EP0295743B1 - Ion source with four electrodes - Google Patents

Ion source with four electrodes Download PDF

Info

Publication number
EP0295743B1
EP0295743B1 EP88201173A EP88201173A EP0295743B1 EP 0295743 B1 EP0295743 B1 EP 0295743B1 EP 88201173 A EP88201173 A EP 88201173A EP 88201173 A EP88201173 A EP 88201173A EP 0295743 B1 EP0295743 B1 EP 0295743B1
Authority
EP
European Patent Office
Prior art keywords
cathode
anode
ion source
plasma
rings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88201173A
Other languages
German (de)
French (fr)
Other versions
EP0295743A1 (en
Inventor
Henri Bernardet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SODERN SA
Koninklijke Philips NV
Original Assignee
D'ETUDES ET DE REALISATIONS NUCLEAIRES - SODERN Ste
SODERN SA
Philips Gloeilampenfabrieken NV
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by D'ETUDES ET DE REALISATIONS NUCLEAIRES - SODERN Ste, SODERN SA, Philips Gloeilampenfabrieken NV, Koninklijke Philips Electronics NV filed Critical D'ETUDES ET DE REALISATIONS NUCLEAIRES - SODERN Ste
Publication of EP0295743A1 publication Critical patent/EP0295743A1/en
Application granted granted Critical
Publication of EP0295743B1 publication Critical patent/EP0295743B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/08Ion sources; Ion guns using arc discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/022Details

Definitions

  • the invention relates to a vacuum arc ion source comprising an anode and a cathode arranged opposite, polarized at different potentials and the main arc of which leads to the formation of a plasma directed perpendicular to the surface of the cathode is initiated by the projection of another plasma between said anode and said cathode for a short time relative to the arc pulse length.
  • the projection has the shape of a cone.
  • the ions can be extracted by means of an acceleration electrode brought to a negative voltage and of an extraction electrode, the latter being for example the anti-micro-projection system of particles.
  • Ion sources are used to create ions in isotopic separators, mass spectrometers, implanters, plasma machines, accelerators, neutron tubes etc ... They generally use the ionization of a gas injected into an almost closed volume.
  • Sources of vacuum arc ions of the kind mentioned in the preamble are of three electrode structure: anode, cathode and arc control trigger.
  • An example of a structure commonly used is given in the article "Metal Vapor Vacuum Arc Ion Source” by T.G. Brown et al., Published in Review of Engineer Instruments, volume 57, No.6, June 1986, pages 1069-1084.
  • the ion source of the invention is remarkable in that the projection of the initial plasma is obtained by means of two autonomous triggers, one known as the cathode trigger which can be close to the anode, the other known as trigger anode may be close to the cathode and suitably polarized with respect to said anode and said cathode.
  • triggers are formed, for example, by the superposition of two concentric circular rings, separated from each other, the anode and the cathode being arranged in the central zone of said rings and symmetrically with respect to their axis.
  • Figure 1 shows in section the block diagram of an ion source according to the invention.
  • Figure 2 shows a particular embodiment of such a source.
  • FIG. 3 shows the diagrams of some types of extraction electrodes.
  • a cathode 1 of cylindrical shape is arranged opposite an anode.
  • This anode can be a metal disc 2 pierced with a circular opening in its center as shown in Figure 1a, or a metal grid 3 as shown in Figure 1b.
  • control plasma behaves like an electrical conductor of extensible form; during its passage between the cathode and the anode of the ion source, there is a short circuit between these two electrodes: the electrons of the control plasma are attracted by the anode and the ions by the cathode.
  • the process is as follows: the electrons in the plasma have a mobility much higher than the ions and the control plasma (out of respect for its overall electrical neutrality) will take the potential of anode 2 or 3.
  • the potential difference applied to the ion source and the plasma ions are extracted by creating a cathode sheath whose height will depend on the ion density of the plasma.
  • the resulting electric field on the cathode is very high and, depending on the trigger adjustment parameters (trigger current, duration of application: a few hundred nanoseconds to a few microseconds, cathode-anode trigger distance), there may be (or no) striking the arc.
  • a cathode plasma 7 is formed from very bright points and very small dimensions (cathode spots).
  • the arcing between the two triggers notably facilitates the control of the source in accordance with the invention.
  • FIG. 2 shows an advantageous embodiment of the invention.
  • a metal part 8 pierced with a central opening 9 serves as a support for the entire device. On this part is mounted the support 10 of the anode 2 also serving for its polarization. An insulating ring 11 secured to the support 10 ensures the attachment of the triggers 4 and 5.
  • the cathode 1 mounted on a metal rod 12 passing through the central opening 9 is adjustable longitudinally by means of the bellows 13; it is isolated from the triggers by the crown 14 also integral with the support 8.
  • the output 15 for polarization of the triggers is made through another opening 16 likewise made in the support 8.
  • the cathode plasma 7 is generated as indicated above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Electron Sources, Ion Sources (AREA)

Description

L'invention concerne une source d'ions à arc sous vide comportant une anode et une cathode disposées en vis à vis, polarisées à des potentiels différents et dont l'arc principal conduisant à la formation d'un plasma dirigé perpendiculairement à la surface de la cathode est initié par la projection d'un autre plasma entre ladite anode et ladite cathode pendant une courte durée par rapport à la longueur d'impulsion d'arc.The invention relates to a vacuum arc ion source comprising an anode and a cathode arranged opposite, polarized at different potentials and the main arc of which leads to the formation of a plasma directed perpendicular to the surface of the cathode is initiated by the projection of another plasma between said anode and said cathode for a short time relative to the arc pulse length.

Lorsqu'on fait jaillir un arc entre deux électrodes placées sous vide, le matériau des électrodes est localement vaporisé sous l'effet de l'échauffement. Il en résulte la formation d'un plasma, c'est-à-dire d'un mélange ions-électrons à charge totale nulle.When an arc is blown between two electrodes placed under vacuum, the material of the electrodes is locally vaporized under the effect of heating. This results in the formation of a plasma, that is to say of an ion-electron mixture with zero total charge.

L'émission de ce plasma projeté avec une énergie moyenne de quelques dizaines d'électrons-volts est faite à partir de points très brillants et de très faibles dimensions appelés spots cathodiques et la quantité d'ions dans le plasma représente quelques pourcents (5 à 10 %) de la charge électrique transportée par l'arc.The emission of this plasma projected with an average energy of a few tens of electron volts is made from very bright points and very small dimensions called cathode spots and the amount of ions in the plasma represents a few percent (5 to 10%) of the electric charge carried by the arc.

La projection a la forme d'un cône. Les ions peuvent être extraits au moyen d'une électrode d'accélération portée à une tension négative et d'une électrode d'extraction, cette dernière pouvant être par exemple le système anti-micro-projections de particules.The projection has the shape of a cone. The ions can be extracted by means of an acceleration electrode brought to a negative voltage and of an extraction electrode, the latter being for example the anti-micro-projection system of particles.

Les sources d'ions sont utilisées pour créer des ions dans les séparateurs isotopiques, les spectromètres de masse, les implanteurs, les machines à plasma, les accélérateurs, les tubes à neutrons etc... Elles utilisent en général l'ionisation d'un gaz injecté dans un volume quasi fermé.Ion sources are used to create ions in isotopic separators, mass spectrometers, implanters, plasma machines, accelerators, neutron tubes etc ... They generally use the ionization of a gas injected into an almost closed volume.

Par rapport à de telles sources à décharge gazeuse comme la source Penning, les sources à arc sous vide présentent les avantages suivants :

  • faibles dimensions pour la production du plasma,
  • grand débit d'ions métalliques permettant l'utilisation de grandes surfaces d'extraction,
  • fonctionnement sous vide et par conséquent ne nécessitant pas des systèmes de pompage différentiel de grand débit pour diminuer la pression de gaz dans la zone d'accélération des ions.
Compared to such gas discharge sources as the Penning source, vacuum arc sources have the following advantages:
  • small dimensions for plasma production,
  • high flow of metal ions allowing the use of large extraction surfaces,
  • vacuum operation and therefore does not require high flow differential pumping systems to decrease the gas pressure in the ion acceleration zone.

Les sources d'ions à arc sous vide du genre mentionné dans le préambule sont de structure à trois électrodes : anode, cathode et gâchette de commande de l'arc. Un exemple de structure couramment utilisée est donné dans l'article "Metal Vapor Vacuum Arc Ion Source" par T.G.Brown et al., publié dans Review of Scientist Instruments, volume 57, No.6, juin 1986, pages 1069-1084.Sources of vacuum arc ions of the kind mentioned in the preamble are of three electrode structure: anode, cathode and arc control trigger. An example of a structure commonly used is given in the article "Metal Vapor Vacuum Arc Ion Source" by T.G. Brown et al., Published in Review of Scientist Instruments, volume 57, No.6, June 1986, pages 1069-1084.

Le but de l'invention est d'accroître :

  • la facilité de commande électrique par un générateur susceptible d'être indépendant sous l'aspect polarisation électrique,
  • la simplicité de montage de la cathode de la source d'ions, montage rendu indépendant de la gâchette, et qui ne nécessite plus de tolérances mécaniques réduites comme dans le document référencé ci-dessus,
  • la durée de fonctionnement et la fiabilité de la source d'ions en augmentant la partie active des gâchettes et en les éloignant de la cathode, dont la surface est fortement érodée et souvent déformée par les spots cathodiques (risque de court-circuits consécutifs à des fusions locales ou à des métallisations excessives).
The object of the invention is to increase:
  • the ease of electrical control by a generator capable of being independent from the electrical polarization aspect,
  • the simplicity of mounting the cathode of the ion source, mounting made independent of the trigger, and which no longer requires reduced mechanical tolerances as in the document referenced above,
  • the duration of operation and the reliability of the ion source by increasing the active part of the triggers and by moving them away from the cathode, the surface of which is strongly eroded and often deformed by cathode spots (risk of short-circuits consecutive to local mergers or excessive metallization).

A cet effet, la source d'ions de l'invention est remarquable en ce que la projection du plasma initial est obtenue au moyen de deux gâchettes autonomes, l'une dite gâchette cathodique pouvant être proche de l'anode, l'autre dite gâchette anodique pouvant être proche de la cathode et convenablement polarisées par rapport à ladite anode et à ladite cathode.To this end, the ion source of the invention is remarkable in that the projection of the initial plasma is obtained by means of two autonomous triggers, one known as the cathode trigger which can be close to the anode, the other known as trigger anode may be close to the cathode and suitably polarized with respect to said anode and said cathode.

Ces gâchettes sont constituées par exemple, par la superposition de deux couronnes circulaires concentriques, séparées l'une de l'autre, l'anode et la cathode étant disposées dans la zone centrale desdites couronnes et symétriquement par rapport à leur axe.These triggers are formed, for example, by the superposition of two concentric circular rings, separated from each other, the anode and the cathode being arranged in the central zone of said rings and symmetrically with respect to their axis.

La description suivante en regard des dessins annexés, le tout donné à titre d'exemple, fera bien comprendre comment l'invention peut être réalisée.The following description with reference to the accompanying drawings, all given by way of example, will make it clear how the invention can be implemented.

La figure 1 montre en coupe le schéma de principe d'une source d'ions selon l'invention.Figure 1 shows in section the block diagram of an ion source according to the invention.

La figure 2 montre un mode particulier de réalisation d'une telle source.Figure 2 shows a particular embodiment of such a source.

La figure 3 présente les schémas de quelques types d'électrodes d'extraction.Figure 3 shows the diagrams of some types of extraction electrodes.

Sur le schéma en coupe de la figure 1 une cathode 1 de forme cylindrique est disposée en face d'une anode.In the sectional diagram of Figure 1 a cathode 1 of cylindrical shape is arranged opposite an anode.

Cette anode peut être un disque métallique 2 percé d'une ouverture circulaire en son centre tel que représenté sur la figure 1a, ou une grille métallique 3 telle que représentée sur la figure 1b.This anode can be a metal disc 2 pierced with a circular opening in its center as shown in Figure 1a, or a metal grid 3 as shown in Figure 1b.

Deux gâchettes autonomes superposées 4 et 5 en forme de couronnes circulaires concentriques entourent la partie active de l'anode et la cathode. Ces couronnes sont constituées :

  • soit de deux électrodes métalliques, massives, toriques, séparées par un espace de faible dimension,
  • soit d'une couche métallique avec ou sans hydrure déposée sur un support isolant et sur laquelle on a tracé un sillon qui assure leur séparation,
  • soit d'une couche semiconductrice avec émission de plasma par conduction (par exemple couche de carbone) et délimitée de même par le tracé d'un sillon.
Two independent triggers superimposed 4 and 5 in the form of concentric circular rings surround the active part of the anode and the cathode. These crowns are made up:
  • either of two metallic, massive, toric electrodes, separated by a small space,
  • either a metal layer with or without hydride deposited on an insulating support and on which a groove has been drawn which ensures their separation,
  • or a semiconductor layer with emission of plasma by conduction (for example carbon layer) and similarly delimited by the drawing of a groove.

Ces diverses électrodes (anode, cathode et gâchettes autonomes) sont convenablement polarisées par des sources non représentées. L'initiation d'un arc entre les gâchettes 4 et 5 engendre un plasma 6 dit plasma de commande. Le plasma de commande se comporte comme un conducteur électrique de forme extensible ; lors de son passage entre la cathode et l'anode de la source d'ions, il y a court-circuit entre ces deux électrodes : les électrons du plasma de commande sont attirés par l'anode et les ions par la cathode. En fait, physiquement, le processus est le suivant : les électrons du plasma ont une mobilité très supérieure aux ions et le plasma de commande (par respect de sa neutralité globale électrique) va prendre le potentiel de l'anode 2 ou 3. Dans ces conditions, il apparaît entre la plasma et la cathode 1 la différence de potentiel appliquée à la source d'ions et les ions du plasma sont extraits en créant une gaine cathodique dont la hauteur sera fonction de la densité ionique du plasma. Le champ électrique résultant sur la cathode est très élevé et, suivant les paramètres de réglage de la gâchette (courant gâchette, durée d'application : quelques centaines de nanosecondes à quelques microsecondes, distance gâchette cathode-anode), il peut y avoir (ou non) amorçage de l'arc. Dans ces conditions, si le courant d'électrons entre anode et cathode est suffisamment élevé pour échauffer et vaporiser localement la cathode, la vapeur métallique ainsi produite est ionisée par les électrons et il se forme un plasma cathodique 7 à partir de points très brillants et de très faibles dimensions (spots cathodiques). L'amorçage d'arc entre les deux gâchettes facilite notablement la commande de la source conformément à l'invention.These various electrodes (anode, cathode and autonomous triggers) are suitably polarized by sources not shown. The initiation of an arc between the triggers 4 and 5 generates a plasma 6 called control plasma. The control plasma behaves like an electrical conductor of extensible form; during its passage between the cathode and the anode of the ion source, there is a short circuit between these two electrodes: the electrons of the control plasma are attracted by the anode and the ions by the cathode. In fact, physically, the process is as follows: the electrons in the plasma have a mobility much higher than the ions and the control plasma (out of respect for its overall electrical neutrality) will take the potential of anode 2 or 3. In these conditions, it appears between the plasma and the cathode 1 the potential difference applied to the ion source and the plasma ions are extracted by creating a cathode sheath whose height will depend on the ion density of the plasma. The resulting electric field on the cathode is very high and, depending on the trigger adjustment parameters (trigger current, duration of application: a few hundred nanoseconds to a few microseconds, cathode-anode trigger distance), there may be (or no) striking the arc. Under these conditions, if the electron current between the anode and the cathode is high enough to locally heat and vaporize the cathode, the metal vapor thus produced is ionized by the electrons and a cathode plasma 7 is formed from very bright points and very small dimensions (cathode spots). The arcing between the two triggers notably facilitates the control of the source in accordance with the invention.

La figure 2 montre un mode de réalisation avantageux de l'invention.Figure 2 shows an advantageous embodiment of the invention.

Une pièce métallique 8 percée d'une ouverture centrale 9 sert de support à l'ensemble du dispositif. Sur cette pièce est monté le support 10 de l'anode 2 servant également à sa polarisation. Une couronne isolante 11 solidaire du support 10 assure la fixation des gâchettes 4 et 5. La cathode 1 montée sur une tige métallique 12 traversant l'ouverture centrale 9 est réglable longitudinalement au moyen du soufflet 13 ; elle est isolée des gâchettes par la couronne 14 également solidaire du support 8. La sortie 15 de polarisation des gâchettes est effectuée à travers une autre ouverture 16 pratiquée de même dans le support 8. Le plasma cathodique 7 est engendré comme indiqué ci-dessus.A metal part 8 pierced with a central opening 9 serves as a support for the entire device. On this part is mounted the support 10 of the anode 2 also serving for its polarization. An insulating ring 11 secured to the support 10 ensures the attachment of the triggers 4 and 5. The cathode 1 mounted on a metal rod 12 passing through the central opening 9 is adjustable longitudinally by means of the bellows 13; it is isolated from the triggers by the crown 14 also integral with the support 8. The output 15 for polarization of the triggers is made through another opening 16 likewise made in the support 8. The cathode plasma 7 is generated as indicated above.

La figure 3 présente quelques exemples d'électrode d'extraction, limitant le volume d'expansion du plasma cathodique 7 ; la forme et la structure de cette électrode sont fonction du mode d'accélération des ions retenu, comme le font apparaître les schémas ci-dessous :

  • figure 3a : structure à simple orifice de type ponctuel 17 conduisant à des faisceaux extraits limités en débit et projetés sur une cible 19 à travers une électrode d'accélération 18,
  • figure 3b : structure à grille simple de grande transparence 20 utilisée par exemple pour le bombardement d'une électrode 19,
  • figure 3c : structure à un (ou plusieurs) orifice(s) d'extraction 21 de forme compatible avec les électrodes d'accélération 22 et conduisant à une définition du (ou des) faisceau(x) extrait(s) parfaitement maîtrisée,
  • figure 3d : structure type "nid d'abeille" 23 permettant d'atténuer à l'extraction les variations de densité des flux de plasma cathodique.
FIG. 3 presents some examples of an extraction electrode, limiting the volume of expansion of the cathode plasma 7; the shape and structure of this electrode are a function of the ion acceleration mode selected, as shown in the diagrams below:
  • FIG. 3a: structure with a single orifice of the punctual type 17 leading to extracted beams limited in flow and projected onto a target 19 through an acceleration electrode 18,
  • FIG. 3b: simple, highly transparent grid structure 20 used for example for the bombardment of an electrode 19,
  • FIG. 3c: structure with one (or more) extraction orifice (s) 21 of a shape compatible with the acceleration electrodes 22 and leading to a perfectly controlled definition of the extracted beam (s),
  • FIG. 3d: a “honeycomb” type structure 23 making it possible to attenuate the variations in density of the cathode plasma streams during extraction.

Ces types de structure peuvent être appliqués en particulier au mode de réalisation de la source d'ions représenté à titre d'exemple sur la figure 2.These types of structure can be applied in particular to the embodiment of the ion source shown by way of example in FIG. 2.

Claims (5)

  1. A vacuum arc ion source comprising an anode and a cathode which face each other, which are biased at different potentials and whose main arc which results in the formation of a plasma which consists of the material of the electrodes and which is directed perpendicularly to the cathode surface is triggered by the projection of a further plasma between said anode and said cathode during a period of time which is short relative to the length of the arc pulse, characterized in that the projection of this further plasma is obtained by means of two independent grids, one of which is denoted as the cathode grid and the other as the anode grid, and which are appropriately biased relative to said anode and said cathode.
  2. An ion source as claimed in Claim 1, characterized in that said anode grid and said cathode grid are formed by the superpositioning of two concentric round rings which are separated one from the other.
  3. An ion source as claimed in Claim 2, characterized in that said rings are constituted by two solid, annular metallic electrodes which are separated by a small gap.
  4. An ion source as claimed in Claim 2, characterized in that said rings are constituted by a metallic layer, with or without hydride deposited on an insulating support, and bounded by a groove made in said layer.
  5. An ion source as claimed in Claim 2, characterized in that said rings are constituted by a semiconductor layer, with plasma emission by conduction (for example a carbon layer), and bounded by a groove made in said layer.
EP88201173A 1987-06-12 1988-06-08 Ion source with four electrodes Expired - Lifetime EP0295743B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8708196 1987-06-12
FR8708196A FR2616587B1 (en) 1987-06-12 1987-06-12 SOURCE OF IONS WITH FOUR ELECTRODES

Publications (2)

Publication Number Publication Date
EP0295743A1 EP0295743A1 (en) 1988-12-21
EP0295743B1 true EP0295743B1 (en) 1992-05-06

Family

ID=9351971

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88201173A Expired - Lifetime EP0295743B1 (en) 1987-06-12 1988-06-08 Ion source with four electrodes

Country Status (5)

Country Link
US (1) US4939425A (en)
EP (1) EP0295743B1 (en)
JP (1) JPS643941A (en)
DE (1) DE3870720D1 (en)
FR (1) FR2616587B1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2667980A1 (en) * 1990-10-12 1992-04-17 Sodern ELECTRON SOURCE HAVING A MATERIAL RETENTION DEVICE.
US5089707A (en) * 1990-11-14 1992-02-18 Ism Technologies, Inc. Ion beam generating apparatus with electronic switching between multiple cathodes
CN100533650C (en) * 2003-10-31 2009-08-26 塞恩技术有限公司 Ion source control system
CN103094049B (en) * 2011-10-28 2015-11-25 清华大学 Ionization gauge
JP6439966B2 (en) * 2014-10-03 2018-12-19 日新イオン機器株式会社 Ion source
JP6268680B2 (en) * 2016-06-14 2018-01-31 日新イオン機器株式会社 Operation method of ion source
CN109712861B (en) * 2018-12-25 2021-05-14 哈工大机器人(岳阳)军民融合研究院 Ion optical system with short circuit prevention function and micro ion source

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3097321A (en) * 1960-12-05 1963-07-09 Westinghouse Electric Corp High energy arc electrodes
GB1129888A (en) * 1964-12-30 1968-10-09 Ass Elect Ind Improvements relating to plasma torch assemblies
US3356897A (en) * 1965-01-18 1967-12-05 Jr Thomas A Barr Arc plasma generator with starter
US4301391A (en) * 1979-04-26 1981-11-17 Hughes Aircraft Company Dual discharge plasma device

Also Published As

Publication number Publication date
US4939425A (en) 1990-07-03
DE3870720D1 (en) 1992-06-11
FR2616587B1 (en) 1989-11-24
JPS643941A (en) 1989-01-09
FR2616587A1 (en) 1988-12-16
EP0295743A1 (en) 1988-12-21

Similar Documents

Publication Publication Date Title
EP0473233B1 (en) High-flux neutron tube
Schoenbach et al. Microhollow cathode discharges
US2636990A (en) Ion source unit
EP0480518B1 (en) Electron source providing a particle retention device
EP0295743B1 (en) Ion source with four electrodes
US3460745A (en) Magnetically confined electrical discharge getter ion vacuum pump having a cathode projection extending into the anode cell
EP0300566B1 (en) Liquid metal ions source with a vacuum arc
US6236054B1 (en) Ion source for generating ions of a gas or vapor
EP0362946A1 (en) Ion extraction and acceleration device limiting reverse acceleration of secondary electrons in a sealed high flux neutron tube
EP0362947B1 (en) Sealed neutron tube equipped with a multicellular ion source with magnetic confinement
US3414702A (en) Nonthermionic electron beam apparatus
JPH0213900A (en) Sealed high beam flux neutron tube
US3517240A (en) Method and apparatus for forming a focused monoenergetic ion beam
EP0077738B1 (en) Ion source having a gas ionization chamber with oscillations of electrons
US3610985A (en) Ion source having two operative cathodes
US5637869A (en) Detector for time-of-flight mass-spectrometers with low timing errors and simultaneously large aperture
Ryabchikov Emission properties of broad‐beam vacuum arc ion sources
EP0362953A1 (en) Sealed neutron tube provided with an ion source with electrostatic confinement
US4801849A (en) Ion source operating by surface ionization in particular for providing an ion probe
EP0362945A1 (en) Device for treating the Penning ion source in a neutron tube
JP2657909B2 (en) Gas discharge closing switch
US3073987A (en) Electron discharge device with getter
FR2647593A1 (en) LOW ENERGY ION TRAP
Wallin et al. Field ionization of cesium atoms diffusion out from an iridium foil, studied by time-of-flight mass spectrometry
EP0300932B1 (en) Electron source

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB LI NL

17P Request for examination filed

Effective date: 19890614

17Q First examination report despatched

Effective date: 19901217

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB LI NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19920506

REF Corresponds to:

Ref document number: 3870720

Country of ref document: DE

Date of ref document: 19920611

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: N.V. PHILIPS' GLOEILAMPENFABRIEKEN

Owner name: SOCIETE ANONYME D'ETUDES ET REALISATIONS NUCLEAIRE

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
K2C1 Correction of patent specification (title page) published

Effective date: 19920506

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19940629

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19940826

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19940922

Year of fee payment: 7

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Free format text: PHILIPS ELECTRONICS N.V.

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19950531

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19950630

Ref country code: CH

Effective date: 19950630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19960229

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19960301

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19960608

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19960608