JP2005032634A - Gas proportional counter tube and photographing system - Google Patents

Gas proportional counter tube and photographing system Download PDF

Info

Publication number
JP2005032634A
JP2005032634A JP2003272032A JP2003272032A JP2005032634A JP 2005032634 A JP2005032634 A JP 2005032634A JP 2003272032 A JP2003272032 A JP 2003272032A JP 2003272032 A JP2003272032 A JP 2003272032A JP 2005032634 A JP2005032634 A JP 2005032634A
Authority
JP
Japan
Prior art keywords
gas
proportional counter
plate
gas proportional
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003272032A
Other languages
Japanese (ja)
Other versions
JP3955836B2 (en
Inventor
Fuyuki Tokano
冬樹 門叶
Yoshihisa Sakurai
敬久 櫻井
Shuichi Gunji
修一 郡司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2003272032A priority Critical patent/JP3955836B2/en
Publication of JP2005032634A publication Critical patent/JP2005032634A/en
Application granted granted Critical
Publication of JP3955836B2 publication Critical patent/JP3955836B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Light Receiving Elements (AREA)
  • Measurement Of Radiation (AREA)
  • Image-Pickup Tubes, Image-Amplification Tubes, And Storage Tubes (AREA)
  • Electron Tubes For Measurement (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas proportional counter tube and a photographing system in which impact resistances and handling natures of an electron and an optical multiplication part can be improved and a fine pores can be made uniform, and the uniformity of sensitivity distribution can be improved. <P>SOLUTION: A photographing type X ray detection device 200 has a photographing system 210 connected to a power supply system 34 and a control system 35. In the photographing system 210, a chamber 23 having a CMOS sensor array is jointed through an FOP2 to the rear stage of a chamber 22 which has a beryllium aperture 21 and is provided with a porous plate 1 having a numerous number of hollow filaments 13 provided side by side. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、ガス比例計数管及び撮像システムに関する。   The present invention relates to a gas proportional counter and an imaging system.

近年、鉛ガラス製キャピラリープレートを撮像型のガス比例計数管(Capillary Gas Proportional Counter;CGPC)として動作させる新しいタイプの検出器が開発されている(非特許文献1、2参照。)。図7は、このようなCGPCを用いた撮像型X線検出装置の構成を示す模式図である(非特許文献3参照)。   In recent years, a new type of detector that operates a lead glass capillary plate as an imaging type gas proportional counter (CGPC) has been developed (see Non-Patent Documents 1 and 2). FIG. 7 is a schematic diagram showing a configuration of an imaging X-ray detection apparatus using such CGPC (see Non-Patent Document 3).

同図において、撮像型X線検出装置100は、ガス比例計数部110の後段に光学系120及び撮像系130が順に連設されたものである。ガス比例計数部110は、一方端及び他方端にそれぞれベリリウム窓111及び合成シリカから成る光透過窓112が設けられたチャンバ113の内部に、各窓111,112と同軸状に設けられたキャピラリープレート114が設置されたものである。キャピラリープレート114は、中空状を成す100μm径程度の鉛ガラス製キャピラリーが複数集積されて成っており、成形時のバイアス角度は0°とされている。   In the figure, the imaging X-ray detection apparatus 100 is configured such that an optical system 120 and an imaging system 130 are connected in sequence at the subsequent stage of the gas proportional counting unit 110. The gas proportional counting unit 110 includes a capillary plate provided coaxially with the windows 111 and 112 in a chamber 113 provided with a beryllium window 111 and a light transmission window 112 made of synthetic silica at one end and the other end, respectively. 114 is installed. The capillary plate 114 is formed by integrating a plurality of hollow lead glass capillaries having a diameter of about 100 μm, and the bias angle at the time of molding is 0 °.

また、キャピラリープレート114の両面には、電源系140に接続された薄膜電極(図示せず)が形成されている。さらに、キャピラリープレート114の前段には、整形リング(シェイピングリング)115,116が設けられており、ドリフト領域が画成されている。これらの整形リング115,116は、電源系160及び接地電位に接続されており、電源系160からの高電圧と接地間が抵抗分割されてそれぞれに適切なドリフト電圧が印加されるようになっている。さらに、チャンバ113内には、主成分であるArガス、CH4ガス等にペニング効果(Penning Effect)を奏するトリメチルアミン(TMA)やトリエチルアミン(TEA)が添加された混合ガス117が封入されている。 Thin film electrodes (not shown) connected to the power supply system 140 are formed on both surfaces of the capillary plate 114. Further, shaping rings (shaping rings) 115 and 116 are provided in the front stage of the capillary plate 114, and a drift region is defined. These shaping rings 115 and 116 are connected to the power supply system 160 and the ground potential, and a high voltage from the power supply system 160 and the ground are resistance-divided so that an appropriate drift voltage is applied to each. Yes. Further, in the chamber 113, a mixed gas 117 in which trimethylamine (TMA) or triethylamine (TEA) having a Penning Effect is added to Ar gas, CH 4 gas, or the like as main components is enclosed.

この撮像型X線検出装置100では、ベリリウム窓111を通してチャンバ113内に入射したX線Aがベリリウム窓111/キャピラリープレート114間領域のガス分子と相互作用し、光電効果によって高エネルギーの電子(一次電子)が放出される。この一次電子(X線光電子)は、他のガス分子にエネルギーを付与しながら進み、その飛跡中に電子−イオン対を生じる。よって、この電子−イオン対の数はX線Aのエネルギーに比例する。一次電子の飛跡に沿って生じた電子(電子雲とも呼ばれる。)は、ベリリウム窓111/キャピラリープレート114間に生成された電場により、その電子雲形状を保持したままキャピラリープレート114の前面からその内部に進入する。   In this imaging X-ray detection apparatus 100, X-rays A entering the chamber 113 through the beryllium window 111 interact with gas molecules in the region between the beryllium window 111 / capillary plate 114, and high-energy electrons (primary Electrons) are emitted. The primary electrons (X-ray photoelectrons) travel while applying energy to other gas molecules, and generate electron-ion pairs in the tracks. Therefore, the number of electron-ion pairs is proportional to the energy of X-ray A. Electrons (also called electron clouds) generated along the tracks of primary electrons are generated from the front surface of the capillary plate 114 while maintaining the shape of the electron cloud by an electric field generated between the beryllium window 111 / capillary plate 114. Enter.

キャピラリープレート114の内部には、ガスの放電及び励起発光を引き起こすのに十分な例えば104V/cm以上の電場が形成されており、電子がガス分子と次々に衝突して電子増殖及び光増殖が行われ、例えば、1個の電子が103〜104個程度に増幅される。このようにして撮像型X線検出装置100は、ガス比例計数管として機能する。増幅光は光透過窓112を透過して光学系120に入射し、レンズ系121を通ってフッ化マグネシウム(MgF2)等から成る光透過窓122を透過して撮像系130へ出射される。 An electric field of, for example, 10 4 V / cm or more sufficient to cause gas discharge and excitation light emission is formed inside the capillary plate 114, and electrons collide with gas molecules one after another to cause electron proliferation and photoproliferation. For example, one electron is amplified to about 10 3 to 10 4 . In this way, the imaging X-ray detection apparatus 100 functions as a gas proportional counter. The amplified light passes through the light transmission window 112 and enters the optical system 120, passes through the lens system 121, passes through the light transmission window 122 made of magnesium fluoride (MgF 2 ), etc., and is emitted to the imaging system 130.

撮像系130としては、例えばICCD(Intensified CCD)が採用される。入射光は、光電面(図示せず)で光電変換され、I.I.131で電子増倍された後、図示しない蛍光面で再び光電変換され、ファイバーオプティックプレート(FOP)等を通してCCDアレイ(共に図示せず)に入射する。こうして増強された二次元画像情報は電気信号として信号処理系150へ送出され、例えば二次元位置情報と各位置での発光強度から成る三次元X線発光画像が得られる。   As the imaging system 130, for example, an ICCD (Intensified CCD) is employed. Incident light is photoelectrically converted by a photocathode (not shown). I. After the electron multiplication at 131, it is photoelectrically converted again by a phosphor screen (not shown) and enters a CCD array (both not shown) through a fiber optic plate (FOP) or the like. The enhanced two-dimensional image information is sent to the signal processing system 150 as an electric signal, and for example, a three-dimensional X-ray emission image composed of the two-dimensional position information and the emission intensity at each position is obtained.

また、レンズ系121の代わりに反射系(リフレクタ)を用いたもの、並びに、光学系120及び撮像系130の代わりに光電子増倍管(photo multiplier tube;PMT)を備えたものも開発されている(非特許文献4〜8参照。)。なお、キャピラリープレートのチャージアップを抑えるために、キャピラリープレート114に代えて、MCP同様貫通孔の内面をH2還元して低抵抗化したものも提案されている(非特許文献9参照。)。 In addition, those using a reflection system (reflector) instead of the lens system 121 and those equipped with a photomultiplier tube (PMT) instead of the optical system 120 and the imaging system 130 have been developed. (See Non-Patent Documents 4 to 8.) In addition, in order to suppress the charge-up of the capillary plate, instead of the capillary plate 114, a material in which the inner surface of the through hole is reduced by H 2 to reduce the resistance like the MCP has been proposed (see Non-Patent Document 9).

さらに、最近では、X線等の二次元位置検出が可能な別の放射線検出器として、ガス・エレクトロン・マルチプライアー(Gas Electron Multiplier;GEM)が注目を浴びている(例えば、非特許文献10、11参照。)。   Furthermore, recently, as another radiation detector capable of detecting a two-dimensional position of X-rays or the like, a gas electron multiplier (GEM) has attracted attention (for example, Non-Patent Document 10, 11).

図8は、一般にGEMに用いられる多孔質ポリイミドフィルムの一部を示す模式平面図である。また、図9は、図8におけるIX−IX線に沿う断面図である。多孔質ポリイミドフィルム411は、例えばフォトリソグラフィ−とドライ又はウェットエッチングとを組み合わせた方法やレーザ加工等を用いて一定間隔で複数の細孔413が形成された薄膜(例えば、厚さが数十μm〜100μm程度)である。   FIG. 8 is a schematic plan view showing a part of a porous polyimide film generally used for GEM. FIG. 9 is a sectional view taken along line IX-IX in FIG. The porous polyimide film 411 is a thin film (for example, a thickness of several tens of μm) in which a plurality of pores 413 are formed at regular intervals using a method combining laser lithography and dry etching or wet etching, for example. ˜100 μm).

細孔413の一般的な形状としては、例えば図8及び図9に示す如く、略筒状を成しており、多孔質ポリイミドフィルム411の厚さ方向の中央付近に突出部Kが形成されたものが挙げられる。また、細孔413の典型的な寸法としては、最大内径が50〜100μm程度、最小内径(つまり突出部Kにおける内径)が最大内径の−10μm程度、細孔間隔が100〜200μm程度とされる。GEMに用いられる場合、細孔413の面内密度は、例えば、104個/cm2オーダーである。 As a general shape of the pore 413, for example, as shown in FIG. 8 and FIG. 9, it has a substantially cylindrical shape, and a protrusion K is formed near the center in the thickness direction of the porous polyimide film 411. Things. Further, typical dimensions of the pores 413 include a maximum inner diameter of about 50 to 100 μm, a minimum inner diameter (that is, an inner diameter of the protrusion K) of about −10 μm of the maximum inner diameter, and a pore interval of about 100 to 200 μm. . When used for GEM, the in-plane density of the pores 413 is, for example, on the order of 10 4 / cm 2 .

このような多孔質ポリイミドフィルム411を用いたGEMでは、フィルム411の両面に蒸着された金属層から成る電極間に数百Vの電圧が印加され、細孔413の内部及び周辺に、ガスの放電及び励起発光を引き起こすのに十分な電場が形成される。これにより、電子がガス分子と次々に衝突して電子増殖が行われる。
H. Sakurai et al., "A new type of proportional counter using a capillary plate", Nucl. Instr. And Meth. In Phys. Res. A374(1996)341-344. H. Sakurai et al., "Characteristics of capillary gas proportional counter", SPIE Proceedings Reprint, vol.2806(1996)569-576. H. Sakurai et al., "Detection of photoabsorption point with capillary imaging gas proportional counter", IEEE Trans on Nucl. Sci. vol.49, No.3, (2002). M. Tsukahara et al., "The development of a new type of imaging X-ray detector with a capillary plate", IEEE Trans on Nucl. Sci. vol.49, No.3, (1997)679-682. H. Sakurai et al., "The form of X-ray photoelectron tracks in a capillary gas proportional counter", IEEE Trans on Nucl. Sci. vol.46, No.3, (1999)333-337. H. Sakurai, "Imaging gas proportional counter with capillary plate", 放射線 vol.25, No.1, (1999)27-37. H. Sakurai et al., "New type of imaging X-ray detector using a capillary plate", SPIE Proceedings Reprint, vol.3114(1997)481-487. T. Masuda et al., "Optical imaging capillary gas proportional counter with penning mixtures", IEEE Trans on Nucl. Sci. vol.49, No.2, (2002)553-558. Nishi,Yu.; Tanimori,Y.; Ochi,A.; Nishi,Ya.; Toyokawa,H., "Development of a hybrid MSGC with a conductive capillary plate.", SPIE, vol.3774(1999)87-96. F. Sauli, Nucl. Instr. And Meth. A 368(1977)531. F.A.F. Fraga et al., Nucl. Instr. And Meth. A 442(2000)417.
In the GEM using such a porous polyimide film 411, a voltage of several hundred volts is applied between electrodes made of metal layers deposited on both surfaces of the film 411, and gas discharge is generated in and around the pores 413. And an electric field sufficient to cause excitation emission is formed. Thereby, electrons collide with gas molecules one after another, and electron multiplication is performed.
H. Sakurai et al., "A new type of proportional counter using a capillary plate", Nucl. Instr. And Meth. In Phys. Res. A374 (1996) 341-344. H. Sakurai et al., "Characteristics of capillary gas proportional counter", SPIE Proceedings Reprint, vol. 2806 (1996) 569-576. H. Sakurai et al., "Detection of photoabsorption point with capillary imaging gas proportional counter", IEEE Trans on Nucl. Sci. Vol. 49, No. 3, (2002). M. Tsukahara et al., "The development of a new type of imaging X-ray detector with a capillary plate", IEEE Trans on Nucl.Sci.vol.49, No.3, (1997) 679-682. H. Sakurai et al., "The form of X-ray photoelectron tracks in a capillary gas proportional counter", IEEE Trans on Nucl.Sci.vol.46, No.3, (1999) 333-337. H. Sakurai, "Imaging gas proportional counter with capillary plate", Radiation vol.25, No.1, (1999) 27-37. H. Sakurai et al., "New type of imaging X-ray detector using a capillary plate", SPIE Proceedings Reprint, vol. 3114 (1997) 481-487. T. Masuda et al., "Optical imaging capillary gas proportional counter with penning mixture", IEEE Trans on Nucl.Sci.vol.49, No.2, (2002) 553-558. Nishi, Yu .; Tanimori, Y .; Ochi, A .; Nishi, Ya .; Toyokawa, H., "Development of a hybrid MSGC with a conductive capillary plate.", SPIE, vol.3774 (1999) 87-96 . F. Sauli, Nucl. Instr. And Meth. A 368 (1977) 531. FAF Fraga et al., Nucl. Instr. And Meth. A 442 (2000) 417.

しかし、本発明者らが、上記従来のCGPCを用いた撮像型X線検出装置100、及び、多孔質ポリイミドフィルム411を備えるGEMについて詳細に検討したところ、以下に示す問題点が存在することを見出した。   However, when the present inventors examined in detail the imaging X-ray detection apparatus 100 using the above-described conventional CGPC and the GEM including the porous polyimide film 411, the following problems exist. I found it.

撮像型X線検出装置100では、低電圧で高電場を形成させるために、キャピラリープレート114をせいぜい60〜70μm程度の厚さとすることが望ましく、そのためには、ガラス製のプレートを機械的に研磨する必要がある。しかし、ガラス製のプレートをこのように薄く研磨する際には、ガラス自体が硬く脆いので、割れや剥離が生じ易く、また、機械的な衝撃に弱いため取り扱いに細心の注意を要する。   In the imaging X-ray detection apparatus 100, in order to form a high electric field at a low voltage, it is desirable that the capillary plate 114 has a thickness of about 60 to 70 μm at most. For this purpose, a glass plate is mechanically polished. There is a need to. However, when a glass plate is polished thinly in this way, the glass itself is hard and brittle, so that it tends to crack and peel off, and is sensitive to mechanical shock, so it needs to be handled with great care.

さらに、キャピラリープレート114の両面に設けられる薄膜電極は蒸着等によって被着形成されるが、キャピラリープレート114と薄膜電極との密着性が不十分な場合があり、こうなると電極が剥離し易くなるといった不都合が生じる。またさらに、鉛ガラス製のキャピラリープレート114では、素材中に含まれる放射性鉛核種から放出されるα線バックグラウンドにより、暗電流や突発的な異常電流が発生してしまうことも確認された。   Further, the thin film electrodes provided on both surfaces of the capillary plate 114 are deposited by vapor deposition or the like, but there are cases where the adhesion between the capillary plate 114 and the thin film electrode is insufficient, and this makes the electrode easy to peel off. Inconvenience arises. Furthermore, it was confirmed that dark current and sudden abnormal current are generated in the lead glass capillary plate 114 due to the α-ray background emitted from the radioactive lead nuclide contained in the material.

一方、多孔質ポリイミドフィルム411を備えるGEMでは、ポリイミドフィルムに孔加工を施すので、用いる方法によっては、加工不良すなわちフィルムの貫通が不十分で細孔413の一部が形成されなかったり、貫通したとしても、所望の形状の細孔413となり得なかったりするおそれがある。また、一定間隔で均一な細孔413を形成させるのが困難な場合もある。こうなると、多孔質ポリイミドフィルム411において二次元感度分布が不均一となるおそれがある。   On the other hand, in the GEM provided with the porous polyimide film 411, since the polyimide film is subjected to hole processing, depending on the method used, processing failure, that is, the film is not sufficiently penetrated, and part of the pores 413 is not formed or penetrated. However, the pores 413 having a desired shape may not be obtained. In addition, it may be difficult to form uniform pores 413 at regular intervals. If this happens, the two-dimensional sensitivity distribution may become non-uniform in the porous polyimide film 411.

さらに、図9に示すような尖塔状の内壁を有する細孔143の形状自体に不都合があるか否か不明ではあるものの、厚さ方向において突出部Kの位置や断面形状が細孔143毎に不揃いとなる懸念がある。そうなると、各細孔143内での電場に相違が生じ、場合によっては、多孔質ポリイミドフィルム411における感度分布の一様性が乱されるおそれが全くないとは言い切れない。   Furthermore, although it is unclear whether the shape of the pores 143 having a spire-like inner wall as shown in FIG. 9 is inconvenient or not, the position of the protrusion K and the cross-sectional shape in the thickness direction are different for each pore 143. There is concern that it will be uneven. When this happens, a difference occurs in the electric field in each pore 143, and in some cases, it cannot be said that there is no possibility that the uniformity of the sensitivity distribution in the porous polyimide film 411 is disturbed.

そこで、本発明はこのような事情に鑑みてなされたものであり、電子及び光増倍部を薄膜化しても耐衝撃性及び取扱性を向上できると共に、画一的且つ均一に配置された細孔を備える電子及び光増倍部を実現でき、これにより感度分布の一様性を高めることが可能なガス比例計数管及び撮像システムを提供することを目的とする。   Therefore, the present invention has been made in view of such circumstances, and even if the electron and photomultiplier portions are thinned, the impact resistance and handling properties can be improved, and the uniformly and uniformly disposed fine cells can be improved. An object of the present invention is to provide a gas proportional counter and an imaging system capable of realizing an electron and a photomultiplier having holes and thereby improving the uniformity of sensitivity distribution.

上記課題を解決するために、本発明によるガス比例計数管は、不活性ガスを主成分として含む検出用ガスが充填されており且つ電磁波又は電離放射線が入射する窓を有するチャンバと、そのチャンバ内に配置されており、且つ、樹脂から成る複数の管が該管の軸方向に対して交差する方向に併設された板状体とを備えるものである。   In order to solve the above problems, a gas proportional counter according to the present invention includes a chamber filled with a detection gas containing an inert gas as a main component and having a window through which electromagnetic waves or ionizing radiation is incident, and the chamber. And a plurality of pipes made of resin are provided in parallel with each other in a direction intersecting the axial direction of the pipes.

このように形成されたガス比例計数管においては、板状体を構成する複数の管が併設されることによって複数の孔が一定間隔で均一に配置された部材が形成される。よって、この板状体の両面に一定の電圧が印加されると、その孔の内部及び周囲に、ガスの放電及び励起発光を引き起こすのに十分な電場が形成され得る。これらの孔は、予め中空状の管によるものなので、膜に孔加工を施す際に懸念される加工不良が生じるおそれがない。また、それらの複数の管が樹脂から成るので、板状体は柔軟性に富む。よって、キャピラリープレートのようにガラス材から成るものと異なり、割れや剥離が極めて生じ難い。   In the gas proportional counter tube thus formed, a plurality of tubes constituting a plate-like body are provided side by side to form a member in which a plurality of holes are uniformly arranged at regular intervals. Therefore, when a constant voltage is applied to both surfaces of the plate-like body, an electric field sufficient to cause gas discharge and excitation light emission can be formed in and around the hole. Since these holes are preliminarily formed by hollow tubes, there is no possibility of causing processing defects that are a concern when the holes are processed in the membrane. Moreover, since these several pipe | tubes consist of resin, a plate-shaped body is rich in a softness | flexibility. Therefore, unlike a glass plate such as a capillary plate, cracking and peeling are unlikely to occur.

さらに、樹脂から成る板状体は、天然放射性核種のような放射線源を実質的に含まないので、鉛ガラス製のキャピラリープレートで問題となり得る異常放電(例えば、鉛核種から放出されるα線に起因する放電)を生じ得ない。   Furthermore, since the plate-like body made of resin does not substantially contain a radiation source such as a natural radionuclide, abnormal discharge (for example, alpha rays emitted from the lead nuclide can be caused by a capillary plate made of lead glass). The resulting discharge cannot occur.

具体的には、管が中空糸から成るものであると好ましい。中空糸は極めて細い管を構成しており、これらが複数併設されて成る板状体は、多数の細孔が非常に狭い間隔で均一配置されたものとなる。中空糸で板状体を形成するには、多数の中空糸をバンドル状に束ねてスライスする方法等が挙げられ、そのような加工も簡便である。   Specifically, the tube is preferably made of a hollow fiber. A hollow fiber constitutes an extremely thin tube, and a plate-like body in which a plurality of these are provided side by side has a large number of pores arranged uniformly at very narrow intervals. Forming a plate-like body with hollow fibers includes a method of bundling a large number of hollow fibers into a bundle and slicing them, and such processing is also simple.

より具体的には、樹脂がポリオレフィンであると更に好適である。これらは中空糸として入手容易であるだけでなく、樹脂材のなかでも比較的高い抵抗率(体積抵抗率)を発現するので、板状体を極めて薄くしたときに、その両面に蒸着等される電極間の絶縁を充分に担保でき、電場の形成をより確実ならしめることができる。また、長期使用時に電荷が蓄積し易い程の過度な高抵抗ではないので、チャージアップによる異常な突発電流の発生が防止される。   More specifically, the resin is more preferably a polyolefin. These are not only easily available as hollow fibers, but also exhibit a relatively high resistivity (volume resistivity) among resin materials, so that they are vapor-deposited on both sides when the plate-like body is made extremely thin. The insulation between the electrodes can be sufficiently secured, and the formation of the electric field can be made more reliable. In addition, since the resistance is not excessively high enough to easily accumulate charges during long-term use, the occurrence of an abnormal sudden current due to charge-up is prevented.

好ましくは、樹脂が、非ハロゲン系のもの、例えばポリエチレン又はポリプロピレンであると一層有用である。これらから成る樹脂は、ポリオレフィンのなかでも、ハロゲン系のものに比して充分に高い抵抗率が発現する。   Preferably, it is more useful if the resin is non-halogen, such as polyethylene or polypropylene. Resins composed of these materials exhibit sufficiently high resistivity as compared with halogen-based resins.

さらに、検出用ガスが分子中にハロゲン原子を含む有機系ガスを含有するものであると好ましい。検出用ガスとして、ハロゲン原子を含む有機系ガスを添加することにより、可視光を高効率で発光させ得るので、撮像システムに一般的な光学系を用いても透過損失が抑えられ、高感度測定が可能となる。   Further, the detection gas preferably contains an organic gas containing a halogen atom in the molecule. By adding an organic gas containing a halogen atom as the detection gas, visible light can be emitted with high efficiency, so transmission loss can be suppressed even with a general optical system in the imaging system, and high sensitivity measurement Is possible.

この場合、有機系ガスは、少なくとも一つの水素原子がフッ素原子で置換された炭化水素から成るガス(例えば、CF4等のハロゲン化アルカン)であると、光波長及び発光量の観点から一層好ましく、本発明者の現在の知見によれば、取扱性及び工業上の利用可能性を考慮すると、CF4ガスが最も好ましいものと考えられる。 In this case, the organic gas is more preferably a gas composed of a hydrocarbon in which at least one hydrogen atom is substituted with a fluorine atom (for example, a halogenated alkane such as CF 4 ) from the viewpoint of light wavelength and light emission amount. According to the present knowledge of the present inventor, CF 4 gas is considered to be most preferable in consideration of handleability and industrial applicability.

また、本発明による撮像システムは、本発明によるガス比例計数管と、チャンバの後段に配置された光検出器とを備えるものである。この光検出器の種類は特に限定されず、CCD、PMT、陽極ボード、CMOSを用いたセンサ等を例示でき、これらのなかでもアレイ化が容易で高感度なCMOSセンサであると特に好ましい。また、CMOSセンサを用いると、CCD等を用いた場合に比して撮像システムの小規模化が可能であると共に、撮像時の時間分解能が格段に向上され、高感度のみならずより高精細且つ高速の動的解析をも達成できる利点がある。さらに、CMOSセンサを使用すると、CCDを用いた場合に比して消費電力が格段に、例えば半分以下に軽減される利点がある。   The imaging system according to the present invention includes the gas proportional counter according to the present invention and a photodetector arranged at the rear stage of the chamber. The type of the photodetector is not particularly limited, and examples include a sensor using a CCD, PMT, anode board, CMOS, etc. Among these, a CMOS sensor that is easily arrayed and highly sensitive is particularly preferable. In addition, when a CMOS sensor is used, the imaging system can be made smaller than when a CCD or the like is used, and the time resolution at the time of imaging is greatly improved. There is an advantage that high-speed dynamic analysis can be achieved. Furthermore, when a CMOS sensor is used, there is an advantage that power consumption is remarkably reduced to, for example, half or less compared with the case where a CCD is used.

本発明のガス比例計数管及び撮像システムによれば、電子及び光増倍部である板状体を薄膜化しても耐衝撃性及び取扱性を向上できると共に、画一的且つ均一に配置された細孔を備える板状体を実現でき、これにより感度分布の一様性を高めることが可能となる。   According to the gas proportional counter and the imaging system of the present invention, the impact resistance and handling can be improved even if the plate-like body which is the electron and photomultiplier is thinned, and it is arranged uniformly and uniformly. A plate-like body having pores can be realized, and thereby the uniformity of sensitivity distribution can be improved.

以下、本発明の実施形態について図面を参照して詳細に説明する。なお、同一の要素には同一の符号を付し、重複する説明を省略する。また、上下左右等の位置関係は、図面の位置関係に基づくものとする。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, the same code | symbol is attached | subjected to the same element and the overlapping description is abbreviate | omitted. Also, the positional relationship such as up / down / left / right is based on the positional relationship of the drawings.

図1は、本発明によるガス比例計数管に備わる板状体の好適な一実施形態を模式的に示す平面図であり、図2は図1におけるII−II線断面図である。多孔プレート1(板状体)は、樹脂枠12内に複数の樹脂製の中空糸13(管)が配置されたものである。各中空糸13は、互いに接するように、且つ、それらの軸方向が多孔プレートの厚さ方向に沿うように併設されており、中空糸13同士の空間11は、中空糸13の側壁で充填されていてもよく、例えば他の樹脂体(接着性のもの等)が充填されていてもよい。また、多孔プレート1の両面には、例えば真空蒸着等によって形成された薄膜の電極1a,1bが設けられている。   FIG. 1 is a plan view schematically showing a preferred embodiment of a plate-like body provided in a gas proportional counter according to the present invention, and FIG. 2 is a sectional view taken along line II-II in FIG. The perforated plate 1 (plate-like body) is a resin frame 12 in which a plurality of resin hollow fibers 13 (tubes) are arranged. The hollow fibers 13 are provided side by side so that their axial directions are along the thickness direction of the perforated plate, and the space 11 between the hollow fibers 13 is filled with the side walls of the hollow fibers 13. For example, another resin body (such as an adhesive) may be filled. Further, thin-film electrodes 1a and 1b formed by, for example, vacuum vapor deposition or the like are provided on both surfaces of the porous plate 1.

このような構成により、多孔プレート13は、多数の細孔が整列するように形成されており、各孔は、ガス比例計数管において各々独立した光・電子増倍器を構成する微細なチャネルとして機能する。   With such a configuration, the perforated plate 13 is formed so that a large number of pores are aligned, and each hole is a fine channel constituting an independent photo / electron multiplier in the gas proportional counter. Function.

すなわち、多孔プレート1において、電極1a,1b間すなわち各中空糸13で画成される細孔(チャネル)の両端に電圧が印加されると、細孔の内部及び端部の周囲に軸方向の電界が発生する。このとき、多孔プレート1の上部で生成された電子がチャネルの一方端からチャネル内に入射すると、その入射電子は電界からエネルギーを付与され、チャネル内のガス原子と電離・励起衝突を繰り返し、電子及び脱励起に伴う光子が指数関数的に激増することにより電子・光増倍(増殖)が行われる。   That is, in the perforated plate 1, when a voltage is applied between the electrodes 1 a and 1 b, that is, both ends of the pores (channels) defined by the hollow fibers 13, an axial direction is formed inside and around the ends of the pores. An electric field is generated. At this time, when electrons generated in the upper part of the perforated plate 1 enter the channel from one end of the channel, the incident electrons are given energy from the electric field, and repeat ionization / excitation collisions with gas atoms in the channel. Electron / photomultiplication (growth) is performed by exponentially increasing photons accompanying de-excitation.

ここで、多孔プレート1を構成する中空糸13の樹脂材料としては、特に制限されるものではないが、ポリオレフィンであると好ましく、なかでも非ハロゲン系のもの、例えばポリエチレン又はポリプロピレンであるとより好ましい。また、それらの樹脂は、架橋体であってもなくてもよい。   Here, the resin material of the hollow fiber 13 constituting the perforated plate 1 is not particularly limited, but is preferably a polyolefin, and more preferably a non-halogen type, for example, polyethylene or polypropylene. . Moreover, those resins may or may not be crosslinked.

また、多孔プレート1の外径(樹脂枠12の外径)及び有効外径(樹脂枠12の内径)は、種々の用途に応じて、また、中空糸13の細孔径及び目的とする位置分解能等に応じて適宜決定されるが、通常は、1〜100mmφ程度とされる。さらに、多孔プレート1の厚さは、好ましくは0.05〜2.0mm程度とされる。多孔プレート1の厚さが0.05mm未満となると、充分な膜強度が得られない傾向にある。   The outer diameter of the perforated plate 1 (the outer diameter of the resin frame 12) and the effective outer diameter (the inner diameter of the resin frame 12) vary depending on various applications, and the pore diameter of the hollow fiber 13 and the desired position resolution. Although it is determined appropriately according to the above, it is usually set to about 1 to 100 mmφ. Furthermore, the thickness of the porous plate 1 is preferably about 0.05 to 2.0 mm. When the thickness of the porous plate 1 is less than 0.05 mm, sufficient film strength tends to be not obtained.

またさらに、多孔プレート1における細孔径つまり中空糸13の内径は、通常、6〜100μm程度とされる。中空糸13の内径がこの下限値未満であると、十分な光・電子増倍特性が得られない傾向にある。一方、中空糸13の内径が100μmを超えると、用途に依るものの、高解像度、高速応答、高分解能といった要求を十分に満足できないおそれがある。   Furthermore, the pore diameter in the porous plate 1, that is, the inner diameter of the hollow fiber 13 is usually about 6 to 100 μm. When the inner diameter of the hollow fiber 13 is less than this lower limit value, sufficient photo / electron multiplication characteristics tend not to be obtained. On the other hand, when the inner diameter of the hollow fiber 13 exceeds 100 μm, there is a possibility that the requirements such as high resolution, high speed response, and high resolution cannot be sufficiently satisfied, depending on the application.

また、多孔プレート1の利得特性は、中空糸13の内径dに対する中空糸13の軸長Lの比(規格化長a=L/d)に依存し、一般に、高利得を得るには、この規格化長aを大きくすることが有効である。しかし、規格化長aが過度に大きいと、細孔内に存在するガス(後述)と増倍電子との衝突によってイオンフィードバックが発生し易くなる。こうなると、ノイズが増大しS/N比が低下する傾向にある。また、多孔プレート1では、その厚さが1mm程度を超えると、利得の向上に比してノイズの増大が顕著となることが懸念されることから、規格化長aの上限は例えば200程度とされる。   The gain characteristics of the perforated plate 1 depend on the ratio of the axial length L of the hollow fiber 13 to the inner diameter d of the hollow fiber 13 (standardized length a = L / d). It is effective to increase the standardized length a. However, if the standardized length a is excessively large, ion feedback is likely to occur due to collision between a gas (described later) and multiplier electrons existing in the pores. When this happens, noise tends to increase and the S / N ratio tends to decrease. Further, in the perforated plate 1, if the thickness exceeds about 1 mm, there is a concern that the increase in noise becomes significant as compared with the improvement in gain. Therefore, the upper limit of the normalized length a is about 200, for example. Is done.

このような構成を有する多孔プレート1を製造する方法は、特に限定されるものではないが、例えば、以下に示す方法を用いることができる。まず、中空糸13の長尺体を束ねてバンドル状とし、それを樹脂枠12となる長管内に固定して中空糸13が配列されたブロックを得る。次いで、そのブロックを一定の厚さとなるように細切り加工(スライス)することにより、多孔プレート1を簡便に得ることができる。   The method for producing the perforated plate 1 having such a configuration is not particularly limited, but for example, the following method can be used. First, the long bodies of the hollow fibers 13 are bundled to form a bundle, which is fixed in a long tube that becomes the resin frame 12 to obtain a block in which the hollow fibers 13 are arranged. Next, the perforated plate 1 can be easily obtained by slicing (slicing) the block to have a certain thickness.

図3は、多孔プレート1を備える本発明のガス比例計数管を用いた撮像システムの好適な一実施形態を示す斜視図(一部破断図)である。また、図4は、その要部を模式的に示す断面図である。   FIG. 3 is a perspective view (partially cutaway view) showing a preferred embodiment of an imaging system using a gas proportional counter of the present invention having a perforated plate 1. FIG. 4 is a cross-sectional view schematically showing the main part.

撮像型X線検出装置200(撮像システム)は、撮像系210に、電源系34、並びにCAMCAユニット及び表示装置が組み込まれた制御系35(測定回路系を兼ねる。)が接続されたものである。撮像系210は、略筒状を成し上方端がベリリウム窓21(窓)で覆われ且つ側壁に排気口22a及び吸気口22bが設けられたチャンバ22と、X線Pv(電磁波)の入射方向に対してチャンバ22の後段に接合されたチャンバ23とを有している。   The imaging X-ray detection apparatus 200 (imaging system) is configured such that a power supply system 34 and a control system 35 (also serving as a measurement circuit system) in which a CAMCA unit and a display device are incorporated are connected to an imaging system 210. . The imaging system 210 has a substantially cylindrical shape, the upper end of which is covered with a beryllium window 21 (window) and the side walls are provided with an exhaust port 22a and an intake port 22b, and the incident direction of X-rays Pv (electromagnetic waves). And a chamber 23 joined to the rear stage of the chamber 22.

チャンバ22内には、X線Pvの入射方向に沿うように、その上流側から中空状の整形リング(シェイピングリング)215,216、及び前述した多孔プレート1が同軸状に設けられている。これらの整形リング215,216は、電源系34及び接地電位に接続されており、電源系34からの高電圧と接地間が抵抗分割されてそれぞれに適切なドリフト電圧が印加されるようになっている。これらの整形リング215,216によって、多孔プレート1の前方空間にドリフト領域が画成されている。   In the chamber 22, hollow shaping rings (shaping rings) 215 and 216 and the above-described perforated plate 1 are coaxially provided from the upstream side along the incident direction of the X-ray Pv. These shaping rings 215 and 216 are connected to the power supply system 34 and the ground potential, and the high voltage from the power supply system 34 and the ground are divided by resistance so that an appropriate drift voltage is applied to each of them. Yes. A drift region is defined in the front space of the perforated plate 1 by these shaping rings 215 and 216.

また、多孔プレート1の電極1a,1bは、それぞれ電源系34に接続されており、前者には所定のカソード電圧が印加されて陽極として作用し、後者には所定のアノード電圧が陰極として機能する。   The electrodes 1a and 1b of the perforated plate 1 are connected to a power supply system 34, respectively, and a predetermined cathode voltage is applied to the former to act as an anode, and a predetermined anode voltage functions as a cathode to the latter. .

また、チャンバ22,23の境界には開口部が設けられており、そこにFOP2がチャンバ22側を封止するように嵌合設置されている。このように閉止されたチャンバ22内の空間には、主ガス成分であるHeガス、Arガス、Xeガス、CH4ガス等に、分子中に好ましくはハロゲン原子、より好ましくはフッ素原子を含むCF4等のハロゲン化アルカンといった有機系ガスが添加され、更に必要に応じてクエンチングガスが加えられた検出用ガス217が封入されている。検出用ガス217は、排気口22a及び吸気口22bを用いて適宜排気及び供気される。 Further, an opening is provided at the boundary between the chambers 22 and 23, and the FOP 2 is fitted and installed therein so as to seal the chamber 22 side. In the space in the chamber 22 thus closed, the main gas components such as He gas, Ar gas, Xe gas, CH 4 gas, and the like preferably contain a halogen atom, more preferably a fluorine atom in the molecule. An organic gas such as a halogenated alkane such as 4 is added, and a detection gas 217 to which a quenching gas is added as necessary is enclosed. The detection gas 217 is appropriately exhausted and supplied using the exhaust port 22a and the intake port 22b.

CF4等の有機系ガスの添加量は、ガスの種類に応じて適宜選択することができるものの、検出用ガス217の全量に対して好ましくは1〜10体積%程度、より好ましくは数体積%とされる。このように、ベリリウム窓21、チャンバ22、整形リング215,216、多孔プレート1、及び検出用ガス217から本発明の比例計数管が構成されている。 The addition amount of an organic gas such as CF 4 can be appropriately selected according to the type of gas, but is preferably about 1 to 10% by volume, more preferably several volume% with respect to the total amount of the detection gas 217. It is said. Thus, the proportional counter of the present invention is constituted by the beryllium window 21, the chamber 22, the shaping rings 215, 216, the perforated plate 1, and the detection gas 217.

さらに、チャンバ23の底壁上には、多孔プレート1及びFOP2と同軸状にCMOSセンサアレイ3(CMOSセンサ;光検出器)が設置されており、その周囲には、CMOSセンサアレイ3を駆動させるための駆動回路ボード4が設けられている。またさらに、先述した電源系34は、チャンバ23の側壁に設けられた電源端子24を介して整形リング215,216及び多孔プレート1に接続されると共に、電源端子24を介して駆動回路ボード4及びCMOSセンサアレイ3にも駆動電力を供給するようになっている。さらにまた、制御系35は、チャンバ23の側壁に設けられた信号端子25を介して駆動回路ボード4と接続されている。   Further, a CMOS sensor array 3 (CMOS sensor; photodetector) is installed on the bottom wall of the chamber 23 coaxially with the perforated plate 1 and the FOP 2, and the CMOS sensor array 3 is driven around the CMOS sensor array 3. A drive circuit board 4 is provided. Furthermore, the above-described power supply system 34 is connected to the shaping rings 215 and 216 and the perforated plate 1 through the power supply terminals 24 provided on the side walls of the chamber 23, and the drive circuit board 4 and the power supply terminals 24 through the power supply terminals 24. Driving power is also supplied to the CMOS sensor array 3. Furthermore, the control system 35 is connected to the drive circuit board 4 via a signal terminal 25 provided on the side wall of the chamber 23.

このように構成されたガス比例計数管、及び撮像型X線検出装置200によれば、ベリリウム窓21を通してチャンバ22内に入射したX線Pvがベリリウム窓21/多孔プレート1間領域のガス分子と相互作用し、光電効果によって高エネルギーの電子(一次電子)が放出される。この一次電子(X線光電子)は、他のガス分子にエネルギーを付与しながら進み、その飛跡中に電子−イオン対を生じる。一次電子の飛跡に沿って生じた電子(電子雲)は、ベリリウム窓21/多孔プレート1間に生成された電場により、その電子雲形状を保持したまま多孔プレート1の前面からその内部に進入する。   According to the thus configured gas proportional counter and imaging X-ray detection apparatus 200, X-rays Pv incident into the chamber 22 through the beryllium window 21 are converted into gas molecules in the region between the beryllium window 21 and the porous plate 1. Interaction occurs, and high energy electrons (primary electrons) are emitted by the photoelectric effect. The primary electrons (X-ray photoelectrons) travel while applying energy to other gas molecules, and generate electron-ion pairs in the tracks. Electrons (electron clouds) generated along the tracks of primary electrons enter the inside of the porous plate 1 from the front surface while maintaining the shape of the electron cloud by the electric field generated between the beryllium window 21 and the porous plate 1. .

多孔プレート1の内部には、ガスの放電及び励起発光を引き起こすのに十分な例えば104V/cm以上の電場が形成されており、電子がガス分子と次々に衝突して電子増殖及び光増殖が行われ、例えば、1個の電子が103〜104個程度に増幅される。この際、種々の素反応が引き起こされ、なかでも励起されたCF4分子が基底状態に遷移する際に、そのエネルギー遷移に特有な波長を有する光が発せられる(CF4 *→CF4+hν)。この励起発光の波長領域は、可視光から赤外光領域にかけた広いものであり、そのピーク波長は約620nmである。 An electric field of, for example, 10 4 V / cm or more sufficient to cause gas discharge and excitation light emission is formed inside the perforated plate 1, and electrons collide with gas molecules one after another to cause electron proliferation and photoproliferation. For example, one electron is amplified to about 10 3 to 10 4 . At this time, various elementary reactions are caused, and in particular, when the excited CF 4 molecule transitions to the ground state, light having a wavelength peculiar to the energy transition is emitted (CF 4 * → CF 4 + hν). . The wavelength region of this excitation light emission is wide from visible light to infrared light region, and its peak wavelength is about 620 nm.

なお、整形リング215,216は、ベリリウム窓21/多孔プレート1間のガス厚を増やしてX線の検出効率を高める場合に、補助的に使用されるものである。図示を省略したが、通常、ベリリウム窓21を接地し、多孔プレート1の直前に10〜200V程度の電圧を印加することにより、ベリリウム窓21/多孔プレート1間の電場が例えば100〜200V/cm程度になるように調整される。このとき、ベリリウム窓21/多孔プレート1間の距離が大きくされると電場が乱れ易くなるため、それを‘整形’する目的で整形リング215,216が用いられる。よって、X線の検出効率をさほど重視せずにベリリウム窓21/多孔プレート1間の距離が小さい場合には、整形リング215,216を用いなくともよい。   The shaping rings 215 and 216 are supplementarily used when the gas thickness between the beryllium window 21 and the porous plate 1 is increased to increase the X-ray detection efficiency. Although not shown, normally, the beryllium window 21 is grounded, and a voltage of about 10 to 200 V is applied immediately before the perforated plate 1 so that the electric field between the beryllium window 21 and the perforated plate 1 is, for example, 100 to 200 V / cm. It is adjusted to be about. At this time, if the distance between the beryllium window 21 and the porous plate 1 is increased, the electric field is likely to be disturbed. Therefore, the shaping rings 215 and 216 are used for the purpose of 'shaping' the electric field. Therefore, when the distance between the beryllium window 21 and the porous plate 1 is small without giving much importance to the X-ray detection efficiency, the shaping rings 215 and 216 may not be used.

増幅光はFOP2を透過し、再度光電変換されることなくCMOSセンサアレイ3に入射する。CMOSセンサアレイ3からは、光の入射した二次元位置情報と各入射位置での光強度に基づく電気信号が駆動回路ボード4を通して制御系35へ出力され、そこで、三次元X線発光画像が構成されて表示装置等に出力される。   The amplified light passes through the FOP 2 and enters the CMOS sensor array 3 without being subjected to photoelectric conversion again. From the CMOS sensor array 3, an electrical signal based on the two-dimensional position information on which light is incident and the light intensity at each incident position is output to the control system 35 through the drive circuit board 4, where a three-dimensional X-ray emission image is formed. And output to a display device or the like.

こうして用いられる多孔プレート1は、管状の中空糸13が均一に配置されているので、細孔が一定間隔で規則正しく整列した状態が生起されている。よって、本発明のガス比例計数管及びそれを備える撮像型X線検出装置200は、X線Pv等の放射線の入射位置を検出するための二次元位置検出器として、分解能に優れたものとなる。しかも、中空糸13が隣接して密に設けられているので、更なる高解像度が期待できる。   In the perforated plate 1 used in this way, since the tubular hollow fibers 13 are arranged uniformly, a state in which the pores are regularly arranged at regular intervals is generated. Therefore, the gas proportional counter of the present invention and the imaging X-ray detection apparatus 200 including the same are excellent in resolution as a two-dimensional position detector for detecting the incident position of radiation such as X-ray Pv. . Moreover, since the hollow fibers 13 are densely provided adjacent to each other, further high resolution can be expected.

また、多孔プレート1に形成された細孔は、中空糸13に予め備わるものなので、従来のGEMのように膜に孔加工を施す際に懸念される加工不良が生じるおそれがない。よって、多孔プレート1において二次元感度分布が不均一となることを抑止できる。さらに、細孔が直管状の中空糸13で画成されるので、多孔プレート1の厚さ方向において、従来のGEMで見られるような突出部K(図9参照)を有しない。よって、突出部Kの位置や断面形状が細孔毎に不揃いとなる懸念があったGEMと異なり、各細孔内での電場が均一化され、多孔プレート1における感度分布の一様性を高めることができる。   Further, since the pores formed in the perforated plate 1 are provided in the hollow fiber 13 in advance, there is no possibility of causing a processing defect which is a concern when the hole processing is performed on the membrane as in the conventional GEM. Therefore, it is possible to prevent the two-dimensional sensitivity distribution from becoming uneven in the porous plate 1. Further, since the pores are defined by the straight tubular hollow fiber 13, there is no protrusion K (see FIG. 9) in the thickness direction of the perforated plate 1 as seen in a conventional GEM. Therefore, unlike the GEM, which has a concern that the position and the cross-sectional shape of the protrusion K are not uniform for each pore, the electric field in each pore is made uniform, and the uniformity of the sensitivity distribution in the porous plate 1 is improved. be able to.

またさらに、中空糸13が樹脂から成るので、ガラス製のプレートを用いるキャピラリープレートのように機械的に研磨する必要がなく、また、ガラスのように硬く脆くなく柔軟性に富むので、多孔プレート1の製造時に割れや剥離が生じ得ない。さらにまた、機械的な衝撃に強いので、そのような外部からの衝撃によって使用時に破損し難く、取扱性にも優れる。加えて、多孔プレート1は製造が平易であって、例えば上述の如くブロック体をスライスして薄膜化できる。よって、70μm程度より薄くすることも簡便であり、低電圧で高電場を形成させ易い。   Furthermore, since the hollow fiber 13 is made of a resin, it is not necessary to mechanically polish it as in a capillary plate using a glass plate, and it is not as hard and brittle as glass, and is rich in flexibility. No cracking or peeling can occur during the production of Furthermore, since it is strong against mechanical impact, it is difficult to be damaged during use by such external impact, and it is excellent in handleability. In addition, the perforated plate 1 is easy to manufacture, and can be thinned by slicing the block body as described above, for example. Therefore, it is easy to make the thickness thinner than about 70 μm, and it is easy to form a high electric field at a low voltage.

また、樹脂製の中空糸13が多孔プレート1を構成するので、蒸着等で被着される薄膜の電極1a,1bの密着性がガラス材に比して高められる。よって、電極1a,1bの剥離が充分に防止でき、装置の信頼性が高められる。さらに、多孔プレート1が天然放射性核種を含む可能性が殆どないので、従来の鉛ガラスを用いたチャネルガラスで問題となり得たα線による異常電離電流や異常発光の発生を確実に抑止でき、バックグラウンドレベルを格段に低減できる。よって、S/N比を格別に向上でき、これにより従来に比して高感度且つ高精度のX線測定が可能となる。   Further, since the resin hollow fiber 13 constitutes the perforated plate 1, the adhesion of the thin film electrodes 1a and 1b deposited by vapor deposition or the like is enhanced as compared with the glass material. Therefore, peeling of the electrodes 1a and 1b can be sufficiently prevented, and the reliability of the apparatus is improved. Furthermore, since there is almost no possibility that the perforated plate 1 contains natural radionuclides, abnormal ionization current and abnormal light emission due to α-rays, which could be a problem with channel glass using conventional lead glass, can be reliably suppressed, The ground level can be significantly reduced. Therefore, the S / N ratio can be significantly improved, and thereby X-ray measurement with higher sensitivity and higher accuracy than before can be performed.

またさらに、中空糸13がポリオレフィン、特にポリエチレンやポリプロピレン等の非ハロゲン系ポリオレフィンから成ると、工業上の利用性に優れると共に、適度に高い抵抗率を発現するので、多孔プレート1を極薄化したときでも、電極1a,1b間の絶縁を充分に担保でき、電場の形成をより確実ならしめることができる。また、長期使用時に電荷が蓄積し易い程の過度な高抵抗ではないので、チャージアップによる異常な突発電流の発生を防止できる。   Furthermore, when the hollow fiber 13 is made of polyolefin, particularly non-halogen polyolefin such as polyethylene or polypropylene, it has excellent industrial utility and moderately high resistivity, so that the porous plate 1 is made extremely thin. Even then, the insulation between the electrodes 1a and 1b can be sufficiently secured, and the formation of the electric field can be made more reliable. In addition, since the resistance is not excessively high enough to easily accumulate charges during long-term use, it is possible to prevent the occurrence of an abnormal sudden current due to charge-up.

さらにまた、検出用ガス217として、CF4ガス等のハロゲン置換されたアルカンといった有機系ガスが添加されたものを用いると、高効率で可視領域の波長を有する光を発光させることができるので、可視光透過性に優れる汎用のFOP2を用いても、高い透過率を達成できる。よって、CMOSセンサアレイ3への入射光の減弱を十分に防止でき、更に高感度なX線測定を実現できる。 Furthermore, when a gas to which an organic gas such as a halogen-substituted alkane such as CF 4 gas is added as the detection gas 217, light having a wavelength in the visible region can be emitted with high efficiency. Even when a general-purpose FOP2 having excellent visible light transmittance is used, high transmittance can be achieved. Therefore, attenuation of the incident light to the CMOS sensor array 3 can be sufficiently prevented, and more sensitive X-ray measurement can be realized.

図5は、多孔プレート1を備える本発明のガス比例計数管を用いた撮像システムに係る他の実施形態の要部を模式的に示す断面図である。撮像型光検出装置300(撮像システム)は、ベリリウム窓21の代わりに入射窓31を有する撮像系310を備えており、且つ、X線Pvの代わりに光Pxの撮像測定を行うものであること以外は、図3及び4に示す撮像型X線検出装置200と同様の構成を有するものである。   FIG. 5 is a cross-sectional view schematically showing a main part of another embodiment of the imaging system using the gas proportional counter of the present invention including the porous plate 1. The imaging photodetection device 300 (imaging system) includes an imaging system 310 having an entrance window 31 instead of the beryllium window 21 and performs imaging measurement of light Px instead of X-ray Pv. Other than this, the configuration is the same as that of the imaging X-ray detection apparatus 200 shown in FIGS.

入射窓31は、いわゆる透過型の光電面として機能し、例えば石英等の窓基材上に薄い下地金属膜が形成され、更にその上に、例えばバイアルカリ化合物、マルチアルカリ化合物や、バイアルカリ及びアンチモン若しくはテルルの化合物、又は、マルチアルカリ及びアンチモン若しくはテルルの化合物等から成る薄膜、並びに必要に応じてカーボンナノチューブ等から成る中間層を有する光電子放出膜31aが蒸着等によって形成されたものである。   The incident window 31 functions as a so-called transmission type photocathode. For example, a thin base metal film is formed on a window base material such as quartz, and further, for example, a bialkali compound, a multialkali compound, a bialkali, A photoelectron emission film 31a having a thin film made of an antimony or tellurium compound, a multi-alkali and an antimony or tellurium compound, or the like, and an intermediate layer made of carbon nanotubes or the like as required is formed by vapor deposition or the like.

このように構成された撮像型光検出装置300では、入射窓31に入射した光Pxが光電子放出膜31aに達すると、光電変換によって生じた光電子が多孔プレート1の前段の空間に放出される。この光電子が、撮像型光検出装置200で説明した一次電子に相当し、上述したのと同様にして電子−イオン対を生じ、多孔プレート1内で電子増殖及び光増幅が行われ、CF4ガスの励起発光が得られる。この光は多孔プレート1で増幅され、FOP2を透過してCMOSセンサアレイ3へ入射し、三次元入射光画像が表示装置等に出力される。そして、撮像型光検出装置300によっても、上述した撮像型X線検出装置200と同様の作用効果が奏される(重複を避けるため、ここでの説明は省略する。)。 In the imaging photodetection device 300 configured as described above, when the light Px incident on the incident window 31 reaches the photoelectron emission film 31a, the photoelectrons generated by the photoelectric conversion are emitted to the space in the front stage of the porous plate 1. This photoelectron corresponds to the primary electron described in the image-capturing photodetection device 200, generates an electron-ion pair in the same manner as described above, and performs electron multiplication and light amplification in the perforated plate 1, and CF 4 gas. Excitation light emission is obtained. This light is amplified by the perforated plate 1, passes through the FOP 2 and enters the CMOS sensor array 3, and a three-dimensional incident light image is output to a display device or the like. The imaging photodetection device 300 also provides the same operational effects as the imaging X-ray detection device 200 described above (the description is omitted here to avoid duplication).

なお、本発明は上述した各実施形態に限定されず、その要旨を逸脱しない範囲で様々な変形が可能である。例えば、多孔プレート1における樹脂枠12を省略してもよい。この場合、多孔プレート1の製造時には、バンドル化した中空糸13の長尺体を接着性の樹脂で接合するといった方法を採用し得る。また、多孔プレート1の形状は円板状に制限されず、例えば角板状等でもよい。図6は、本発明のガス比例計数管に用いられる他の板状体の一例を模式的に示す斜視図である。多孔プレート10(板状体)は、矩形の樹脂枠212を備え、中空糸13が多数併設され、空間211が例えば他の樹脂等で埋め込まれた構造を有する。   In addition, this invention is not limited to each embodiment mentioned above, A various deformation | transformation is possible in the range which does not deviate from the summary. For example, the resin frame 12 in the perforated plate 1 may be omitted. In this case, at the time of manufacturing the perforated plate 1, a method of joining long bundles of bundled hollow fibers 13 with an adhesive resin can be employed. Further, the shape of the perforated plate 1 is not limited to a disc shape, and may be a square plate shape, for example. FIG. 6 is a perspective view schematically showing an example of another plate-like body used in the gas proportional counter of the present invention. The perforated plate 10 (plate-like body) includes a rectangular resin frame 212, a large number of hollow fibers 13 are provided, and the space 211 is embedded with, for example, another resin.

さらに、検出用ガス217には、CF4ガスに替えて又は加えてTMAやTEA等の他のペニング効果を奏するガスが添加されていてもよいが、励起光波長が上述の如く可視域となる点でCF4等のハロゲン化アルカン等の有機系ガスがより好ましい。 Furthermore, the gas for detection 217 may be added with another Penning effect gas such as TMA or TEA instead of or in addition to the CF 4 gas, but the excitation light wavelength becomes visible as described above. In this respect, an organic gas such as a halogenated alkane such as CF 4 is more preferable.

さらにまた、CMOSセンサアレイ3に代えて、CCD、ICCD、PMT、陽極ボードを用いた撮像用センサを用いても構わないが、高精細且つ高速な動的解析用途にはCMOSセンサアレイ3を用いることが望ましい。また、FOP2の代わりに従来の光透過窓112及び光学系120の組み合わせを用いてもよいし、バンドル状の光ファイバーを用いても構わない。   Furthermore, in place of the CMOS sensor array 3, an imaging sensor using a CCD, ICCD, PMT, or anode board may be used. However, the CMOS sensor array 3 is used for high-definition and high-speed dynamic analysis. It is desirable. Further, a combination of the conventional light transmission window 112 and the optical system 120 may be used instead of the FOP2, or a bundle-shaped optical fiber may be used.

以上説明したように、本発明によるガス比例計数管及び撮像システムを用いれば、電子及び光増倍部である板状体を薄膜化しても耐衝撃性及び取扱性を向上できると共に、画一的且つ均一に配置された細孔を備える板状体を実現でき、これにより感度分布の一様性を高めることが可能となる。   As described above, if the gas proportional counter and the imaging system according to the present invention are used, impact resistance and handling can be improved even if the plate-like body which is an electron and a photomultiplier is thinned, and it is uniform. In addition, it is possible to realize a plate-like body having pores arranged uniformly, thereby improving the uniformity of the sensitivity distribution.

本発明によるガス比例計数管に備わる板状体の好適な一実施形態を模式的に示す平面図である。It is a top view which shows typically suitable one Embodiment of the plate-shaped object with which the gas proportional counter by this invention is equipped. 図1におけるII−II線断面図である。It is the II-II sectional view taken on the line in FIG. 多孔プレート1を備える本発明のガス比例計数管を用いた撮像システムの好適な一実施形態を示す斜視図である。1 is a perspective view showing a preferred embodiment of an imaging system using a gas proportional counter of the present invention having a perforated plate 1. FIG. 多孔プレート1を備える本発明のガス比例計数管を用いた撮像システムの好適な一実施形態の要部を模式的に示す断面図である。It is sectional drawing which shows typically the principal part of suitable one Embodiment of the imaging system using the gas proportional counter of this invention provided with the porous plate. 多孔プレート1を備える本発明のガス比例計数管を用いた撮像システムに係る他の実施形態の要部を模式的に示す断面図である。It is sectional drawing which shows typically the principal part of other embodiment which concerns on the imaging system using the gas proportional counter of this invention provided with the porous plate. 本発明のガス比例計数管に用いられる他の板状体の一例を模式的に示す斜視図である。It is a perspective view which shows typically an example of the other plate-shaped object used for the gas proportional counter of this invention. 従来のCGPCを用いた撮像型X線検出装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the imaging type X-ray detection apparatus using the conventional CGPC. GEMに用いられる多孔質ポリイミドフィルムの一部を示す模式平面図である。It is a schematic plan view which shows a part of porous polyimide film used for GEM. 図8におけるIX−IX線に沿う断面図である。It is sectional drawing which follows the IX-IX line in FIG.

符号の説明Explanation of symbols

1,10…多孔プレート(板状体)、1a,1b…電極、3…CMOSセンサアレイ(光検出器)、4…駆動回路ボード、12,212…樹脂枠、13…中空糸(管)、21…ベリリウム窓、22,23…チャンバ、31…入射窓、31a…光電子放出膜、34…電源系、35…制御系、200,300…撮像型X線検出装置(撮像システム)、210,310…撮像系、215,216…整形リング、217…検出用ガス、Pv…X線、Px…光。


DESCRIPTION OF SYMBOLS 1,10 ... Porous plate (plate-shaped body), 1a, 1b ... Electrode, 3 ... CMOS sensor array (photodetector), 4 ... Drive circuit board, 12, 212 ... Resin frame, 13 ... Hollow fiber (tube), DESCRIPTION OF SYMBOLS 21 ... Beryllium window, 22, 23 ... Chamber, 31 ... Incident window, 31a ... Photoelectron emission film, 34 ... Power supply system, 35 ... Control system, 200, 300 ... Imaging type X-ray detection apparatus (imaging system), 210, 310 ... Imaging system, 215, 216 ... Shaping ring, 217 ... Detection gas, Pv ... X-ray, Px ... Light.


Claims (7)

不活性ガスを主成分として含む検出用ガスが充填されており、電磁波又は電離放射線が入射する窓を有するチャンバと、
前記チャンバ内に配置されており、且つ、樹脂から成る複数の管が該管の軸方向に対して交差する方向に併設された板状体と、
を備えるガス比例計数管。
A chamber filled with a detection gas containing an inert gas as a main component and having a window through which electromagnetic waves or ionizing radiation is incident;
A plate-like body that is arranged in the chamber and in which a plurality of pipes made of resin are provided in a direction intersecting the axial direction of the pipes;
Gas proportional counter with.
前記管が中空糸から成るものである請求項1記載のガス比例計数管。   2. The gas proportional counter according to claim 1, wherein the pipe is made of a hollow fiber. 前記樹脂がポリオレフィンである請求項1記載のガス比例計数管。   The gas proportional counter according to claim 1, wherein the resin is polyolefin. 前記樹脂がポリエチレン又はポリプロピレンである請求項1記載のガス比例計数管。   The gas proportional counter according to claim 1, wherein the resin is polyethylene or polypropylene. 前記検出用ガスが分子中にハロゲン原子を含む有機系ガスを含有するものである請求項1記載のガス比例計数管。   The gas proportional counter according to claim 1, wherein the detection gas contains an organic gas containing a halogen atom in a molecule. 前記有機系ガスは、少なくとも一つの水素原子がフッ素原子で置換された炭化水素から成るガスである、請求項5記載のガス比例計数管。   6. The gas proportional counter according to claim 5, wherein the organic gas is a gas composed of a hydrocarbon in which at least one hydrogen atom is replaced with a fluorine atom. 請求項1〜6のいずれか一項に記載のガス比例計数管と、
前記チャンバの後段に配置された光検出器と、
を備える撮像システム。


A gas proportional counter according to any one of claims 1 to 6;
A photodetector disposed downstream of the chamber;
An imaging system comprising:


JP2003272032A 2003-07-08 2003-07-08 Gas proportional counter and imaging system Expired - Fee Related JP3955836B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003272032A JP3955836B2 (en) 2003-07-08 2003-07-08 Gas proportional counter and imaging system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003272032A JP3955836B2 (en) 2003-07-08 2003-07-08 Gas proportional counter and imaging system

Publications (2)

Publication Number Publication Date
JP2005032634A true JP2005032634A (en) 2005-02-03
JP3955836B2 JP3955836B2 (en) 2007-08-08

Family

ID=34209719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003272032A Expired - Fee Related JP3955836B2 (en) 2003-07-08 2003-07-08 Gas proportional counter and imaging system

Country Status (1)

Country Link
JP (1) JP3955836B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007100029A1 (en) * 2006-03-02 2007-09-07 Riken Gas electronic amplifier and method for manufacturing gas electronic amplification foil and a radiation detector using gas electronic amplifier
JP2009206057A (en) * 2008-02-29 2009-09-10 Scienergy Co Ltd Gas electron amplifier and radiation detector using the same
JP2009301906A (en) * 2008-06-13 2009-12-24 Hamamatsu Photonics Kk Photomultiplier tube
US8134129B2 (en) 2005-07-29 2012-03-13 Japan Science And Technology Agency Microchannel plate, gas proportional counter and imaging device
JP2013178109A (en) * 2012-02-28 2013-09-09 Hitachi-Ge Nuclear Energy Ltd Radiation measuring apparatus
JP2015523551A (en) * 2012-05-14 2015-08-13 オプタセンス・ホールデイングス・リミテツド Radiation detector
KR20200101066A (en) * 2019-02-19 2020-08-27 주식회사 메카로 Gas electron multiplier detector and method for rejecting background noise thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5243354A (en) * 1975-10-01 1977-04-05 Matsushita Electric Ind Co Ltd Manufacturing process of channel secondary electronic enlargement face
JPH01134288A (en) * 1987-11-19 1989-05-26 Aloka Co Ltd Gas counter tube type dose rate meter
JPH07248555A (en) * 1994-03-14 1995-09-26 Fujitsu Ltd Radiation picture photographing device and radiation picture converting panel
JPH09508750A (en) * 1994-11-25 1997-09-02 サントル ナショナル ドゥ ラ ルシエルシュ シアンティフィック Ionizing radiation detector with proportional microcounter
JP2000181948A (en) * 1998-12-17 2000-06-30 Toshiba Corp Hierarchical drawing design device
JP2004241298A (en) * 2003-02-07 2004-08-26 Japan Science & Technology Agency Capillary plate, its manufacturing method, gas proportional counter tube, and imaging system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5243354A (en) * 1975-10-01 1977-04-05 Matsushita Electric Ind Co Ltd Manufacturing process of channel secondary electronic enlargement face
JPH01134288A (en) * 1987-11-19 1989-05-26 Aloka Co Ltd Gas counter tube type dose rate meter
JPH07248555A (en) * 1994-03-14 1995-09-26 Fujitsu Ltd Radiation picture photographing device and radiation picture converting panel
JPH09508750A (en) * 1994-11-25 1997-09-02 サントル ナショナル ドゥ ラ ルシエルシュ シアンティフィック Ionizing radiation detector with proportional microcounter
JP2000181948A (en) * 1998-12-17 2000-06-30 Toshiba Corp Hierarchical drawing design device
JP2004241298A (en) * 2003-02-07 2004-08-26 Japan Science & Technology Agency Capillary plate, its manufacturing method, gas proportional counter tube, and imaging system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8134129B2 (en) 2005-07-29 2012-03-13 Japan Science And Technology Agency Microchannel plate, gas proportional counter and imaging device
WO2007100029A1 (en) * 2006-03-02 2007-09-07 Riken Gas electronic amplifier and method for manufacturing gas electronic amplification foil and a radiation detector using gas electronic amplifier
JP2007234485A (en) * 2006-03-02 2007-09-13 Institute Of Physical & Chemical Research Gas electron multiplier, manufacturing method of gas electron multiplication foil using it, and radiation detector using gas electron multiplier
US7994483B2 (en) 2006-03-02 2011-08-09 Riken Gas electron multiplier and manufacturing method for gas electron multiplication foil used for same as well as radiation detector using gas electron multiplier
JP2009206057A (en) * 2008-02-29 2009-09-10 Scienergy Co Ltd Gas electron amplifier and radiation detector using the same
JP2009301906A (en) * 2008-06-13 2009-12-24 Hamamatsu Photonics Kk Photomultiplier tube
JP2013178109A (en) * 2012-02-28 2013-09-09 Hitachi-Ge Nuclear Energy Ltd Radiation measuring apparatus
JP2015523551A (en) * 2012-05-14 2015-08-13 オプタセンス・ホールデイングス・リミテツド Radiation detector
KR20200101066A (en) * 2019-02-19 2020-08-27 주식회사 메카로 Gas electron multiplier detector and method for rejecting background noise thereof
KR102166734B1 (en) * 2019-02-19 2020-10-16 주식회사 메카로 Gas electron multiplier detector and method for rejecting background noise thereof

Also Published As

Publication number Publication date
JP3955836B2 (en) 2007-08-08

Similar Documents

Publication Publication Date Title
Wiza Microchannel plate detectors
US7977617B2 (en) Image intensifying device having a microchannel plate with a resistive film for suppressing the generation of ions
US8471444B2 (en) Ion barrier membrane for use in a vacuum tube using electron multiplying, an electron multiplying structure for use in a vacuum tube using electron multiplying as well as a vacuum tube using electron multiplying provided with such an electron multiplying structure
WO2007013630A1 (en) Microchannel plate, gas proportional counter and imaging device
EP0046009A1 (en) Low intensity X-ray and gamma-ray imaging spectrometer
JP6532852B2 (en) Electron multiplication structure used in vacuum tube using electron multiplication, and vacuum tube using electron multiplication comprising such electron multiplication structure
JP5152950B2 (en) Microchannel plate, gas proportional counter, and imaging device
JP3955836B2 (en) Gas proportional counter and imaging system
Miller et al. A low-cost approach to high-resolution, single-photon imaging using columnar scintillators and image intensifiers
JP4058359B2 (en) Capillary plate, manufacturing method thereof, gas proportional counter, and imaging system
EP2164092B1 (en) An ion barrier membrane for use in a vacuum tube using electron multiplying, an electron multiplying structure for use in a vacuum tube using electron multiplying as well as a vacuum tube using electron multiplying provided with such an electron multiplying structure
US5453609A (en) Non cross talk multi-channel photomultiplier using guided electron multipliers
WO2007098493A2 (en) Large-area flat-panel photon detector with hemispherical pixels and full area coverage
JP2010286316A (en) Optical detector
JP6860369B2 (en) Proportional counter and neutron imaging system
Francke et al. Novel position-sensitive gaseous detectors with solid photocathodes
US10804085B2 (en) Photomultiplier and methods of making it
Gys et al. Position-sensitive vacuum photon detectors
Leblanc et al. SOFI: A scintillating optical fiber imager
US20020113551A1 (en) Light conversion and detection of visible light
Wiedwald Microchannel plates as detectors and amplifiers of x-ray images
CN114428263A (en) Time-of-flight detector based on Cherotkoff radiation detection and manufacturing method
Sauli The imaging chamber: a gaseous detector of ionizing radiation with very high granularity
Lapington New techniques for imaging photon-counting and particle detectors
CN110596743A (en) Double-film soft X-ray fluorescence high-speed imaging system for magnetic confinement fusion device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060405

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060405

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060926

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070314

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070507

R150 Certificate of patent or registration of utility model

Ref document number: 3955836

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140511

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees