%, the area of the effective photoelectric region K is 110% in the first embodiment, and the effective photoelectric region K is 2% in the second embodiment. The area of K increases to 114%.
このように、 第 1及ぴ第 2の実施の形態のマルチアノード型光電子増 倍管 1によれば、 有効光電領域 Kの面積を比較例より大きくすることが できる。 特に、 第 2の実施の形態の場合には、 筒頭部 1 7の内周面 1 7 iが湾曲角部 1 7 bに向かってえぐられたようなピンクッション形状と なっているため、 湾曲角部 1 7 b付近の湾曲角部 1 7 bの内側の有効光 電領域 Kの面積を一層大きくすることができる。  Thus, according to the multi-anode type photomultiplier tube 1 of the first and second embodiments, the area of the effective photoelectric region K can be made larger than that of the comparative example. In particular, in the case of the second embodiment, since the inner peripheral surface 17 i of the cylinder head 17 has a pincushion shape that is hollowed toward the curved corner 17 b, The area of the effective photoelectric region K inside the curved corner 17 b near the corner 17 b can be further increased.
第 1 9図は、 第 1 8図における第 1及ぴ第 2の実施の形態及ぴ比較例 の有効光電領域 Kとシンチレ一タマトリックス 5 2の全シンチレータ 5 4の出力面 5 4 dとの位置関係を示している。 各シンチレータの出力面 5 4 dの面積のうち有効光電領域 Kに対向している部分の面積の割合 (パーセンテージ) を、 以下、 シンチレータ有効面積割合という。 第 1 9図には、 シンチレ一タマトリックス 5 2の 1つの隅部付近に位置して いる 4つのシンチレータ 5 4のシンチレータ有効面積割合の値が示され ている。  FIG. 19 shows the relationship between the effective photoelectric area K of the first and second embodiments and the comparative example in FIG. 18 and the output surface 54 d of all the scintillators 54 of the scintillator matrix 52. The positional relationship is shown. The ratio (percentage) of the area of the portion of the output surface 54 d of each scintillator facing the effective photoelectric region K is hereinafter referred to as the scintillator effective area ratio. FIG. 19 shows values of the scintillator effective area ratios of four scintillators 54 located near one corner of the scintillator matrix 52.
この図から明らかなように、 比較例の場合には、 筒部 1 1 2の外径 W cがシンチレ一タマトリックス 5 2の外形 Wと等しいため、 シンチレ一 タ有効面積割合はシンチレ一タマトリックス 5 2の外周に位置している シンチレータ 5 4において著しく低くなつている。 また、 湾曲角部 1 1 2 bの曲率半径 R c、 R c ' が大きいため、 湾曲角部 1 1 2 b付近にお いて、 シンチレータ有効面積割合が一層低くなつている。 このため、 比 較例では、 シンチレ一タマトリックス 5 2の中心部と周縁部特に隅部と で感度に大きな違いが生じてしまう。 As is clear from this figure, in the case of the comparative example, since the outer diameter Wc of the cylindrical portion 112 is equal to the outer shape W of the scintillator matrix 52, the scintillator The effective area ratio is remarkably low in the scintillator 54 located on the outer periphery of the scintillator matrix 52. Further, since the curvature radii Rc and Rc 'of the curved corners 112b are large, the scintillator effective area ratio is further reduced near the curved corners 112b. For this reason, in the comparative example, there is a large difference in sensitivity between the central portion of the scintillator matrix 52 and the peripheral portion, particularly, the corner portion.
これに対して、 第 1の実施の形態によれば、 筒頭部 1 7の外径 W 2が シンチレ一タマトリックス 5 2の外形 Wより大きいため、 シンチレータ マトリックス 5 2の外周に位置しているシンチレータ 5 4におけるシン チレータ有効面積割合が比較例に比べ高くなつている。 しかも、 湾曲角 部 1 7 bの曲率半径 R 2、 R 2 ' が小さいため、 湾曲角部 1 7 b付近に おけるシンチレータ有効面積割合が比較例に比べ著しく高くなっている。 したがって、 シンチレ一タマト リ ックス 5 2の中心部と周縁部や隅部と で感度を略均一にすることができる。特に、第 2の実施の形態によれば、 湾曲角部 1 7 b付近におけるシンチレータ有効面積割合が一層向上して いる。 したがって、 シンチレ一タマトリックス 5 2の中心部と周縁部及 ぴ隅部の感度をより一層均一にすることができる。  On the other hand, according to the first embodiment, since the outer diameter W 2 of the cylinder head 17 is larger than the outer diameter W of the scintillator matrix 52, it is located on the outer periphery of the scintillator matrix 52. The scintillator effective area ratio in the scintillator 54 is higher than in the comparative example. In addition, since the curvature radii R2 and R2 'of the curved corner 17b are small, the scintillator effective area ratio near the curved corner 17b is significantly higher than that of the comparative example. Therefore, the sensitivity can be made substantially uniform between the center portion, the peripheral portion, and the corner portion of the scintillator matrix 52. In particular, according to the second embodiment, the effective area ratio of the scintillator near the curved corner 17b is further improved. Therefore, the sensitivity at the center, the periphery, and the corners of the scintillator matrix 52 can be made more uniform.
以上のように、 第 1及び第 2の実施の形態によれば、 各シンチレータ 5 4の出力面 5 4 dのうち光電面 2 0に対向している部分の面積の割合 を全シンチレータ 5 4について略均一な大きい値とすることができる。 このため、 光電面 2 0は、 全シンチレータ 5 4からのシンチレーシヨン 光を略均一な割合で受け取ることができ、 放射線の検出を略均一な感度 で行うことができる。  As described above, according to the first and second embodiments, the ratio of the area of the portion of the output surface 54 d of each scintillator 54 facing the photocathode 20 is determined for all scintillators 54. It can be a substantially uniform large value. For this reason, the photocathode 20 can receive the scintillation light from all the scintillators 54 at a substantially uniform ratio, and can detect radiation with a substantially uniform sensitivity.
なお、 比較例のマルチアノード型光電子増倍管 1 0 1に磁気シールド 4 0を設けないとする。 また、 比較例の筒部 1 1 2の外径 W cが第 1及 ぴ第 2の実施の形態における筒頭部 1 7の外径 W 2と等しい、すなわち、 シンチレ一タマトリックス 5 2の外径 Wより (M— S ) だけ大きい値で あるとする。 この場合には、 比較例の放射線検出器 1 5 0を、 第 1及び 第 2の実施の形態と同様、 隣り合うシンチレ一タマトリックス 5 2が互 いにスペース Mだけ離間するように配置すれば、 隣り合う筒部 1 1 2は 互いに必要最小限のスペース Sだけ離間する。 しかしながら、 第 1及び 第 2の実施の形態における筒頭部 1 7の湾曲角部 1 7 bの曲率半径 R 2、 R 2 ' が比較例の湾曲角部 1 1 2 bの曲率 径 R c、 R c ' より小さけ れば、 有効光電領域 Kの面積を比較例より大きくし、 また、 全シンチレ ータにおけるシンチレータ有効面積割合を比較例より均一にすることが できる。 It is assumed that the magnetic shield 40 is not provided in the multi-anode type photomultiplier tube 101 of the comparative example. Further, the outer diameter Wc of the cylindrical portion 112 of the comparative example is equal to the outer diameter W2 of the cylindrical head 17 in the first and second embodiments, that is, It is assumed that the value is larger than the outer diameter W of the scintillator matrix 52 by (M−S). In this case, as in the first and second embodiments, the radiation detectors 150 of the comparative example are arranged so that the adjacent scintillator matrices 52 are separated from each other by a space M. The adjacent cylinders 1 1 2 are separated from each other by a minimum space S. However, in the first and second embodiments, the radius of curvature R 2, R 2 ′ of the curved corner portion 17 b of the cylinder head 17 is the curvature radius R c of the curved corner portion 1 12 b of the comparative example. If it is smaller than R c ′, the area of the effective photoelectric region K can be made larger than that of the comparative example, and the scintillator effective area ratio in all scintillators can be made more uniform than that of the comparative example.
より詳しくは、第 1及ぴ第 2の実施の形態における筒頭部 1 7の外 径 W 2と比較例の外径 W cとが等しく、 筒頭部 1 7の内径 W 2, と比 '較例の内径 W c, とが等しくても第 1及び第 2の実施の形態における 筒頭部 1 7の湾曲角部 1 7 bの曲率半径 R 2、 R 2, が比較例の湾曲 角部 1 1 2 bの曲率半径 R c、 R c ' より小さければ、 第 1、 第 2の 実施の形態における有効光電領域 Kの面積は、第 2 0図に示すように、 比較例の有効光電領域 Kの面積 ( 1 0 0 % ) に対し、 それぞれ、 1 0 4 %及び 1 0 8 %となる。 また、 湾曲角部 1 7 b付近におけるシンチ レータ有効面積割合も、 第 2 1図に示すように、 第 1及び第 2の実施 の形態の方が比較例より高くなる。  More specifically, the outer diameter W 2 of the cylinder head 17 in the first and second embodiments is equal to the outer diameter W c of the comparative example, and the ratio is smaller than the inner diameter W 2 of the cylinder head 17. Even if the inner diameter Wc of the comparative example is equal to the radius of curvature R2, R2 of the curved corner portion 17b of the cylinder head 17 in the first and second embodiments, the curved corner portion of the comparative example is the same. If the radius of curvature R c, R c ′ of 1 12 b is smaller, the area of the effective photoelectric region K in the first and second embodiments is, as shown in FIG. With respect to the area of K (100%), they are 104% and 108%, respectively. Further, as shown in FIG. 21, the scintillator effective area ratio near the curved corner 17b is higher in the first and second embodiments than in the comparative example.
本発明によるマルチアノード型光電子増倍管、 及び、 放射線検出器は 上述した実施の形態に限定されず、 特許請求の範囲に記載した範囲で 種々の変形ゃ改良が可能である。  The multi-anode type photomultiplier tube and radiation detector according to the present invention are not limited to the above-described embodiments, and various modifications and improvements can be made within the scope described in the claims.
例えば、 入射面板の形状、 及び、 筒頭部及び筒本体部の断面形状は、 略四角形であれば、 略正方形でなくてもよく、 例えば、 峥長方形でもよ レ、。 筒頭部の肉厚は、 筒本体部の肉厚より小さくても良い。 For example, the shape of the incident face plate and the cross-sectional shapes of the cylinder head and the cylinder main body need not be substantially square as long as they are substantially square, and may be, for example, rectangular. The thickness of the cylinder head may be smaller than the thickness of the cylinder body.
第 1の実施の形態において、 筒頭部 1 7の肉厚 T 2が湾曲角部 1 7 b 付近においてわずかに薄くなり、 内側曲率半径 R 2 ' が外側曲率半径 R 2よりわずかに小さくても良い。 同様に、 筒本体部 1 3の肉厚 T 1が湾 曲角部 1 3 b付近においてわずかに薄くなり、 内側曲率半径 R 1 ' が外 側曲率半径 R 1よりわずかに小さくても良い。  In the first embodiment, even if the wall thickness T2 of the cylinder head 17 becomes slightly thinner near the curved corner 17b and the inner radius of curvature R2 'is slightly smaller than the outer radius of curvature R2. good. Similarly, the thickness T1 of the cylinder body 13 may be slightly reduced near the curved corner 13b, and the inner radius of curvature R1 'may be slightly smaller than the outer radius of curvature R1.
マルチアノード型光電子増倍管は、 2 x 2のタイプに限らず、 ダイノ 一ド列ゃアノード電極が任意の数だけ配置された任意のタイプとするこ とができる。  The multi-anode type photomultiplier tube is not limited to the 2 × 2 type, but may be any type in which an arbitrary number of dynode rows / anode electrodes are arranged.
各ダイノード列は、ラインフォーカス型でなく、他のタイプでも良い。 複数の放射線検出器を、 1次元状でなく、 2次元状または 3次元状に 配置しても良い。  Each dynode row is not limited to the line focus type and may be another type. A plurality of radiation detectors may be arranged not two-dimensionally but two-dimensionally or three-dimensionally.
マルチアノード型光電子増倍管には磁気シールドを設けなくても良い。 マルチアノード型光電子増倍管を、 放射線検出器以外に使用しても良 い。 産業上の利用可能性  The multi-anode type photomultiplier tube does not need to be provided with a magnetic shield. A multi-anode type photomultiplier tube may be used other than a radiation detector. Industrial applicability
本発明のマルチアノード型光電子増倍管、 及び、 放射線検出器は、 ポ ジトロン C丁として医療分野で利用できる他、 他の放射線検出や他の光 検出等、 様々の分野で広く利用することができる。  The multi-anode type photomultiplier tube and radiation detector of the present invention can be widely used in various fields such as other radiation detection and other photodetection, in addition to being usable in the medical field as a Pozitron C-claw. it can.

Claims

請求の範囲 The scope of the claims
1 . ガラス製の入射面板と、 1. Glass entrance face plate,
該入射面板の一つの側の面に接続され該入射面板に略垂直な管軸に沿 つて延びるガラス製の中空の側管とを備え、  A hollow side tube made of glass connected to a surface on one side of the incident surface plate and extending along a tube axis substantially perpendicular to the incident surface plate;
該入射面板に入射した光に応じた光電子を放出するための光電面が該 入射面板の該一つの側の面のうち該側管の内側に位置した領域に形成さ れ、 該光電面の複数の領域に対応して複数の電子増倍部と複数のァノ一 ド電極とが該側管の内部に設けられているマルチアノード型光電子増倍 管において、  A photoelectric surface for emitting photoelectrons according to the light incident on the incident surface plate is formed in a region of the one side surface of the incident surface plate located inside the side tube, and a plurality of the photoelectric surfaces are provided. In a multi-anode type photomultiplier tube in which a plurality of electron multipliers and a plurality of anode electrodes are provided inside the side tube corresponding to the region of
該側管が、 筒頭部と漏斗状接続部と筒本体部とを、 該管軸に沿って一 体的に備え、  The side tube integrally includes a tube head, a funnel-shaped connecting portion, and a tube main body along the tube axis;
該筒本体部が、 4つの第 1の湾曲角部を有する中空の略四角柱形状を 有し、 該管軸に沿って第 1の長さだけ延ぴ、 該筒本体部の該管軸に略垂 直な断面が第 1の大きさを有し、 該 4つの第 1の湾曲角部がそれぞれ第 1の曲率半径にて湾曲し、  The tube main body has a hollow substantially quadrangular prism shape having four first curved corners, and extends along the pipe axis by a first length. A substantially vertical cross section having a first size, wherein the four first curved corners are each curved at a first radius of curvature;
該筒頭部が、 4つの第 2の湾曲角部を有する中空の略四角柱形状を有 し、 該管軸に沿って第 2の長さだけ延び、 該筒頭部の該管軸に略垂直な 断面が第 2の大きさを有し、 該 4つの第 2の湾曲角部がそれぞれ第 2の 曲率半径にて湾曲し、 該第 2の長さが該第 1の長さより短く、 該第 2の 大きさが該第 1の大きさより大きく、 該第 2の曲率半径が該第 1の曲率 半径より小さく、  The cylinder head has a hollow substantially quadrangular prism shape having four second curved corners, extends along the pipe axis by a second length, and is substantially parallel to the pipe axis of the cylinder head. A vertical section having a second magnitude, the four second curved corners each curving at a second radius of curvature, wherein the second length is shorter than the first length; A second magnitude is greater than the first magnitude, the second radius of curvature is smaller than the first radius of curvature,
該漏斗状接続部が、 該筒頭部と該筒本体部とを同軸状に接続し、 該筒頭部が該入射面板の該一つの側の面に接続され、 該光電面が該入 射面板の該一つの側の面であつて該筒頭部の内側に位置した領域に形成 され、 該複数の電子増倍部と該複数のアノード電極とが該筒本体部の内部に 設けられていることを特徴とするマルチアノード型光電子増倍管。 The funnel-shaped connecting portion connects the cylinder head and the cylinder main body coaxially, the cylinder head is connected to the one surface of the incident face plate, and the photoelectric surface is connected to the incident surface. Formed in an area located on the one side of the face plate and inside the cylinder head, A multi-anode type photomultiplier tube, wherein the plurality of electron multipliers and the plurality of anode electrodes are provided inside the cylindrical main body.
2 . 該筒頭部は、 外周面と内周面とを有し、  2. The cylinder head has an outer peripheral surface and an inner peripheral surface,
該外周面は各 2つの隣り合う第 2の湾曲角部を略直線状に結ぴ、 該内周面は各 2つの隣り合う第 2の湾曲角部を曲線状に結ぴ、 該内周面は各 2つの隣り合う第 2の湾曲角部の間の略中心位置から該 各 2つの該第 2の湾曲角部へ向かうに連れて該外周面に徐々に近づいて いく  The outer peripheral surface connects each two adjacent second curved corners in a substantially straight line, and the inner peripheral surface connects each two adjacent second curved corners in a curved line. Is gradually approaching the outer peripheral surface from the substantially center position between each two adjacent second curved corners toward each of the two second curved corners.
ことを特徴とする請求項 1記載のマルチアノ一ド型光電子増倍管。  2. The multi-anod type photomultiplier according to claim 1, wherein:
3 . 更に、 3.
該光電面から放出された光電子を収束する収束電極板と、  A focusing electrode plate for focusing photoelectrons emitted from the photocathode,
該光電面と該収束電極板との間に規定される電子収束空間を該光電面 の複数の領域に対応した複数のセグメント空間に分割するための仕切板 とを備え、  A partition plate for dividing an electron focusing space defined between the photoelectric surface and the focusing electrode plate into a plurality of segment spaces corresponding to a plurality of regions of the photoelectric surface.
各電子増倍部が、 対応するセグメント空間において該収束電極板に より収束された光電子を受け取り、  Each electron multiplier receives photoelectrons focused by the focusing electrode plate in the corresponding segment space,
該仕切板が、 該側管内において該筒頭部から該漏斗状接続部を経て該 筒本体部まで延在し、  The partition plate extends from the cylinder head through the funnel-shaped connection portion to the cylinder main body in the side tube;
該収束電極板、該複数の電子増倍部、及び、該複数のァノ一ド電極が、 該筒本体部内に配置され、  The focusing electrode plate, the plurality of electron multipliers, and the plurality of anode electrodes are arranged in the cylinder main body,
該筒本体部の外周に磁気シールドが設けられていることを特徴とする 請求項 1記載のマルチアノ一ド型光電子増倍管。  2. The multi-anod type photomultiplier tube according to claim 1, wherein a magnetic shield is provided on an outer periphery of the cylinder main body.
4 . 複数のシンチレータが 2次元マトリ ックス状に配置され、 各シン チレータが出力面を有し、 各シンチレ一タが該シンチレータに入射した 放射線に応じてシンチレーション光を発生し該シンチレーション光を該 出力面から出力するシンチレ一タマトリックスと、 該シンチレ一タマトリ ッタスの各シンチレータから出力されたシンチ レーション光を検出するためのマルチアノード型光電子増倍管とを備え る放射線検出器において、 4. A plurality of scintillators are arranged in a two-dimensional matrix, each scintillator has an output surface, each scintillator generates scintillation light in response to radiation incident on the scintillator, and outputs the scintillation light. A scintillator matrix output from the surface, A multi-anode type photomultiplier tube for detecting scintillation light output from each scintillator of the scintillator matrix,
該マルチアノード型光電子増倍管が、  The multi-anode type photomultiplier tube,
ガラス製の入射面板と、該入射面板の一つの側の面に接続され該入 射面板に略垂直な管軸に沿って延びるガラス製の中空の側管とを備 え、該入射面板の該一"" 3の側の面とは反対側の面が該シンチレ一タマ トリッタスの全シンチレータの出力面に対向し、該入射面板に入射し たシンチレーショ ン光に応じた光電子を放出するための光電面が該 入射面板の該一つの側の面のうち該側管の内側に位置した領域に形 成され、該光電面の複数の領域に対応して複数の電子増倍部と複数の ァノード電極とが該側管の内部に設けられており、  An entrance face plate made of glass; and a hollow side tube made of glass connected to a surface on one side of the entrance face plate and extending along a tube axis substantially perpendicular to the entrance face plate. The surface opposite to the surface on the side of "1" "3" faces the output surface of all the scintillators of the scintillator trittas, and emits photoelectrons corresponding to the scintillation light incident on the incident surface plate. A photocathode is formed in a region located inside the side tube on the one side surface of the entrance face plate, and a plurality of electron multipliers and a plurality of anodes are provided corresponding to the plurality of regions of the photocathode. Electrodes are provided inside the side tube,
該側管が、 筒頭部と漏斗状接続部と筒本体部とを、 該管軸に沿って一 体的に備え、  The side tube integrally includes a tube head, a funnel-shaped connecting portion, and a tube main body along the tube axis;
該筒本体部が、 4つの第 1の湾曲角部を有する中空の略四角柱形状を 有し、 該管軸に沿って第 1の長さだけ延び、 該筒本体部の該管軸に略垂 直な断面が第 1の大きさを有し、 該 4つの第 1の湾曲角部がそれぞれ第 1の曲率半径にて湾曲し、  The tube main body has a hollow substantially quadrangular prism shape having four first curved corners, extends along the tube axis by a first length, and is substantially formed along the tube axis of the tube main body. A vertical cross section having a first dimension, wherein the four first curved corners are each curved at a first radius of curvature;
該筒頭部が、 4つの第 2の湾曲角部を有する中空の略四角柱形状を有 し、 該管軸に沿って第 2の長さだけ延び、 該筒頭部の該管軸に略垂直な 断面が第 2の大きさを有し、 該 4つの第 2の湾曲角部がそれぞれ第 2の 曲率半径にて湾曲し、 該第 2の長さが該第 1の長さより短く、 該第 2の 大きさが該第 1の大きさより大きく、 該第 2の曲率半径が該第 1の曲率 半径より小さく、  The cylinder head has a hollow substantially quadrangular prism shape having four second curved corners, extends along the pipe axis by a second length, and is substantially parallel to the pipe axis of the cylinder head. A vertical section having a second magnitude, the four second curved corners each curving at a second radius of curvature, wherein the second length is shorter than the first length; A second magnitude is greater than the first magnitude, the second radius of curvature is smaller than the first radius of curvature,
該漏斗状接続部が、 該筒頭部と該筒本体部とを同軸状に接続し、 該筒頭部が該入射面板の該一つの側の面に接続され、 該光電面が該入 射面板の該一つの側の面であって該筒頭部の内側に位置した領域に形成 され、 The funnel-shaped connection portion connects the cylinder head and the cylinder main body coaxially, the cylinder head is connected to the one surface of the incident face plate, and the photoelectric surface is connected to the input surface. Formed on an area located on the one side of the firing surface plate and inside the cylinder head,
該複数の電子増倍部と該複数のァノ一ド電極とが該筒本体部の内部 に設けられていることを特徴とする放射線検出器。  A radiation detector, wherein the plurality of electron multipliers and the plurality of anode electrodes are provided inside the cylinder main body.
PCT/JP2003/007420 2003-06-11 2003-06-11 Multi anode-type photoelectron intensifier tube and radiation detector WO2004112083A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2003/007420 WO2004112083A1 (en) 2003-06-11 2003-06-11 Multi anode-type photoelectron intensifier tube and radiation detector
JP2005500742A JPWO2004112083A1 (en) 2003-06-11 2003-06-11 Multi-anode type photomultiplier tube and radiation detector
AU2003242281A AU2003242281A1 (en) 2003-06-11 2003-06-11 Multi anode-type photoelectron intensifier tube and radiation detector
EP03733367A EP1638130B1 (en) 2003-06-11 2003-06-11 Multi anode-type photoelectron intensifier tube and radiation detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/007420 WO2004112083A1 (en) 2003-06-11 2003-06-11 Multi anode-type photoelectron intensifier tube and radiation detector

Publications (1)

Publication Number Publication Date
WO2004112083A1 true WO2004112083A1 (en) 2004-12-23

Family

ID=33548993

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/007420 WO2004112083A1 (en) 2003-06-11 2003-06-11 Multi anode-type photoelectron intensifier tube and radiation detector

Country Status (4)

Country Link
EP (1) EP1638130B1 (en)
JP (1) JPWO2004112083A1 (en)
AU (1) AU2003242281A1 (en)
WO (1) WO2004112083A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010213840A (en) * 2009-03-16 2010-09-30 Hitachi Metals Ltd Pet/mri integrated type device
CN111522047A (en) * 2020-03-24 2020-08-11 中国科学院紫金山天文台 Space-borne space photoelectric conversion module and photoelectric detection device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57194445A (en) * 1981-05-26 1982-11-30 Agency Of Ind Science & Technol Photomultiplier tube
JPS5914244A (en) * 1982-07-14 1984-01-25 Agency Of Ind Science & Technol Photomultiplier tube
JPS6183985A (en) * 1984-09-29 1986-04-28 Shimadzu Corp Scintillation detector
US4649276A (en) * 1985-03-13 1987-03-10 Capintec, Inc. High-energy radiation detector and method of detection
US5077504A (en) * 1990-11-19 1991-12-31 Burle Technologies, Inc. Multiple section photomultiplier tube
US5126629A (en) * 1989-11-14 1992-06-30 U.S. Philips Corp. Segmented photomultiplier tube with high collection efficiency and limited crosstalk
JPH0593781A (en) * 1991-10-02 1993-04-16 Hamamatsu Photonics Kk Radiation detector
JPH0972963A (en) * 1995-09-04 1997-03-18 Hitachi Medical Corp Scintillation camera
JPH11250853A (en) * 1998-03-02 1999-09-17 Hamamatsu Photonics Kk Photomultiplier
JP2003098262A (en) * 2001-09-25 2003-04-03 Shimadzu Corp Radiation detector

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4855642A (en) * 1988-03-18 1989-08-08 Burle Technologies, Inc. Focusing electrode structure for photomultiplier tubes
JP2840853B2 (en) * 1989-04-28 1998-12-24 浜松ホトニクス株式会社 Secondary electron multiplier and photomultiplier using this secondary electron multiplier
US5336967A (en) * 1992-06-22 1994-08-09 Burle Technologies, Inc. Structure for a multiple section photomultiplier tube

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57194445A (en) * 1981-05-26 1982-11-30 Agency Of Ind Science & Technol Photomultiplier tube
JPS5914244A (en) * 1982-07-14 1984-01-25 Agency Of Ind Science & Technol Photomultiplier tube
JPS6183985A (en) * 1984-09-29 1986-04-28 Shimadzu Corp Scintillation detector
US4649276A (en) * 1985-03-13 1987-03-10 Capintec, Inc. High-energy radiation detector and method of detection
US5126629A (en) * 1989-11-14 1992-06-30 U.S. Philips Corp. Segmented photomultiplier tube with high collection efficiency and limited crosstalk
US5077504A (en) * 1990-11-19 1991-12-31 Burle Technologies, Inc. Multiple section photomultiplier tube
JPH0593781A (en) * 1991-10-02 1993-04-16 Hamamatsu Photonics Kk Radiation detector
JPH0972963A (en) * 1995-09-04 1997-03-18 Hitachi Medical Corp Scintillation camera
JPH11250853A (en) * 1998-03-02 1999-09-17 Hamamatsu Photonics Kk Photomultiplier
JP2003098262A (en) * 2001-09-25 2003-04-03 Shimadzu Corp Radiation detector

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1638130A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010213840A (en) * 2009-03-16 2010-09-30 Hitachi Metals Ltd Pet/mri integrated type device
CN111522047A (en) * 2020-03-24 2020-08-11 中国科学院紫金山天文台 Space-borne space photoelectric conversion module and photoelectric detection device
CN111522047B (en) * 2020-03-24 2022-01-25 中国科学院紫金山天文台 Space-borne space photoelectric conversion module and photoelectric detection device

Also Published As

Publication number Publication date
EP1638130B1 (en) 2009-04-01
EP1638130A4 (en) 2008-05-07
JPWO2004112083A1 (en) 2006-07-20
EP1638130A1 (en) 2006-03-22
AU2003242281A1 (en) 2005-01-04

Similar Documents

Publication Publication Date Title
US7786445B2 (en) Multi-anode type photomultiplier tube and radiation detector
US4454422A (en) Radiation detector assembly for generating a two-dimensional image
US5493176A (en) Photomultiplier tube with an avalanche photodiode, a flat input end and conductors which simulate the potential distribution in a photomultiplier tube having a spherical-type input end
JPH06103959A (en) Collecting device for photo-electron multiplier tube
EP2442350B1 (en) Photomultiplier tube
US10580630B2 (en) Photomultiplier tube and method of making it
JPS63261664A (en) Photomultiplier
CN1285920C (en) Radiation detection apparatus and method
WO1999063573A1 (en) Photomultiplier unit and radiation sensor
US4306171A (en) Focusing structure for photomultiplier tubes
US5453609A (en) Non cross talk multi-channel photomultiplier using guided electron multipliers
JPH0864168A (en) Photomultiplier tube
WO2004112083A1 (en) Multi anode-type photoelectron intensifier tube and radiation detector
US4691099A (en) Secondary cathode microchannel plate tube
EP0515205B1 (en) Radiation detecting device insensitive to high magnetic fields
JP4756604B2 (en) Multi-anode type photomultiplier tube
JP3881629B2 (en) Two-dimensional position detector for incident light
JP2005032634A (en) Gas proportional counter tube and photographing system
EP0760525B1 (en) Electron tube
JPWO2005091333A1 (en) Photomultiplier tube
JP3312772B2 (en) Photomultiplier tube
JPS5854539A (en) Electron discharge tube
JP3352491B2 (en) Radiation detector
JPH06273529A (en) Detector for positron tomographic apparatus
JP2001208851A (en) Radiation detector

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005500742

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2003733367

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003733367

Country of ref document: EP