EP0286191B1 - Vacuum arc ion source - Google Patents

Vacuum arc ion source Download PDF

Info

Publication number
EP0286191B1
EP0286191B1 EP88200649A EP88200649A EP0286191B1 EP 0286191 B1 EP0286191 B1 EP 0286191B1 EP 88200649 A EP88200649 A EP 88200649A EP 88200649 A EP88200649 A EP 88200649A EP 0286191 B1 EP0286191 B1 EP 0286191B1
Authority
EP
European Patent Office
Prior art keywords
micro
drops
cathode
plasma
ion source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88200649A
Other languages
German (de)
French (fr)
Other versions
EP0286191A1 (en
Inventor
Henri Société Civile S.P.I.D. Bernardet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SODERN SA
Koninklijke Philips NV
Original Assignee
SODERN SA
Philips Gloeilampenfabrieken NV
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SODERN SA, Philips Gloeilampenfabrieken NV, Koninklijke Philips Electronics NV filed Critical SODERN SA
Publication of EP0286191A1 publication Critical patent/EP0286191A1/en
Application granted granted Critical
Publication of EP0286191B1 publication Critical patent/EP0286191B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/022Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/08Ion sources; Ion guns using arc discharge

Definitions

  • the invention relates to a vacuum arc ion source device comprising a plasma emitting cathode and an anode, polarized at suitable potentials.
  • the material of the electrodes When an arc is blown between two electrodes placed under vacuum, the material of the electrodes is locally vaporized under the effect of heating.
  • the ionized gas gives rise to a plasma formed by an ion-electron mixture with zero total charge.
  • the arc is initiated by the projection of an auxiliary plasma between the anode and the cathode by means of an autonomous trigger for a short duration relative to the length of the arc pulse.
  • This emission of plasma is accompanied, for certain materials, by a projection of micro-droplets of molten material; this emission is not isotropic and is located mainly in a solid angle close to the surface of the cathode.
  • Patents US-A-4 191 888 and JP-A-61-22 548 are known to modify the shape of an extraction electrode to reduce the emission of particles by it. It is therefore not a question of producing a plasma. Only the emission rate of the particles from an extraction electrode is concerned and these particles are not mentioned as being micro-droplets.
  • the invention aims at the partial or total elimination of the above-mentioned emission of micro-droplets liable to harm the quality of the layer sought or the proper functioning of the equipment equipped with this source.
  • microdroplets are emitted from cathode spots and most of them in a solid angle close to the surface of the cathode and means for recovering microdroplets are arranged. on at least part of the path of the micro-droplets.
  • the receptacles are formed by hollow parts arranged in the zone of maximum emission of the micro-droplets (directions forming a small angle with the plasma emission plane), said hollow parts having undergone an appropriate surface treatment allowing good adhesion of the microdroplets, this adhesion being able to be improved by a polarization of the receptacles relative to the source.
  • the receptacles are in the form of grids arranged at or beyond the anode and so as to avoid a direct view of the cathode from the extraction.
  • the means for separating the micro-droplets from the plasma consist of induction coils providing a magnetic field for confining the plasma which limits its radial diffusion along a rectilinear or toroidal path, said plasma expanding again at the outlet of said device, in the absence of magnetic field.
  • Figure 1 shows the maximum emission area of micro-projections.
  • FIG. 2 represents a mode of recovery of the micro-droplets in their maximum emission zone.
  • FIG. 3 represents a mode of recovery of the micro-droplets by means of a system of anti-projection grids in the zone of emission of the plasma.
  • FIG. 4 illustrates the use of the anti-projection grid as an ion extraction grid.
  • FIG. 5 represents a mode of separation of the microdroplets from the plasma by means of a magnetic field on a path of the rectilinear (Figure 5a) and toroidal (Figure 5b) plasma.
  • FIG. 1 shows a plasma 1 emitted by a cathode 2 between said cathode and an anode 3.
  • the maximum emission zone 4 of the microdroplets 5, close to the plasma emission plane is limited by this plane on the one hand and by a cone whose trace on the plane of the figure is indicated by dashed lines on the other hand.
  • the cathode 2 of cylindrical shape is surrounded by a sleeve of the same shape constituting the anode trigger 6.
  • the recovery of the microdroplets is carried out in the maximum emission zone defined in FIG. 1 using receptacles formed by hollow parts 7 isolated from the trigger 6 and the anode 3 by means of parts 8 and 9 respectively.
  • These hollow parts serve as a container for the droplets and allow, by an appropriate surface treatment, good adhesion which can be improved by a limited polarization of the receptacle relative to the source and in the opposite direction to the electric charge of the micro-droplets.
  • a system of receptacles in the form of grids placed in the area of projection of the plasma, as represented at 10 in FIG. grids are arranged at or beyond the anode 3 and so as to avoid a direct view of the cathode from the extraction; they can be weakly polarized to ensure more efficient capture, taking into account the electrical charge of the micro-droplets.
  • micro-droplets are intercepted by these grids on which they are fixed by bonding if their surface has received a treatment promoting adhesion or maintained by gravity if their section has a trough shape (case shown in Figure 3).
  • the arrangement of the coils 12b ensures a toroidal path of the plasma.
  • the baffles 14 distributed along the walls along this path ensure the recovery of the micro-droplets.

Description

L'invention concerne un dispositif de source d'ions à arc sous vide comportant une cathode émissive d'un plasma et une anode, polarisées à des potentiels appropriés.The invention relates to a vacuum arc ion source device comprising a plasma emitting cathode and an anode, polarized at suitable potentials.

Lorsqu'on fait jaillir un arc entre deux électrodes placées sous vide, le matériau des électrodes est localement vaporisé sous l'effet de l'échauffement. Le gaz ionisé donne naissance à un plasma formé d'un mélange ions-électrons à charge totale nulle. L'arc est initié par la projection d'un plasma auxiliaire entre l'anode et la cathode au moyen d'une gâchette autonome pendant une courte durée par rapport à la longueur de l'impulsion d'arc.When an arc is blown between two electrodes placed under vacuum, the material of the electrodes is locally vaporized under the effect of heating. The ionized gas gives rise to a plasma formed by an ion-electron mixture with zero total charge. The arc is initiated by the projection of an auxiliary plasma between the anode and the cathode by means of an autonomous trigger for a short duration relative to the length of the arc pulse.

L'émission de ce plasma projeté avec une énergie moyenne de quelques dizaines d'eV (électrons-volts) est faite à partir de points très brillants de très faibles dimensions appelés spots cathodiques et suivant des cônes dont l'angle est voisin de 30°.The emission of this plasma projected with an average energy of a few tens of eV (electron volts) is made from very bright points of very small dimensions called cathode spots and following cones whose angle is close to 30 ° .

Cette émission de plasma est accompagnée, pour certains matériaux, d'une projection de micro-gouttelettes de matière en fusion ; cette émission n'est pas isotrope et est située en majorité dans un angle solide proche de la surface de la cathode.This emission of plasma is accompanied, for certain materials, by a projection of micro-droplets of molten material; this emission is not isotropic and is located mainly in a solid angle close to the surface of the cathode.

On connaît des brevets US-A-4 191 888 et JP-A-61-22 548, de modifier la forme d'une électrode d'extraction pour diminuer l'émission de particules par celle-ci. Il ne s'agit donc pas de la production d'un plasma. Seul le taux d'émission des particules par une électrode d'extraction est concerné et ces particules ne sont pas mentionnées comme étant des micro-gouttelettes.Patents US-A-4 191 888 and JP-A-61-22 548 are known to modify the shape of an extraction electrode to reduce the emission of particles by it. It is therefore not a question of producing a plasma. Only the emission rate of the particles from an extraction electrode is concerned and these particles are not mentioned as being micro-droplets.

L'invention vise à l'élimination partielle ou totale de la susdite émission de micro-gouttelettes susceptibles de nuire à la qualité de la couche recherchée ou au bon fonctionnement de l'appareillage équipé de cette source.The invention aims at the partial or total elimination of the above-mentioned emission of micro-droplets liable to harm the quality of the layer sought or the proper functioning of the equipment equipped with this source.

Selon l'invention, pendant le fonctionnement de la source d'ions des micro-gouttelettes sont émises à partir des spots cathodiques et en majorité dans un angle solide proche de la surface de la cathode et des moyens de récupération des micro-gouttelettes sont disposés sur au moins une partie du trajet des micro-gouttelettes.According to the invention, during operation of the ion source, microdroplets are emitted from cathode spots and most of them in a solid angle close to the surface of the cathode and means for recovering microdroplets are arranged. on at least part of the path of the micro-droplets.

Dans le cas où la suppression des micro-gouttelettes émises dans l'angle solide proche de la surface de la cathode est suffisante, les réceptacles sont constitués par des pièces en creux disposées dans la zone d'émission maximale des micro-gouttelettes (directions formant un petit angle avec le plan d'émission du plasma), lesdites pièces en creux ayant subi un traitement de surface approprié permettant une bonne adhérence des micro-gouttelettes, cette adhérence pouvant être améliorée par une polarisation des réceptacles par rapport à la source.In the case where the suppression of the micro-droplets emitted in the solid angle close to the surface of the cathode is sufficient, the receptacles are formed by hollow parts arranged in the zone of maximum emission of the micro-droplets (directions forming a small angle with the plasma emission plane), said hollow parts having undergone an appropriate surface treatment allowing good adhesion of the microdroplets, this adhesion being able to be improved by a polarization of the receptacles relative to the source.

Si l'on souhaite une élimination plus complète des micro-gouttelettes, les réceptacles sont en forme de grilles disposées au niveau ou au-delà de l'anode et de façon à éviter une vue directe de la cathode à partir de l'extraction.If a more complete elimination of the micro-droplets is desired, the receptacles are in the form of grids arranged at or beyond the anode and so as to avoid a direct view of the cathode from the extraction.

Les moyens de séparation des micro-gouttelettes du plasma sont constitués par des bobines d'induction fournissant un champ magnétique de confinement du plasma qui limite sa diffusion radiale suivant un trajet rectiligne ou toroïdal, ledit plasma se dilatant à nouveau à la sortie dudit dispositif, en l'absence de champ magnétique.The means for separating the micro-droplets from the plasma consist of induction coils providing a magnetic field for confining the plasma which limits its radial diffusion along a rectilinear or toroidal path, said plasma expanding again at the outlet of said device, in the absence of magnetic field.

La description suivante en regard des dessins annexés, le tout donné à titre d'exemple, fera bien comprendre comment l'invention peut être réalisée.The following description with reference to the accompanying drawings, all given by way of example, will make it clear how the invention can be implemented.

La figure 1 montre la zone d'émission maximale des micro-projections.Figure 1 shows the maximum emission area of micro-projections.

La figure 2 représente un mode de récupération des micro-gouttelettes dans leur zone d'émission maximale.FIG. 2 represents a mode of recovery of the micro-droplets in their maximum emission zone.

La figure 3 représente un mode de récupération des micro-gouttelettes au moyen d'un système de grilles anti-projection dans la zone d'émission du plasma.FIG. 3 represents a mode of recovery of the micro-droplets by means of a system of anti-projection grids in the zone of emission of the plasma.

La figure 4 illustre l'utilisation de la grille anti-projection comme grille d'extraction des ions.FIG. 4 illustrates the use of the anti-projection grid as an ion extraction grid.

La figure 5 représente un mode de séparation des micro-gouttelettes du plasma au moyen d'un champ magnétique sur un trajet du plasma rectiligne (figure 5a) et toroïdal (figure 5b).FIG. 5 represents a mode of separation of the microdroplets from the plasma by means of a magnetic field on a path of the rectilinear (Figure 5a) and toroidal (Figure 5b) plasma.

Les éléments identiques de ces figures sont affectés des mêmes signes de référence.Identical elements in these figures are given the same reference signs.

La figure 1 montre un plasma 1 émis par une cathode 2 entre ladite cathode et une anode 3. La zone d'émission maximale 4 des micro-gouttelettes 5, voisine du plan d'émission du plasma est limitée par ce plan d'une part et par un cône dont la trace sur le plan de la figure est indiquée en traits mixtes d'autre part.FIG. 1 shows a plasma 1 emitted by a cathode 2 between said cathode and an anode 3. The maximum emission zone 4 of the microdroplets 5, close to the plasma emission plane is limited by this plane on the one hand and by a cone whose trace on the plane of the figure is indicated by dashed lines on the other hand.

Sur la figure 2, la cathode 2 de forme cylindrique est entourée d'un manchon de même forme constituant la gâchette anodique 6. La récupération des micro-gouttelettes est effectuée dans la zone d'émission maximale définie sur la figure 1 à l'aide de réceptacles constitués par des pièces en creux 7 isolées de la gâchette 6 et de l'anode 3 au moyen des pièces 8 et 9 respectivement. Ces pièces en creux servent de récipient aux gouttelettes et permettent, par un traitement de surface approprié, une bonne adhérence qui peut être améliorée par une polarisation limitée du réceptacle par rapport à la source et de sens opposé à la charge électrique des micro-gouttelettes.In FIG. 2, the cathode 2 of cylindrical shape is surrounded by a sleeve of the same shape constituting the anode trigger 6. The recovery of the microdroplets is carried out in the maximum emission zone defined in FIG. 1 using receptacles formed by hollow parts 7 isolated from the trigger 6 and the anode 3 by means of parts 8 and 9 respectively. These hollow parts serve as a container for the droplets and allow, by an appropriate surface treatment, good adhesion which can be improved by a limited polarization of the receptacle relative to the source and in the opposite direction to the electric charge of the micro-droplets.

Pour des utilisations nécessitant une absence totale des micro-gouttelettes, il faut adjoindre au système 7 de la figure 2 un système de réceptacles en forme de grilles placées dans la zone de projection du plasma, tel que représenté en 10 sur la figure 3. Ces grilles sont disposées au niveau ou au-delà de l'anode 3 et de façon à éviter une vue directe de la cathode à partir de l'extraction ; elles peuvent être faiblement polarisées pour assurer une capture plus efficace en tenant compte de la charge électrique des micro-gouttelettes.For uses requiring a total absence of micro-droplets, it is necessary to add to the system 7 of FIG. 2 a system of receptacles in the form of grids placed in the area of projection of the plasma, as represented at 10 in FIG. grids are arranged at or beyond the anode 3 and so as to avoid a direct view of the cathode from the extraction; they can be weakly polarized to ensure more efficient capture, taking into account the electrical charge of the micro-droplets.

Les micro-gouttelettes sont interceptées par ces grilles sur lesquelles elles sont fixées par collage si leur surface a reçu un traitement favorisant l'adhésion ou maintenues par gravité si leur section a une forme de goulotte (cas représenté sur la figure 3).The micro-droplets are intercepted by these grids on which they are fixed by bonding if their surface has received a treatment promoting adhesion or maintained by gravity if their section has a trough shape (case shown in Figure 3).

La transparence de ces grilles au plasma est faible car seuls les ions 11 ayant une diffusion radiale suffisante sont susceptibles d'être extraits (voir figure 4).The transparency of these plasma grids is low because only the ions 11 having sufficient radial diffusion are capable of being extracted (see FIG. 4).

On améliore sensiblement cette transparence en utilisant les grilles anti-projection comme surface d'extraction pour le plasma ayant diffusé à travers le système de récupération des micro-gouttelettes. Dans ce cas, les grilles anti-gouttelettes sont évidemment disposées au-delà de l'anode.This transparency is significantly improved by using the anti-projection grids as an extraction surface for the plasma which has diffused through the micro-droplet recovery system. In this case, the anti-droplet grids are obviously arranged beyond the anode.

Un moyen de séparation des micro-gouttelettes des ions est représenté sur les figures 5a et 5b. Il consiste en l'application d'un champ magnétique de confinement du plasma fourni par les bobines d'induction 12a et 12b. Le volume 1 du plasma (pour une induction B = 0) se réduit alors à 13 (pour une induction B = B₀) sur la figure 5a pour laquelle la disposition des bobines 12 a assuré un trajet rectiligne du plasma. Les micro-gouttelettes sont alors récupérées par le système 7 et par le système 16 décrits ci-dessus.A means for separating the micro-droplets from the ions is shown in FIGS. 5a and 5b. It consists of the application of a plasma confinement magnetic field supplied by the induction coils 12a and 12b. The volume 1 of the plasma (for an induction B = 0) is then reduced to 13 (for an induction B = B₀) in FIG. 5a for which the arrangement of the coils 12 provided a straight path for the plasma. The micro-droplets are then recovered by the system 7 and by the system 16 described above.

Sur la figure 5b la disposition des bobines 12b assure un trajet toroïdal du plasma. Les chicanes 14 réparties le long des parois suivant ce trajet assurent la récupération des micro-gouttelettes.In FIG. 5b, the arrangement of the coils 12b ensures a toroidal path of the plasma. The baffles 14 distributed along the walls along this path ensure the recovery of the micro-droplets.

A la sortie de ce système et en l'absence de champ magnétique, le plasma se dilate à nouveau en 15 et on retrouve les mêmes éléments que ceux existant à la sortie de l'anode d'une structure dépourvue dudit moyen de séparation.At the outlet of this system and in the absence of a magnetic field, the plasma expands again at 15 and the same elements are found as those existing at the outlet of the anode of a structure devoid of said separation means.

Claims (6)

  1. A device comprising a vacuum arc ion source having a cathode (2) emitting a plasma (1) and an anode (3) which are polarized at suitable potentials, characterized in that during operation of the ion source micro-drops (5) are emitted from the cathode spots and for the greater part in a solid angle near the surface of the cathode, and in that the device comprises means (7, 10) for recovering the micro-drops (5) which are arranged in at least one part of the path of the micro-drops (5).
  2. A device as claimed in Claim 1, characterized in that said recovery means (7, 10) are subjected to a suitable surface treatment ensuring satisfactory adhesion of the micro-drops (5).
  3. A device as claimed in Claim 1 or 2, characterized in that said recovery means (7, 10) are polarized with respect to the cathode (2) in a sense opposite to the electric charge of the micro-drops.
  4. A device as claimed in Claims 1 to 3, characterized in that said recovery means are constituted by recessed spaces (7) which are provided in the maximum emission zone of the micro-drops (5).
  5. A device as claimed in Claims 1 to 4, characterized in that said recovery means are formed as grids (10) which are arranged at the level of or beyond the anode (3) in such a manner that a direct observation of the cathode (2) from the extraction is avoided.
  6. A device as claimed in Claims 1 to 5, characterized in that said means for recovering micro-drops (5) comprise means for separating said micro-drops from the plasma which are constituted by induction coils (12a, 12b) providing a magnetic field which confines the plasma and restricts the radial spreading thereof in accordance with a rectilinear or toroidal path.
EP88200649A 1987-04-10 1988-04-06 Vacuum arc ion source Expired - Lifetime EP0286191B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8705120A FR2613897B1 (en) 1987-04-10 1987-04-10 DEVICE FOR SUPPRESSING MICRO PROJECTIONS IN A VACUUM ARC ION SOURCE
FR8705120 1987-04-10

Publications (2)

Publication Number Publication Date
EP0286191A1 EP0286191A1 (en) 1988-10-12
EP0286191B1 true EP0286191B1 (en) 1992-09-09

Family

ID=9350012

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88200649A Expired - Lifetime EP0286191B1 (en) 1987-04-10 1988-04-06 Vacuum arc ion source

Country Status (5)

Country Link
US (1) US4924138A (en)
EP (1) EP0286191B1 (en)
JP (1) JPS63279543A (en)
DE (1) DE3874386T2 (en)
FR (1) FR2613897B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4785220A (en) * 1985-01-30 1988-11-15 Brown Ian G Multi-cathode metal vapor arc ion source
EP0334204B1 (en) * 1988-03-23 1995-04-19 Balzers Aktiengesellschaft Process and apparatus for coating articles
FR2667980A1 (en) * 1990-10-12 1992-04-17 Sodern ELECTRON SOURCE HAVING A MATERIAL RETENTION DEVICE.
WO1993010552A1 (en) * 1991-11-11 1993-05-27 Nauchno-Proizvodstvennoe Predpriyatie 'novatekh' Method and device for generation of ion beam

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL152898B (en) * 1950-04-12 Grace Gmbh MICROPOROUS, PLATE-SHAPED RESIN OBJECTS AND PROCEDURE FOR MANUFACTURE THEREOF.
DE1073638B (en) * 1953-02-19 1960-01-21 Standard Elektrik Lorenz Aktiengesellschaft, Stuttgart-Zuffenhausen Beam generation system for cathode ray tubes with ion trap
DE1074163B (en) * 1953-05-30 1960-01-28 Standard Elektrik Lorenz Aktiengesellschaft, Stuttgart-Zuffenhausen Cathode ray tube with an ion trap beam generation system
GB1064101A (en) * 1964-07-13 1967-04-05 Atomic Energy Authority Uk Improvements in or relating to ion sources
US4191888A (en) * 1978-11-17 1980-03-04 Communications Satellite Corporation Self-shielding small hole accel grid
JPS5711447A (en) * 1980-06-23 1982-01-21 Toshiba Corp Hollow cathode discharge device
US4471224A (en) * 1982-03-08 1984-09-11 International Business Machines Corporation Apparatus and method for generating high current negative ions
JPS59165356A (en) * 1983-03-09 1984-09-18 Hitachi Ltd Ion source
JPS6122548A (en) * 1984-07-09 1986-01-31 Hitachi Ltd System for leading-out charged particles

Also Published As

Publication number Publication date
FR2613897A1 (en) 1988-10-14
EP0286191A1 (en) 1988-10-12
DE3874386D1 (en) 1992-10-15
DE3874386T2 (en) 1993-04-08
US4924138A (en) 1990-05-08
FR2613897B1 (en) 1990-11-09
JPS63279543A (en) 1988-11-16

Similar Documents

Publication Publication Date Title
EP0650557B1 (en) Fixed plasma motor
FR2485863A1 (en) VACUUM ARC PLASMA DEVICE
EP3344873B1 (en) Gridded ion thruster with integrated solid propellant
FR2550681A1 (en) ION SOURCE HAS AT LEAST TWO IONIZATION CHAMBERS, PARTICULARLY FOR THE FORMATION OF CHEMICALLY REACTIVE ION BEAMS
EP0415858B1 (en) Plasma reactor for high-temperature treatment of materials
EP3320208B1 (en) Hall-effect thruster usable at high altitude
EP0286191B1 (en) Vacuum arc ion source
FR2482404A1 (en) ACCELERATOR TUBE NEUTRON SOURCE WITH PERFECTED TARGET SECTION
EP0480518B1 (en) Electron source providing a particle retention device
EP0228318B1 (en) Electron gun operating by secondary emission under ionic bombardment
FR2548830A1 (en) SOURCE OF NEGATIVE IONS
EP0300566B1 (en) Liquid metal ions source with a vacuum arc
FR2551614A1 (en) INTENSE X-RAY SOURCE WITH A PLASMA CYLINDRICAL COMPRESSION, WHICH IS OBTAINED FROM AN EXPLOSIVE SHEET
FR3057307A1 (en) IONIC PROPELLER WITH EXTERNAL PLASMA DISCHARGE
EP0295743B1 (en) Ion source with four electrodes
Balanovskii Spark stage of welding arc discharge binding on an aluminum surface
EP0165140B1 (en) Surface ionisation-type ion source, particularly for the realisation of an ionic probe
EP3384566B1 (en) Ion-generating device
US3329865A (en) Radiant plasma source having a gas impervious conical anode
JP2657909B2 (en) Gas discharge closing switch
EP1041863B1 (en) Plasma cell
Schwirzke Laser Induced Breakdown and High Voltage Induced Vacuum Breakdown on Metal Surfaces
Casey et al. Cathodoluminescence in deformed diamond
Roche Rotating target for an electrostatic accelerator operating as a neutron generator
FR2639471A1 (en) ENTITY HAVING A HIGH DENSITY OF ELECTRIC CHARGE, AND SYSTEM AND APPARATUS FOR GENERATING IT

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB LI SE

17P Request for examination filed

Effective date: 19890403

17Q First examination report despatched

Effective date: 19900718

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB LI SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19920909

REF Corresponds to:

Ref document number: 3874386

Country of ref document: DE

Date of ref document: 19921015

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19921202

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19950331

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19950420

Year of fee payment: 8

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Free format text: PHILIPS ELECTRONICS N.V.

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19950622

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19950720

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19960406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19960430

Ref country code: CH

Effective date: 19960430

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19960406

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19961227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19970101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST