EP0362946A1 - Ion extraction and acceleration device limiting reverse acceleration of secondary electrons in a sealed high flux neutron tube - Google Patents

Ion extraction and acceleration device limiting reverse acceleration of secondary electrons in a sealed high flux neutron tube Download PDF

Info

Publication number
EP0362946A1
EP0362946A1 EP89202464A EP89202464A EP0362946A1 EP 0362946 A1 EP0362946 A1 EP 0362946A1 EP 89202464 A EP89202464 A EP 89202464A EP 89202464 A EP89202464 A EP 89202464A EP 0362946 A1 EP0362946 A1 EP 0362946A1
Authority
EP
European Patent Office
Prior art keywords
electrode
acceleration
target
extraction
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP89202464A
Other languages
German (de)
French (fr)
Inventor
Henri Société Civile S.P.I.D. Bernadet
Xavier Société Civile S.P.I.D. Godechot
Claude Société Civile S.P.I.D. Lejeune
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SODERN SA
Koninklijke Philips NV
Original Assignee
SODERN SA
Philips Gloeilampenfabrieken NV
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SODERN SA, Philips Gloeilampenfabrieken NV, Koninklijke Philips Electronics NV filed Critical SODERN SA
Publication of EP0362946A1 publication Critical patent/EP0362946A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H3/00Production or acceleration of neutral particle beams, e.g. molecular or atomic beams
    • H05H3/06Generating neutron beams

Definitions

  • the invention relates to a device for extracting and accelerating ions in a sealed high-flux neutron tube containing a deuterium-tritium gas mixture under low pressure from which an ion source provides a beam (s) ( x) ionic (s) extracted and accelerated (s) at high energy by passing through an extraction and acceleration system, to be projected (s) on a target electrode and to produce there a fusion reaction resulting in an emission of neutrons.
  • Neutron tubes of the same kind are used in the techniques of examination of matter by fast, thermal, epithermal or cold neutrons: neutronography, analysis by activation, analysis by spectrometry of inelastic scatterings or radiative captures, scattering of neutrons etc. .
  • the d (3 H , 4 He ) n fusion reaction delivering 14 MeV neutrons is usually the most used due to its large cross section for relatively low ion energies.
  • the number of neutrons obtained per unit of charge passing through the beam is always increasing as the energy of the ions directed towards a thick target is itself increasing and this largely at the beyond the energies of the ions obtained in the sealed tubes currently available and supplied by a THT not exceeding 250 kV.
  • the erosion of the target by ion bombardment is one of the most determining.
  • Erosion is a function of the chemical nature and structure of the target on the one hand, the energy of the incident ions and their density distribution profile on the impact surface on the other.
  • the target consists of a hydrurable material (Titanium, Scandium, Zirconium, Erbium etc ...) capable of fixing and releasing large quantities of hydrogen without significant disturbance of its mechanical strength; the total quantity set is a function of the target temperature and the hydrogen pressure in the tube.
  • the target materials used are deposited in the form of thin layers, the thickness of which is limited by problems of adhesion of the layer to its support.
  • One way to delay erosion of the target is, for example, to form the absorbent active layer from a stack of identical layers isolated from each other by a diffusion barrier. The thickness of each of the active layers is of the order of the depth of penetration of the deuterium ions coming to strike the target.
  • Another way of protecting the target and therefore of increasing the lifetime of the tube consists in acting on the ion beam so as to improve its density distribution profile on the impact surface. At a constant total ion current on the target electrode, which results in a constant neutron emission, this improvement will result from a distribution as uniform as possible of the current density over the entire surface offered by the target for bombardment. ions.
  • One of the ways to reduce this maximum density is to use the divergence of the beam in the sliding space between the point of convergence and the target. Any increase in this space by a factor x of the ion path results in a reduction of the type in 1 / x2 of the maximum bombardment density.
  • the pressure of the deuterium-tritium mixture necessary to obtain the current of ions is first order, the same throughout the tube.
  • the ions extracted and accelerated towards the target will react with the molecules of the gas to produce ionization, dissociation and charge exchange effects resulting on the one hand in a reduction in the average energy of the ions on the target, that is to say a reduction in the production of neutrons and on the other hand the formation of ions and electrons which are then accelerated and will bombard the source of ions or the electrodes of the tube.
  • the object of the invention is to provide a structure for which these reactions no longer have detrimental repercussions on the operation of the tube. For that, it is enough to avoid that the electrons created by the ions of the beam can "go up" towards the source of ions where they would deposit a significant energy. It is therefore necessary to push them back inside the sliding space where they acquire only a very low energy and to collect them on the electrodes limiting this space.
  • said acceleration system comprises an addition electrode polarized so as to limit the re-acceleration towards the source of the secondary electrons created by ionization of the gas on the path of said beam (s) inside the space between said extraction and acceleration system and said target electrode, which makes it possible to increase said space to greatly reduce the inhomogeneities of the ion bombardment.
  • An embodiment of the device of the invention consists of a last acceleration electrode brought to the same potential as the target and said additional electrode playing the role of electron repulsion electrode, polarized negatively with respect to said last electrode acceleration and whose plane is located near and downstream of the exit plane of the last acceleration electrode in the equipotential space accelerator-target electrode.
  • said device of the invention comprises a last ion acceleration electrode polarized negatively with respect to the target electrode to play the role of electron repulsion electrode.
  • Said additional electrode disposed near and downstream of the exit plane of said last ion acceleration electrode, is polarized at the same potential as the target. The electrons are collected by the target and the additional electrode.
  • the devices according to the invention do not cause any appreciable disturbance in terms of the operation of the tube when the sliding space is increased.
  • the energetic ions lose very little energy during ionizing shocks (of the order of 10 ⁇ 4) and, during charge exchanges, they transform into fast neutrals with the same energy as the incident ion.
  • the electrons and the ions created in the sliding space consequently have only a weak energy and taking into account the polarizations of the electrodes are captured by them and the deposited energies are reduced (of the order of 1% of the energy dissipated on the target).
  • FIG. 1 shows the main basic elements of a sealed neutron tube 11 containing a gaseous mixture under low pressure to be ionized such as deuterium-tritium and which comprises an ion source 1 and an acceleration electrode 2 between which there is a very high potential difference allowing the extraction and the focusing of the ion beam 3 and its projection on the target 4 where the fusion reaction takes place resulting in an emission of neutrons at 14 MeV for example.
  • a sealed neutron tube 11 containing a gaseous mixture under low pressure to be ionized such as deuterium-tritium and which comprises an ion source 1 and an acceleration electrode 2 between which there is a very high potential difference allowing the extraction and the focusing of the ion beam 3 and its projection on the target 4 where the fusion reaction takes place resulting in an emission of neutrons at 14 MeV for example.
  • the ion source 1 secured to an insulator 5 for the passage of the THT supply connector is a Penning type source for example, consisting of a cylindrical anode 6, of a cathode structure 7 to which is incorporated a magnet 8 with an axial magnetic field which confines the ionized gas 9 around the axis of the anode cylinder and whose lines of force 10 show a certain divergence.
  • An ion emission channel 12 is formed in said cathode structure opposite the anode.
  • FIG. 2a shows the profile of the density J of ion bombardment in any radial direction Or, from the point of impact 0 of the central axis of the beam on the surface of the target for standard optics with a single electrode .
  • the shape of this profile highlights the inhomogeneous nature of this beam whose very high density in the central part decreases rapidly when one moves away from it.
  • erosion takes place as a function of the bombardment density and the entire layer of hydrurable material of thickness e deposited on a substrate S is saturated with a deuterium-tritium mixture.
  • the depth of penetration of the deuterium-tritium energy ions represented in dotted lines is effected over a depth which is a function of this energy.
  • the erosion of the layer is such that the penetration depth l2 is greater than the thickness e in the most bombarded part; a part of the incident ions is implanted in the substrate and very quickly the atoms of deuterium and tritium are in supersaturation.
  • FIG. 3a shows diagrammatically a neutron tube comprising an ion source 12 of the multicellular multi-beam Penning type whose cylindrical anode 6 pierced with juxtaposed multitrous 6a, 6b, ... 6e is brought to a higher potential of the order of 4 kV to that of cathode 7 itself brought to a very high voltage of 250 kV for example.
  • the ion beams 3a, 3b, ... 3e coming from the emission channels 7a, 7b ... 7th practiced in the cathode opposite the corresponding anode holes are projected onto the target 4 by means of the acceleration electrode 2.
  • the section of beam intercepted by the target depends on the divergence of the trajectories and especially on the distance from the target to the point of convergence.
  • FIG. 3a illustrates this property by a judicious choice of the position of the target.
  • One way to obtain a more homogeneous density distribution at the impact of the global beam on the target is to move the latter away from the source, from position A to position B for example, so that there is overlap elementary beams.
  • the device of the invention makes it possible to repel the secondary electrons emitted by the target as well as those created by ionization of the gas.
  • this is achieved by placing an additional electrode 13 suitably polarized near the acceleration electrode in the sliding space between this electrode and the target, which then makes it possible to fully benefit from the effect of distance from the target.
  • This additional electrode is brought to a negative potential (-5 kV for example) compared to those of the acceleration electrode and the target grounded and made of a refractory material to prevent its heating by the inter-electrode currents in the target space-accelerating electrode.
  • FIG. 4 shows the potential distribution along the axis of the ion beam for the device of FIG. 3.
  • the positions of the target C, the suppressor electrode ES1, the accelerating electrode EA1 and the source S1 were plotted on the abscissa on the one hand for a certain configuration of neutron tube and on the other hand the positions of the suppressor electrode ES2, accelerator electrode EA2 and source S2 for another configuration of neutron tube corresponding to a doubling of the sliding space.
  • the level of potential VS of the suppressor electrode has been indicated on the ordinate.
  • the curves in solid line and in broken lines represent respectively the difference between the potential V along the axis of the ion beam and the potential Vc of the target for the two configurations.
  • FIG. 5 represents a second variant of the device of the invention in which a target-carrying electrode 14 in the form of a well, or which may have a structure with holes, at the same potential as the target 4 is arranged in the vicinity of the electrode d acceleration 2 in the space between this electrode and the target.
  • the electron repulsion effect is achieved by polarizing the acceleration electrode at a slightly negative potential Va relative to the target.
  • FIG. 6 A graph similar to that of FIG. 4 illustrates in FIG. 6, for this second variant of the device, the variation of the potential V-Vc along the axis of the ion beam.
  • the positions ER1 and ER2 of the rim of the target-carrying electrode placed near the acceleration electrode were plotted on the abscissa. The above considerations for the graph in Figure 4 remain valid.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Particle Accelerators (AREA)

Abstract

Device for extraction and acceleration of ions in a sealed high flux neutron tube containing a deuteriun-tritium gas mixture under low pressure and in which an ion source (12) furnishes several ion beams (3a,3b,...3e) projected onto a target electrode (4) by means of a system for extraction and acceleration, in order to produce thereat a fusion reaction causing an emission of neutrons. According to the invention, an additional electrode (13) is disposed close to and downstream of the latter acceleration electrode (2) in the space of the tube lying between this latter acceleration electrode and the target, and the polarisations of each of these two acceleration and additional electrodes relative to the target are chosen so as to repel the secondary electrons created by ionisation of the gas in the path of the said beams, which makes possible the increasing of the length of the said space in order to greatly reduce the nonuniformity of the ion bombardment on the target, and thus to increase the lifetime of the tube. …<??>Application to neutron tubes. …<IMAGE>…

Description

L'invention concerne un dispositif d'extraction et d'accélération d'ions dans un tube neutronique scellé à haut flux contenant un mélange gazeux deutérium-tritium sous faible pression à partir duquel une source d'ions fournit un (ou des) faisceau(x) ionique(s) extrait(s) et accéléré(s) à grande énergie en traversant un système d'extraction et d'accéléra­tion, pour être projeté(s) sur une électrode cible et y pro­duire une réaction de fusion entraînant une émission de neu­trons.The invention relates to a device for extracting and accelerating ions in a sealed high-flux neutron tube containing a deuterium-tritium gas mixture under low pressure from which an ion source provides a beam (s) ( x) ionic (s) extracted and accelerated (s) at high energy by passing through an extraction and acceleration system, to be projected (s) on a target electrode and to produce there a fusion reaction resulting in an emission of neutrons.

Les tubes neutroniques du même genre sont utilisés dans les techniques d'examen de la matière par neutrons rapi­des, thermiques, épithermiques ou froids : neutronographie, analyse par activation, analyse par spectrométrie des diffu­sions inélastiques ou des captures radiatives, diffusion des neutrons etc...Neutron tubes of the same kind are used in the techniques of examination of matter by fast, thermal, epithermal or cold neutrons: neutronography, analysis by activation, analysis by spectrometry of inelastic scatterings or radiative captures, scattering of neutrons etc. .

L'obtention de la pleine efficacité de ces techni­ques nucléaires nécessite d'avoir, pour les niveaux d'émission correspondants, des durées de vie de tubes plus longues.Obtaining the full effectiveness of these nuclear techniques requires having, for the corresponding emission levels, longer tube lifetimes.

La réaction de fusion d(3H, 4He)n délivrant des neutrons de 14 MeV est habituellement la plus utilisés en rai­son de sa grande section efficace pour des énergies d'ions re­lativement faibles. Toutefois, quelle que soit la réaction utilisée, le nombre de neutrons obtenu par unité de charge transitant dans le faisceau est toujours croissant au fur et à mesure que l'énergie des ions dirigés vers une cible épaisse est elle-même croissante et ceci largement au delà des éner­gies des ions obtenus dans les tubes scellés actuellement dis­ponibles et alimentés par une THT n'excédant pas 250 kV.The d (3 H , 4 He ) n fusion reaction delivering 14 MeV neutrons is usually the most used due to its large cross section for relatively low ion energies. However, whatever the reaction used, the number of neutrons obtained per unit of charge passing through the beam is always increasing as the energy of the ions directed towards a thick target is itself increasing and this largely at the beyond the energies of the ions obtained in the sealed tubes currently available and supplied by a THT not exceeding 250 kV.

Parmi les principaux facteurs limitatifs de la du­rée de vie d'un tube neutronique, l'érosion de la cible par le bombardement ionique est l'un des plus déterminants.Among the main factors limiting the life of a neutron tube, the erosion of the target by ion bombardment is one of the most determining.

L'érosion est fonction de la nature chimique et de la structure de la cible d'une part, de l'énergie des ions in­cidents et de leur profil de répartition en densité sur la surface d'impact d'autre part.Erosion is a function of the chemical nature and structure of the target on the one hand, the energy of the incident ions and their density distribution profile on the impact surface on the other.

Dans la plupart des cas, la cible est constituée par un matériau hydrurable (Titane, Scandium, Zirconium, Er­bium etc...) capable de fixer et de relâcher des quantités im­portantes d'hydrogène sans perturbation notable de sa tenue mécanique ; la quantité totale fixée est fonction de la tempé­rature de la cible et de la pression d'hydrogène dans le tube. Les matériaux cibles utilisés sont déposés sous forme de cou­ches minces dont l'épaisseur est limitée par des problèmes d'adhérence de la couche sur son support. Un moyen de retarder l'érosion de la cible consiste par exemple à former la couche active absorbante d'un empilage de couches identiques isolées les unes des autres par une barrière de diffusion. L'épaisseur de chacune des couches actives est de l'ordre de la profondeur de pénétration des ions deutérium venant frapper la cible.In most cases, the target consists of a hydrurable material (Titanium, Scandium, Zirconium, Erbium etc ...) capable of fixing and releasing large quantities of hydrogen without significant disturbance of its mechanical strength; the total quantity set is a function of the target temperature and the hydrogen pressure in the tube. The target materials used are deposited in the form of thin layers, the thickness of which is limited by problems of adhesion of the layer to its support. One way to delay erosion of the target is, for example, to form the absorbent active layer from a stack of identical layers isolated from each other by a diffusion barrier. The thickness of each of the active layers is of the order of the depth of penetration of the deuterium ions coming to strike the target.

Une autre façon de protéger la cible et donc d'ac­croître la durée de vie du tube consiste à agir sur le fais­ceau d'ions de manière à améliorer son profil de répartition en densité sur la surface d'impact. A courant d'ions total constant sur l'électrode cible, ce qui entraîne une émission neutronique constante, cette amélioration résultera d'une ré­partition aussi uniforme que possible de la densité de courant sur l'ensemble de la surface offerte par la cible au bombarde­ment des ions.Another way of protecting the target and therefore of increasing the lifetime of the tube consists in acting on the ion beam so as to improve its density distribution profile on the impact surface. At a constant total ion current on the target electrode, which results in a constant neutron emission, this improvement will result from a distribution as uniform as possible of the current density over the entire surface offered by the target for bombardment. ions.

Un des moyens de réduire cette densité maximale est d'utiliser la divergence du faisceau dans l'espace de glisse­ment compris entre le point de convergence et la cible. Tout accroissement dans cet espace d'un facteur x du parcours des ions se traduit par une réduction du type en 1/x² du maximum de densité de bombardement.One of the ways to reduce this maximum density is to use the divergence of the beam in the sliding space between the point of convergence and the target. Any increase in this space by a factor x of the ion path results in a reduction of the type in 1 / x² of the maximum bombardment density.

Dans un tube neutronique scellé, la pression du mé­lange deutérium-tritium nécessaire à l'obtention du courant d'ions est au premier ordre, la même dans tout le tube. Or les ions extraits et accélérés vers la cible vont réagir avec les molécules du gaz pour produire des effets d'ionisation, de dissociation et d'échange de charges entraînant d'une part une diminution de l'énergie moyenne des ions sur la cible, c'est-­à-dire une réduction de la production de neutrons et d'autre part la formation d'ions et d'électrons qui sont ensuite accé­lérés et vont bombarder la source d'ions ou les électrodes du tube.In a sealed neutron tube, the pressure of the deuterium-tritium mixture necessary to obtain the current of ions is first order, the same throughout the tube. Now the ions extracted and accelerated towards the target will react with the molecules of the gas to produce ionization, dissociation and charge exchange effects resulting on the one hand in a reduction in the average energy of the ions on the target, that is to say a reduction in the production of neutrons and on the other hand the formation of ions and electrons which are then accelerated and will bombard the source of ions or the electrodes of the tube.

Il en résulte des dépôts d'énergie qui vont accroî­tre la température des matériaux des électrodes tels que le molybdène ou l'acier inoxydable, ou du carbone pyrolytique. L'échauffement de ces matériaux va provoquer la désorption d'impuretés telles que l'oxyde de carbone qu'ils renferment et perturber ainsi la qualité de l'atmosphère du tube. Les ions d'impuretés formés dans le tube, Co⁺ par exemple, vont bombar­der la cible avec un coefficient de pulvérisation supérieur d'un facteur de 10² à 10³ à celui des ions deutérium-tritium, d'où une accentuation importante de l'érosion.This results in energy deposits which will increase the temperature of the materials of the electrodes such as molybdenum or stainless steel, or pyrolytic carbon. The heating of these materials will cause the desorption of impurities such as the carbon monoxide which they contain and thus disturb the quality of the atmosphere of the tube. The impurity ions formed in the tube, Co⁺ for example, will bombard the target with a spray coefficient higher by a factor of 10² to 10³ than that of the deuterium-tritium ions, resulting in a significant accentuation of the erosion.

Ces effets croissent avec la pression de fonction­nement et la longueur de trajet des ions. Ainsi, une correc­tion aux inhomogénéités du bombardement de la cible qui pour­raît être apportée par une augmentation dudit trajet est ren­due inopérante du fait de l'accroissement des réactions ions-­gaz, supérieur ou égal à la simple proportionalité.These effects increase with the operating pressure and the path length of the ions. Thus, a correction to the inhomogeneities of the bombardment of the target which could be brought about by an increase in said path is rendered ineffective due to the increase in ion-gas reactions, greater than or equal to simple proportionality.

Le but de l'invention est de procurer une structure pour laquelle ces réactions n'ont plus de répercussions préju­diciables au fonctionnement du tube. Pour cela, il suffit d'éviter que les électrons créés par les ions du faisceau puissent "remonter" vers la source d'ions où ils déposeraient une énergie importante. Il est donc nécessaire de les repous­ser à l'intérieur de l'espace de glissement où ils n'acquiè­rent qu'une très faible énergie et de les collecter sur les électrodes limitant cet espace.The object of the invention is to provide a structure for which these reactions no longer have detrimental repercussions on the operation of the tube. For that, it is enough to avoid that the electrons created by the ions of the beam can "go up" towards the source of ions where they would deposit a significant energy. It is therefore necessary to push them back inside the sliding space where they acquire only a very low energy and to collect them on the electrodes limiting this space.

A cet effet, l'invention est remarquable en ce que ledit système d'accélération comporte une électrode addition­ nelle polarisée de façon à limiter la réaccélération vers la source des électrons secondaires créés par ionisation du gaz sur le trajet dudit (ou desdits) faisceau(x) à l'intérieur de l'espace compris entre ledit système d'extraction et d'accélé­ration et ladite électrode cible, ce qui rend possible l'ac­croissement dudit espace pour réduire fortement les inhomogé­néités du bombardement ionique.To this end, the invention is remarkable in that said acceleration system comprises an addition electrode polarized so as to limit the re-acceleration towards the source of the secondary electrons created by ionization of the gas on the path of said beam (s) inside the space between said extraction and acceleration system and said target electrode, which makes it possible to increase said space to greatly reduce the inhomogeneities of the ion bombardment.

Un mode de réalisation du dispositif de l'invention est constitué par une dernière électrode d'accélération portée au même potentiel que la cible et ladite électrode addition­nelle jouant le rôle d'électrode de répulsion d'électrons, po­larisée négativement par rapport à ladite dernière électrode d'accélération et dont le plan est situé à proximité et en aval du plan de sortie de la dernière électrode d'accélération dans l'espace équipotentiel électrode accélératrice-cible.An embodiment of the device of the invention consists of a last acceleration electrode brought to the same potential as the target and said additional electrode playing the role of electron repulsion electrode, polarized negatively with respect to said last electrode acceleration and whose plane is located near and downstream of the exit plane of the last acceleration electrode in the equipotential space accelerator-target electrode.

Dans un autre mode de réalisation, ledit dispositif de l'invention comporte une dernière électrode d'accélération d'ions polarisée négativement par rapport à l'électrode cible pour jouer le rôle d'électrode de répulsion d'électrons. Ladi­te électrode additionnelle, disposée à proximité et en aval du plan de sortie de ladite dernière électrode d'accélération d'ions est polarisée au même potentiel que la cible. Les élec­trons sont quant à eux collectés par la cible et l'électrode additionnelle.In another embodiment, said device of the invention comprises a last ion acceleration electrode polarized negatively with respect to the target electrode to play the role of electron repulsion electrode. Said additional electrode, disposed near and downstream of the exit plane of said last ion acceleration electrode, is polarized at the same potential as the target. The electrons are collected by the target and the additional electrode.

Les dispositifs conformes à l'invention n'entraî­nent pas de perturbation sensible au niveau du fonctionnement du tube lorsqu'on augmente l'espace de glissement.
- Les ions énergétiques ne perdent que très peu d'énergie lors des chocs ionisants (de l'ordre de 10⁻⁴) et, lors des échan­ges de charge, ils se transforment en neutres rapides de mê­me énergie que l'ion incident.
- Les électrons et les ions créés dans l'espace de glissement n'ont par conséquent qu'une faible énergie et compte tenu des polarisations des électrodes sont captés par celles-ci et les énergies déposées sont réduites (de l'ordre de 1 % de l'énergie dissipée sur la cible). L'accroissement de lon­gueur de l'espace de glissement aura simplement pour effet d'accroître les courants interélectrodes (cible-électrode d'accélération ou électrode de répulsion-électrode d'accélé­ration et cible) ce qui se traduira par un faible échauffe­ment. Ces électrodes seront donc réalisées en matériau ré­fractaire.
The devices according to the invention do not cause any appreciable disturbance in terms of the operation of the tube when the sliding space is increased.
- The energetic ions lose very little energy during ionizing shocks (of the order of 10⁻⁴) and, during charge exchanges, they transform into fast neutrals with the same energy as the incident ion.
- The electrons and the ions created in the sliding space consequently have only a weak energy and taking into account the polarizations of the electrodes are captured by them and the deposited energies are reduced (of the order of 1% of the energy dissipated on the target). Increasing the length of the sliding space will simply have the effect of increasing the inter-electrode currents (target-acceleration electrode or repulsion electrode-acceleration electrode and target), which will result in slight heating. These electrodes will therefore be made of refractory material.

La description suivante en regard des dessins anne­xes, le tout donné à titre d'exemple fera bien comprendre com­ment l'invention peut être réalisée.

  • La figure 1 représente le schéma de principe d'un tube neutronique scellé selon l'état de l'art antérieur.
  • La figure 2 montre les effets de l'érosion en pro­fondeur de la cible et le profil radial de densité de bombar­dement des ions.
  • La figure 3 représente schématiquement une première variante de la structure des éléments d'optique ionique du dispositif de l'invention.
  • La figure 4 montre la répartition du potentiel sui­vant l'axe du faisceau ionique dans le cas du dispositif de la figure 3.
  • La figure 5 représente schématiquement une deuxième variante de la structure des éléments d'optique ionique du dispositif de l'invention.
  • La figure 6 montre la répartition du potentiel sui­vant l'axe du faisceau ionique dans le cas du dispositif de la figure 5.
The following description with reference to the accompanying drawings, all given by way of example will make it clear how the invention can be implemented.
  • Figure 1 shows the block diagram of a sealed neutron tube according to the state of the prior art.
  • Figure 2 shows the effects of target deep erosion and the ion bombardment radial profile.
  • FIG. 3 schematically represents a first variant of the structure of the ion optical elements of the device of the invention.
  • FIG. 4 shows the distribution of the potential along the axis of the ion beam in the case of the device of FIG. 3.
  • FIG. 5 schematically represents a second variant of the structure of the ion optical elements of the device of the invention.
  • FIG. 6 shows the distribution of the potential along the axis of the ion beam in the case of the device of FIG. 5.

Le schéma de la figure 1 montre les principaux élé­ments de base d'un tube neutronique scellé 11 renfermant un mélange gazeux sous faible pression à ioniser tel que deuté­rium-tritium et qui comporte une source d'ions 1 et une élec­trode d'accélération 2 entre lesquelles existe une différence de potentiel très élevée permettant l'extraction et la focali­sation du faisceau d'ions 3 et sa projection sur la cible 4 où s'effectue la réaction de fusion entraînant une émission de neutrons à 14 MeV par exemple.The diagram in FIG. 1 shows the main basic elements of a sealed neutron tube 11 containing a gaseous mixture under low pressure to be ionized such as deuterium-tritium and which comprises an ion source 1 and an acceleration electrode 2 between which there is a very high potential difference allowing the extraction and the focusing of the ion beam 3 and its projection on the target 4 where the fusion reaction takes place resulting in an emission of neutrons at 14 MeV for example.

La source d'ions 1 solidaire d'un isolateur 5 pour le passage du connecteur d'alimentation en THT (non représen­té) est une source de type Penning par exemple, constituée d'une anode cylindrique 6, d'une structure cathodique 7 à la­quelle est incorporé un aimant 8 à champ magnétique axial qui confine le gaz ionisé 9 aux alentours de l'axe du cylindre d'anode et dont les lignes de force 10 accusent une certaine divergence. Un canal d'émission des ions 12 est pratiqué dans ladite structure cathodique en vis-à-vis de l'anode.The ion source 1 secured to an insulator 5 for the passage of the THT supply connector (not shown) is a Penning type source for example, consisting of a cylindrical anode 6, of a cathode structure 7 to which is incorporated a magnet 8 with an axial magnetic field which confines the ionized gas 9 around the axis of the anode cylinder and whose lines of force 10 show a certain divergence. An ion emission channel 12 is formed in said cathode structure opposite the anode.

Les schémas de la figure 2 représentent les effets de l'érosion sur la cible au fur et à mesure que s'accentue le phénomène.The diagrams in Figure 2 represent the effects of erosion on the target as the phenomenon increases.

La figure 2a montre le profil de la densiié J de bombardement des ions suivant une direction radiale quelconque Or, à partir du point d'impact 0 de l'axe central du faisceau sur la surface de la cible pour une optique standard à une seule électrode. La forme de ce profil met en valeur le carac­tère inhomogène de ce faisceau dont la densité très élevée dans la partie centrale décroît rapidement lorsqu'on s'en éloigne.FIG. 2a shows the profile of the density J of ion bombardment in any radial direction Or, from the point of impact 0 of the central axis of the beam on the surface of the target for standard optics with a single electrode . The shape of this profile highlights the inhomogeneous nature of this beam whose very high density in the central part decreases rapidly when one moves away from it.

Sur la figure 2b l'érosion s'effectue en fonction de la densité de bombardement et toute la couche de matériau hydrurable d'épaisseur e déposée sur un substrat S est saturée en mélange deutérium-tritium. La profondeur de pénétration des ions énergétiques deutérium-tritium représentée en traits pointillés s'effectue sur une profondeur l₁ fonction de cette énergie.In FIG. 2b, erosion takes place as a function of the bombardment density and the entire layer of hydrurable material of thickness e deposited on a substrate S is saturated with a deuterium-tritium mixture. The depth of penetration of the deuterium-tritium energy ions represented in dotted lines is effected over a depth which is a function of this energy.

Sur la figure 2c, l'érosion de la couche est telle que la profondeur de pénétration l₂ est supérieure à l'épais­seur e dans la partie la plus bombardée ; une partie des ions incidents s'implante dans le substrat et très rapidement les atomes de deutérium et de tritium sont en sursaturation.In FIG. 2c, the erosion of the layer is such that the penetration depth l₂ is greater than the thickness e in the most bombarded part; a part of the incident ions is implanted in the substrate and very quickly the atoms of deuterium and tritium are in supersaturation.

Sur la figure 2d, les atomes de deutérium et de tritium se sont rassemblés pour donner des bulles qui, en éclatant ont formé des cratères et accru très rapidement l'érosion de la cible sur la profondeur l₃.In FIG. 2d, the atoms of deuterium and of tritium have gathered to give bubbles which, when they burst, formed craters and very quickly increased the erosion of the target at depth l₃.

Ce dernier processus précède de peu la fin de vie du tube en entraînant soit un accroissement drastique des cla­quages (présence de microparticules résultant des éclatements de bulles), soit une pollution de la surface de la cible par les atomes pulvérisés absorbant l'énergie des ions incidents.This last process just precedes the end of the tube's life by causing either a drastic increase in breakdowns (presence of microparticles resulting from the bursting of bubbles), or pollution of the target surface by atomized atoms absorbing the energy of the ions. incidents.

On a schématisé sur la figure 3a un tube neutroni­que comportant une source d'ions 12 de type Penning multicel­lulaire à multifaisceaux dont l'anode cylindrique 6 percée de multitrous juxtaposés 6a, 6b,... 6e est portée à un potentiel supérieur de l'ordre de 4 kV à celui de la cathode 7 portée elle-même à une très haute tension de 250 kV par exemple.FIG. 3a shows diagrammatically a neutron tube comprising an ion source 12 of the multicellular multi-beam Penning type whose cylindrical anode 6 pierced with juxtaposed multitrous 6a, 6b, ... 6e is brought to a higher potential of the order of 4 kV to that of cathode 7 itself brought to a very high voltage of 250 kV for example.

Les faisceaux ioniques 3a, 3b,... 3e issus des ca­naux d'émission 7a, 7b... 7e pratiqués dans la cathode en vis-à-vis des trous d'anode correspondants sont projetés sur la cible 4 au moyen de l'électrode d'accélération 2.The ion beams 3a, 3b, ... 3e coming from the emission channels 7a, 7b ... 7th practiced in the cathode opposite the corresponding anode holes are projected onto the target 4 by means of the acceleration electrode 2.

La section de faisceau intercepté par la cible dé­pend de la divergence des trajectoires et surtout de la dis­tance de la cible au point de convergence.The section of beam intercepted by the target depends on the divergence of the trajectories and especially on the distance from the target to the point of convergence.

Le schéma des la figure 3a illustre cette propriété par un choix judicieux de la position de la cible.The diagram of FIG. 3a illustrates this property by a judicious choice of the position of the target.

On voit sur cette figure que pour la position A, les surfaces d'impact des faisceaux élémentaires sur la cible sont distinctes les unes des autres et le profil de densité J de chaque faisceau élémentaire se présente comme indiqué sur la figure 3b avec une valeur axiale élevée et une décroissance rapide de part et d'autre de l'axe.It can be seen in this figure that for position A, the impact surfaces of the elementary beams on the target are distinct from each other and the density profile J of each elementary beam is presented as shown in FIG. 3b with an axial value high and a rapid decrease on both sides of the axis.

Un moyen pour obtenir une répartition de densité plus homogène à l'impact du faisceau global sur la cible con­siste à éloigner celle-ci de la source, de la position A à la position B par exemple, de telle façon qu'il y ait chevauche­ment des faisceaux élémentaires.One way to obtain a more homogeneous density distribution at the impact of the global beam on the target is to move the latter away from the source, from position A to position B for example, so that there is overlap elementary beams.

On constate sur la figure 3c que le profil de den­sité J de chaque faisceau sur la cible est plus étalé et que sa valeur axiale est plus faible. De plus, le recouvrement des profils élémentaires permet d'obtenir un profil résultant à peu près homogène.It can be seen in FIG. 3c that the density profile J of each beam on the target is more spread out and that its axial value is lower. In addition, the recovery of elementary profiles makes it possible to obtain an almost homogeneous resulting profile.

Malheureusement ce résultat idéal ne saurait être atteint en pratique du fait de l'accroissement des phénomènes d'ionisation du gaz par les ions du faisceau lorsqu'on augmen­te la longueur des trajectoires dans l'espace cible-électrode accélératrice pour une structure selon l'art antérieur. En ef­fet les électrons ainsi créés sont réaccélérés en direction de la source et des électrodes du tube dont l'échauffement en­traîne un effet de désorption des impuretés et la création d'ions d'impuretés tels que Co⁺ dont le coefficient de pulvé­risation est supérieur de 10² à 10³ fois celui des ions deuté­rium, ce qui perturbe gravement la qualité de l'atmosphère du tube. Par ailleurs les électrons secondaires émis par la cible au rythme de plusieurs électrons émergents par ion incident et réaccélérés de la même façon vers la source contribuent égale­ment à l'accroissement de son échauffement et finalement à sa destruction.Unfortunately this ideal result cannot be achieved in practice due to the increase in the phenomena of ionization of the gas by the ions of the beam when the length of the trajectories in the target space-accelerating electrode is increased for a structure according to the prior art. Indeed, the electrons thus created are re-accelerated towards the source and the electrodes of the tube, the heating of which results in a desorption effect of the impurities and the creation of impurity ions such as Co⁺ whose spray coefficient is greater than 10² to 10³ times that of deuterium ions, which seriously disturbs the quality of the tube atmosphere. Furthermore, the secondary electrons emitted by the target at the rate of several electrons emerging per incident ion and re-accelerated in the same way towards the source also contribute to the increase in its heating and ultimately to its destruction.

Le dispositif de l'invention permet de repousser les électrons secondaires émis par la cible ainsi que ceux créés par ionisation du gaz. Dans une première variante de ce dispositif, on y parvient en disposant une électrode addition­nelle 13 convenablement polarisée à proximité de l'électrode d'accélération dans l'espace de glissement compris entre cette électrode et la cible, ce qui permet de bénéficier alors plei­nement de l'effet d'éloignement de la cible. Cette électrode additionnelle est portée à un potentiel négatif (-5 kV par exemple) par rapport à ceux de l'électrode d'accélération et de la cible mises à la masse et réalisée en un matériau ré­fractaire pour parer à son échauffement par les courants in­terélectrodes dans l'espace cible-électrode accélératrice.The device of the invention makes it possible to repel the secondary electrons emitted by the target as well as those created by ionization of the gas. In a first variant of this device, this is achieved by placing an additional electrode 13 suitably polarized near the acceleration electrode in the sliding space between this electrode and the target, which then makes it possible to fully benefit from the effect of distance from the target. This additional electrode is brought to a negative potential (-5 kV for example) compared to those of the acceleration electrode and the target grounded and made of a refractory material to prevent its heating by the inter-electrode currents in the target space-accelerating electrode.

La figure 4 montre la répartition de potentiel sui­vant l'axe du faisceau ionique pour le dispositif de la figure 3.FIG. 4 shows the potential distribution along the axis of the ion beam for the device of FIG. 3.

Au lieu d'éloigner la cible de la source d'ions on a supposé (ce qui revient au même) que la cible est fixe et que l'ensemble source d'ions-électrodes est déplacé en sens inverseInstead of moving the target away from the ion source, it has been assumed (which amounts to the same thing) that the target is fixed and that the ion source electrode assembly is moved in reverse

On a porté en abscisse d'une part les positions de la cible C, de l'électrode suppresseuse ES1, de l'électrode accélératrice EA1 et de la source S1 pour une certaine confi­guration de tube neutronique et d'autre part les positions de l'électrode suppresseuse ES2, de l'électrode accélératrice EA2 et de la source S2 pour une autre configuration de tube neu­tronique correspondant à un doublement de l'espace de glisse­ment. On a indiqué en ordonnée le niveau de potentiel VS de l'électrode suppresseuse. Les courbes en trait continu et en traits mixtes représentent respectivement l'écart entre le po­tentiel V suivant l'axe du faisceau d'ions et le potentiel Vc de la cible pour les deux configurations. Les variations de cet écart de potentiel dans les zones C-ES1 et C-ES2 et les champs électriques qui en résultent produisent l'effet "re­pousseur" de l'électrode additionnelle par laquelle les élec­trons émis par la cible et ceux créés par ionisation sont col­lectés par la cible. Les mêmes variations de potentiel dans les zones d'accélération des ions ES1-S1 et ES2-S2, identiques dans les deux configurations, montrent que le régime de fonc­tionnement des tubes reste inchangé, le flux d'électrons créé dans cette région, accéléré vers la source d'ions, restant identique.The positions of the target C, the suppressor electrode ES1, the accelerating electrode EA1 and the source S1 were plotted on the abscissa on the one hand for a certain configuration of neutron tube and on the other hand the positions of the suppressor electrode ES2, accelerator electrode EA2 and source S2 for another configuration of neutron tube corresponding to a doubling of the sliding space. The level of potential VS of the suppressor electrode has been indicated on the ordinate. The curves in solid line and in broken lines represent respectively the difference between the potential V along the axis of the ion beam and the potential Vc of the target for the two configurations. The variations in this potential difference in the C-ES1 and C-ES2 zones and the resulting electric fields produce the "repelling" effect of the additional electrode by which the electrons emitted by the target and those created by ionization are collected by the target. The same potential variations in the acceleration zones of the ES1-S1 and ES2-S2 ions, identical in the two configurations, show that the operating regime of the tubes remains unchanged, the flow of electrons created in this region, accelerated towards the source of ions, remaining identical.

La figure 5 représente une deuxième variante du dispositif de l'invention dans laquelle une électrode porte-­cible 14 en forme de puits, ou pouvant avoir une structure à trous, au même potentiel que la cible 4 est disposée au voisi­nage de l'électrode d'accélération 2 dans l'espace compris en­tre cette électrode et la cible. L'effet de répulsion d'élec­trons est réalisé en polarisant l'électrode d'accélération à un potentiel Va légèrement négatif par rapport à la cible.FIG. 5 represents a second variant of the device of the invention in which a target-carrying electrode 14 in the form of a well, or which may have a structure with holes, at the same potential as the target 4 is arranged in the vicinity of the electrode d acceleration 2 in the space between this electrode and the target. The electron repulsion effect is achieved by polarizing the acceleration electrode at a slightly negative potential Va relative to the target.

Un graphique analogue à celui de la figure 4 illus­tre en figure 6, pour cette deuxième variante du dispositif, la variation du potentiel V-Vc suivant l'axe du faisceau ionique. On a porté en abscisse les positions ER1 et ER2 du rebord de l'électrode porte-cible placée à proximité de l'électrode d'accélération. Les considérations ci-dessus pour le graphique de la figure 4 restent valables.A graph similar to that of FIG. 4 illustrates in FIG. 6, for this second variant of the device, the variation of the potential V-Vc along the axis of the ion beam. The positions ER1 and ER2 of the rim of the target-carrying electrode placed near the acceleration electrode were plotted on the abscissa. The above considerations for the graph in Figure 4 remain valid.

Claims (6)

1. Dispositif d'extraction et d'accélération d'ions dans un tube neutronique scellé à haut flux contenant un mé­lange gazeux deutérium-tritium sous faible pression à partir duquel une source d'ions fournit un (ou des) faisceau(x) ioni­que(s) extrait(s) et accéléré(s) à grande énergie en traver­sant un système d'extraction et d'accélération, pour être pro­jeté(s) sur une électrode cible et y produire une réaction de fusion entraînant une émission de neutrons, caractérisé en ce que ledit système d'extraction et d'accélération comporte une électrode additionnelle polarisée de façon à limiter la réac­célération vers la source des électrons secondaires créés par ionisation du gaz sur le trajet dudit (ou desdits) faisceau(x) à l'intérieur de l'espace compris entre ledit système d'ex­traction et d'accélération et ladite électrode cible, ce qui rend possible l'accroissement dudit espace pour réduire forte­ment les inhomogénéités du bombardement ionique.1. Device for extracting and accelerating ions in a sealed high-flux neutron tube containing a gaseous mixture of deuterium-tritium at low pressure from which an ion source provides an ion beam (s) (s) extracted and accelerated (s) at high energy by passing through an extraction and acceleration system, to be projected (s) on a target electrode and to produce there a fusion reaction involving an emission of neutrons, characterized in that said extraction and acceleration system comprises an additional electrode polarized so as to limit the re-acceleration towards the source of the secondary electrons created by ionization of the gas on the path of said (or said) beam (s) to the inside the space between said extraction and acceleration system and said target electrode, which makes it possible to increase said space to greatly reduce the inhomogeneities of the bombardem ionic ent. 2. Dispositif selon la revendication 1, caractérisé en ce que ledit système d'extraction et d'accélération comporte une dernière électrode d'accélération communiquant aux ions l'énergie nominale portée au même potentiel que ladite élec­trode cible et ladite électrode additionnelle jouant le rôle d'électrode de répulsion d'électrons, polarisée négativement par rapport à ladite dernière électrode d'accélération et dont le plan est situé à proximité et en aval du plan de sortie de la dernière électrode d'accélération dans l'espace équipoten­tiel électrode accélératrice-cible.2. Device according to claim 1, characterized in that said extraction and acceleration system comprises a last acceleration electrode communicating to the ions the nominal energy brought to the same potential as said target electrode and said additional electrode playing the role of electron repulsion electrode, polarized negatively with respect to said last acceleration electrode and the plane of which is located near and downstream of the exit plane of the last acceleration electrode in the equipotential space accelerating electrode- target. 3. Dispositif selon la revendication 1, caractérisé en ce que ledit système d'accélération comporte une dernière électrode d'accélération et ladite électrode additionnelle portée au même potentiel que ladite électrode cible et dont le plan est situé à proximité et en aval du plan de sortie de la dernière électrode d'accélération dans l'espace électrode accélératrice-cible, ladite électrode d'accélération assurant le rôle d'électrode de répulsion d'électrons étant polarisée négativement par rapport à l'ensemble électrode additionnel­le-électrode cible.3. Device according to claim 1, characterized in that said acceleration system comprises a last acceleration electrode and said additional electrode brought to the same potential as said target electrode and whose plane is located near and downstream of the plane of output of the last acceleration electrode in the accelerator-target electrode space, said acceleration electrode performing the role of electron repulsion electrode being polarized negatively with respect to the additional electrode-target electrode assembly. 4. Dispositif selon les revendications 1 à 3, caracté­risé en ce qu'il permet de former plusieurs faisceaux élémen­taires issus d'une même ou de plusieurs sources d'ions mais irradiant la même électrode cible.4. Device according to claims 1 to 3, characterized in that it makes it possible to form several elementary beams originating from the same or from several ion sources but irradiating the same target electrode. 5. Dispositif selon les revendications 2 et 3, carac­térisé en ce que ladite électrode d'accélération est réalisée en matériau conducteur réfractaire.5. Device according to claims 2 and 3, characterized in that said acceleration electrode is made of refractory conductive material. 6. Dispositif selon la revendication 2, caractérisé en ce que ladite électrode additionnelle de répulsion est réali­sée en matériau réfractaire.6. Device according to claim 2, characterized in that said additional repulsion electrode is made of refractory material.
EP89202464A 1988-10-07 1989-10-02 Ion extraction and acceleration device limiting reverse acceleration of secondary electrons in a sealed high flux neutron tube Withdrawn EP0362946A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8813186 1988-10-07
FR8813186A FR2637725A1 (en) 1988-10-07 1988-10-07 DEVICE FOR EXTRACTING AND ACCELERATING IONS LIMITING THE REACCELERATION OF SECONDARY ELECTRONS IN A HIGH-FLOW SEALED NEUTRONIC TUBE

Publications (1)

Publication Number Publication Date
EP0362946A1 true EP0362946A1 (en) 1990-04-11

Family

ID=9370793

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89202464A Withdrawn EP0362946A1 (en) 1988-10-07 1989-10-02 Ion extraction and acceleration device limiting reverse acceleration of secondary electrons in a sealed high flux neutron tube

Country Status (4)

Country Link
US (1) US5112564A (en)
EP (1) EP0362946A1 (en)
JP (1) JPH02148700A (en)
FR (1) FR2637725A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1239133B (en) * 1990-04-06 1993-09-28 Ariete Srl STEAM IRON, IN PARTICULAR OF THE DROP TYPE
FR2666477A1 (en) * 1990-08-31 1992-03-06 Sodern HIGH FLOW NEUTRONIC TUBE.
FR2710782A1 (en) * 1993-09-29 1995-04-07 Sodern Neutron tube with magnetic confinement of electrons by permanent magnets and its manufacturing process.
US6441569B1 (en) 1998-12-09 2002-08-27 Edward F. Janzow Particle accelerator for inducing contained particle collisions
US6922455B2 (en) * 2002-01-28 2005-07-26 Starfire Industries Management, Inc. Gas-target neutron generation and applications
CA2575505A1 (en) * 2004-08-06 2006-02-16 Grain Processing Corporation Frozen food products comprising holocellulose and methods for their manufacture
JP5522567B2 (en) * 2009-02-24 2014-06-18 独立行政法人日本原子力研究開発機構 Radioisotope production method and apparatus
JP5522566B2 (en) * 2009-02-24 2014-06-18 独立行政法人日本原子力研究開発機構 Radioisotope production method and apparatus
JP5522564B2 (en) * 2009-02-24 2014-06-18 独立行政法人日本原子力研究開発機構 Radioisotope production method and apparatus
JP5522568B2 (en) * 2009-02-24 2014-06-18 独立行政法人日本原子力研究開発機構 Radioisotope production method and apparatus
JP5522565B2 (en) * 2009-02-24 2014-06-18 独立行政法人日本原子力研究開発機構 Radioisotope production method and apparatus
JP5522563B2 (en) * 2009-02-24 2014-06-18 独立行政法人日本原子力研究開発機構 Method and apparatus for producing radioactive molybdenum
JP5673916B2 (en) * 2009-02-24 2015-02-18 独立行政法人日本原子力研究開発機構 Radioisotope production method and apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3448314A (en) * 1965-03-11 1969-06-03 Atomic Energy Authority Uk Neutron generators
US3569756A (en) * 1964-08-18 1971-03-09 Philips Corp Ion source having a plasma and gridlike electrode
NL7707357A (en) * 1977-07-04 1979-01-08 Philips Nv Anode for neutron generator ion source - has holes aligned to outlets in cathode converging beams on target
US4529571A (en) * 1982-10-27 1985-07-16 The United States Of America As Represented By The United States Department Of Energy Single-ring magnetic cusp low gas pressure ion source

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3014132A (en) * 1959-01-02 1961-12-19 High Voltage Engineering Corp Loss current diminisher for compact neutron source

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3569756A (en) * 1964-08-18 1971-03-09 Philips Corp Ion source having a plasma and gridlike electrode
US3448314A (en) * 1965-03-11 1969-06-03 Atomic Energy Authority Uk Neutron generators
NL7707357A (en) * 1977-07-04 1979-01-08 Philips Nv Anode for neutron generator ion source - has holes aligned to outlets in cathode converging beams on target
US4529571A (en) * 1982-10-27 1985-07-16 The United States Of America As Represented By The United States Department Of Energy Single-ring magnetic cusp low gas pressure ion source

Also Published As

Publication number Publication date
US5112564A (en) 1992-05-12
JPH02148700A (en) 1990-06-07
FR2637725A1 (en) 1990-04-13

Similar Documents

Publication Publication Date Title
EP0473233B1 (en) High-flux neutron tube
FR2926668A1 (en) ELECTRON SOURCE BASED ON FIELD TRANSMITTERS FOR MULTIPOINT RADIOGRAPHY.
EP0338619B1 (en) High-flux neutron source with long life target
EP1496727B1 (en) Closed electron drift plasma accelerator
EP0362946A1 (en) Ion extraction and acceleration device limiting reverse acceleration of secondary electrons in a sealed high flux neutron tube
EP0988645A1 (en) X-ray tube comprising an electron source with microtips and magnetic guiding means
FR2739941A1 (en) HIGH-RESOLUTION POSITION DETECTOR OF HIGH FLOWS OF IONIZING PARTICLES
FR2531570A1 (en) NEGATIVE ION SOURCE AND METHOD USING THE SOURCE TO REDUCE ELECTRONS NOT DESIRED OF AN OUTPUT FLOW
EP0362947B1 (en) Sealed neutron tube equipped with a multicellular ion source with magnetic confinement
EP0645947B1 (en) Neutron tube providing electron magnetic confinement by means of permanent magnets, and manufacturing method thereof
EP0307017B1 (en) Metallic ion implantation device
EP0340832B1 (en) Sealed, high flux neutron tube
EP0300566A1 (en) Liquid metal ions source with a vacuum arc
EP0362953A1 (en) Sealed neutron tube provided with an ion source with electrostatic confinement
EP0362945A1 (en) Device for treating the Penning ion source in a neutron tube
EP0295743B1 (en) Ion source with four electrodes
FR2984028A1 (en) Spark-gap, has cathode whose surface is made of porous heat-resisting materials, where photoemissive material is dispersed to emit electrons under effect of beam in surface of cathode
Hughes et al. Ion beams from laser‐generated plasmas
EP0362944A1 (en) Ion extraction and acceleration device in a sealed high flux neutron tube with addition of an auxiliary preacceleration electrode
Shi et al. Instrumentation for the study of the kinetic energy distribution and mass composition of particles produced by pulsed laser evaporation of solid materials
Niles et al. Laser ablation system for the injection of neutral materials into an electron beam ion trap
Ehler et al. Origin of``energetic''ions from laser‐produced plasmas
EP0300932B1 (en) Electron source
WO2021001383A1 (en) Pulsed generator of electrically charged particles and method of use of a pulsed generator of electrically charged particles
CH332317A (en) Ion emitting device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI NL

17P Request for examination filed

Effective date: 19901009

17Q First examination report despatched

Effective date: 19930308

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KONINKLIJKE PHILIPS ELECTRONICS N.V.

Owner name: SOCIETE ANONYME D'ETUDES ET REALISATIONS NUCLEAIRE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19980527