EP0338619B1 - High-flux neutron source with long life target - Google Patents

High-flux neutron source with long life target Download PDF

Info

Publication number
EP0338619B1
EP0338619B1 EP89200928A EP89200928A EP0338619B1 EP 0338619 B1 EP0338619 B1 EP 0338619B1 EP 89200928 A EP89200928 A EP 89200928A EP 89200928 A EP89200928 A EP 89200928A EP 0338619 B1 EP0338619 B1 EP 0338619B1
Authority
EP
European Patent Office
Prior art keywords
layer
target
titanium
layers
neutron generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89200928A
Other languages
German (de)
French (fr)
Other versions
EP0338619A1 (en
Inventor
Gérard Verschoore
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SODERN SA
Koninklijke Philips NV
Original Assignee
SODERN SA
Koninklijke Philips Electronics NV
Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SODERN SA, Koninklijke Philips Electronics NV, Philips Electronics NV filed Critical SODERN SA
Publication of EP0338619A1 publication Critical patent/EP0338619A1/en
Application granted granted Critical
Publication of EP0338619B1 publication Critical patent/EP0338619B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H6/00Targets for producing nuclear reactions
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H3/00Production or acceleration of neutral particle beams, e.g. molecular or atomic beams
    • H05H3/06Generating neutron beams

Definitions

  • the invention relates to a high flux neutron generator with a target struck by a beam of isotope ions of hydrogen, said target being constituted by a structure comprising a metal layer with a high absorption coefficient with respect to the hydrogen, produced on a support layer made of a metal with a high coefficient of heat conductivity and a low degree of volatilization.
  • Such generators such as that described in patent FR-A 2 438 953 , are used for example in techniques for examining matter by fast, thermal, epithermal or cold neutrons.
  • Neutrons are generated by reactions between nuclei of the heavy isotopes of hydrogen: deuterium and tritium. These reactions occur because a target, containing deuterium and tritium, is subjected to the bombardment of a beam of deuterium ions and tritium ions accelerated under a high potential difference.
  • the deuterium ions and the tritium ions are formed in an ion source in which a gaseous mixture of deuterium and tritium is ionized.
  • the collision between a deuterium nucleus and a tritium nucleus provides a neutron with an energy of 14 MeV, and a particle - ⁇ with an energy of 3.6 MeV.
  • a commonly used means for making such targets with isotopes of hydrogen consists in fixing the nuclei in the crystal lattice of a hydrurable material.
  • titanium is often used because of its lower stopping power, which results in better neutron yield.
  • these materials have the drawback of insufficient mechanical strength when the hydrogen concentration is high and the material in "thick layer" (disintegration phenomenon causing the dispersion of metal particles, which is detrimental to the voltage withstand of the devices ion beam acceleration).
  • a copper support for example, partially meets these criteria but has a high sputtering coefficient.
  • a target with good mechanical strength is difficult to achieve with this support because the coefficient of linear expansion of titanium is very different from that of copper.
  • the lifetime of the target would be very limited because after erosion of the titanium layer at the places of high density of the ion beam, the copper of the support would quickly be pulverized on the surrounding titanium surface and would considerably slow down the energy of the ions and consequently the yield of neutrons; this would lead simultaneously to the piercing of the support layer.
  • One way of avoiding this phenomenon is to form an intermediate layer of a material such as molybdenum, more resistant to ionic erosion and less permeable to hydrogen, between the support layer and the hydrogen-absorbing surface metal layer. to its isotopes.
  • concentration of hydrogen ions in the surface layer increases rapidly until a state of equilibrium is established in which the quantity of hydrogen which penetrates into said surface layer is equal to that which leaves it by diffusion.
  • the beam is made up of an equimolecular deuterium-tritium mixture so that the ions extracted from the source and implanted in the target after acceleration do not lead to a depletion of the target nuclei in favor of the nuclei of the beam.
  • the ion implantation of the beam takes place in layers of the support materials, the stopping power of which, much higher than in the active layer, causes the neutron emission to drop considerably, leading to the end of the operational life of the tube .
  • the object of the invention is to provide a neutron generator with a target which is struck by a beam of hydrogen ions, the lifetime of this target subject to the influence of an ion beam bombardment. high intensity being longer than the lifetime of known neutron generator targets.
  • the neutron generator of the kind mentioned in the preamble is remarkable in that the activated layer with high absorption coefficient consists of a stack of 2 to 5 identical metallic layers isolated from each other by a diffusion barrier, the thickness of said layers with a high absorption coefficient being equal for example to the penetration depth of the deuterium ions which strike the target.
  • limiting the diffusion of tritium to the thickness of a layer makes it possible not to dilute the concentration of the target nuclei beyond the beam penetration zone, which has the double advantage of accelerating the impregnating the target and improving the neutron yield.
  • Another advantage consists in the reduction of the total amount of deuterium-tritium mixture necessary for the functioning of the tube, especially marked with regard to the amount of tritium which is known to decompose progressively into He3, which correlatively increases the pressure residual in the tube.
  • the metal of the highly hydrogen permeable layers belongs to the group comprising titanium, zirconium, scandium, yttrium and lanthanides, while the metal forming the support layer belongs to the group comprising molybdenum, tungsten, tantalum, chromium and niobium.
  • Diffusion barriers can be developed by chemical means such as nitriding in reactive plasma, deposition of passivated layer by oxidation or by physical means such as deposition of an appropriate metallic layer, ion implantation, etc.
  • Figure 1a is a schematic longitudinal section of a neutron generator equipped with the target according to the invention.
  • FIG. 1b represents on a larger scale a part of the target of the generator represented by FIG. 1a.
  • an envelope 1 contains a gaseous mixture in equal proportions of deuterium and tritium under a pressure of the order of a few tenths of Pascals (thousandths of a millimeter of mercury).
  • This gas mixture is supplied via a pressure regulator 2.
  • the gas pressure is controlled using an ionization pressure gauge 3.
  • the mixture of deuterium and tritium is ionized in the ion source 4 and an ion beam is extracted therefrom by the acceleration electrode 5 secured to the casing 1 and cooled at 6 by a circulation of water. With respect to this electrode 5, the anode 7 is brought to a positive very high voltage potential (+ THT).
  • the ion source 4 of the Penning type further comprises two cathodes 8 and 9 brought to the same negative potential of the order of 5 kV relative to the anode 7 and a permanent magnet 10 creating an axial magnetic field and the magnetic circuit is closed by the ferromagnetic socket 11 which envelops the ion source 4.
  • the positive high voltage + THT is applied to the source by the cable 12, the end of which is surrounded by the insulating sleeves 13 and 14.
  • the ion beam passes through the suppressor electrode 15 and strikes the target 16 cooled at 17 by a circulation of water. Part of this target is shown on a larger scale in Figure 1b.
  • the target 16 consists of a molybdenum substrate 18 forming the support layer on which a titanium layer 19 is formed.
  • a first hydrogen diffusion barrier 20 is successively produced, followed by a titanium layer. 21, then in the same way, the diffusion barriers 22, 24 and 26 alternating with the titanium layers 23, 25 and 27 respectively, which have the same thickness.
  • the choice of the thickness of said layers is related to the penetration depth of the deuterium ions coming to strike the titanium target to generate there by collision with the implanted tritium ions, a neutron emission of 14 MeV. This avoids the depletion of the surface concentration of the target in tritium nuclei which would result from their diffusion towards the inside of a thicker layer.
  • the regeneration of the tritium target nuclei is suitably ensured if the deuterium-tritium mixture inside the neutron tube of FIG. 1a is found in equal amounts.
  • step by step after each piercing of a diffusion barrier, we will impregnate the underlying titanium layer while preventing the next barrier by diffusion penetration of tritium ions to the lower layers.
  • concentration rate of hydrogen ions in the successive titanium layers and consequently the level of neutron emission are kept substantially constant as these successive layers are eroded.
  • This method of obtaining diffusion barriers by nitriding in reactive plasma is not limiting. It obviously does not exclude the use of barriers obtained by any other chemical process such as oxidation, or physical process such as the deposition of intermediate metallic layers or barriers produced by ion implantation.

Description

L'invention concerne un générateur de neutrons à haut flux avec une cible frappée par un faisceau d'ions isotopes de l'hydrogène, ladite cible étant constituée par une structure comportant une couche métallique à coefficient d'absorption élevé vis à vis de l'hydrogène, élaborée sur une couche de support réalisée en un métal à grand coefficient de thermoconductibilité et à faible degré de volatilisation.The invention relates to a high flux neutron generator with a target struck by a beam of isotope ions of hydrogen, said target being constituted by a structure comprising a metal layer with a high absorption coefficient with respect to the hydrogen, produced on a support layer made of a metal with a high coefficient of heat conductivity and a low degree of volatilization.

De tels générateurs, comme celui décrit dans le brevet FR-A 2 438 953 , sont utilisés par exemple dans les techniques d'examen de la matière par neutrons rapides, thermiques, épithermiques ou froids.Such generators, such as that described in patent FR-A 2 438 953 , are used for example in techniques for examining matter by fast, thermal, epithermal or cold neutrons.

Les neutrons sont engendrés par des réactions entre noyaux des isotopes lourds de l'hydrogène : le deutérium et le tritium. Ces réactions se produisent du fait qu'une cible, contenant du deutérium et du tritium, est soumise au bombardement d'un faisceau d'ions de deutérium et d'ions de tritium accélérés sous une différence de potentiel élevée. Les ions de deutérium et les ions de tritium sont formés dans une source d'ions dans laquelle un mélange gazeux de deutérium et de tritium est ionisé. La collision entre un noyau de deutérium et un noyau de tritium fournit un neutron nanti d'une énergie de 14 MeV, et une particule -α nantie d'une énergie de 3,6 MeV.Neutrons are generated by reactions between nuclei of the heavy isotopes of hydrogen: deuterium and tritium. These reactions occur because a target, containing deuterium and tritium, is subjected to the bombardment of a beam of deuterium ions and tritium ions accelerated under a high potential difference. The deuterium ions and the tritium ions are formed in an ion source in which a gaseous mixture of deuterium and tritium is ionized. The collision between a deuterium nucleus and a tritium nucleus provides a neutron with an energy of 14 MeV, and a particle -α with an energy of 3.6 MeV.

Pour obtenir le rendement de réaction maximum, il convient notamment d'avoir la densité de noyaux cibles la plus élevée possible. Un moyen couramment utilisé pour réaliser de telles cibles avec les isotopes de l'hydrogène consiste à fixer les noyaux dans le réseau cristallin d'un matériau hydrurable.In order to obtain the maximum reaction yield, it is in particular advisable to have the highest possible density of target nuclei. A commonly used means for making such targets with isotopes of hydrogen consists in fixing the nuclei in the crystal lattice of a hydrurable material.

Parmi ces matériaux, le titane est souvent utilisé en raison de son plus faible pouvoir d'arrêt, ce qui a pour résultat un meilleur rendement neutronique. En revanche, ces matériaux présentent l'inconvénient d'une tenue mécanique insuffisante dès lors que la concentration en hydrogène est élevée et le matériau en "couche épaisse" (phénomène de délitement entraînant la dispersion de particules métalliques, ce qui est préjudiciable à la tenue en tension des dispositifs d'accélération du faisceau ionique).Among these materials, titanium is often used because of its lower stopping power, which results in better neutron yield. However, these materials have the drawback of insufficient mechanical strength when the hydrogen concentration is high and the material in "thick layer" (disintegration phenomenon causing the dispersion of metal particles, which is detrimental to the voltage withstand of the devices ion beam acceleration).

En conséquence, ces matériaux doivent être utilisés en couches minces sur un support ou un substrat qui doit présenter un faible coefficient d'absorption et de diffusion vis à vis de l'hydrogène, une bonne conductibilité thermique permettant l'évacuation de l'énergie dissipée et une bonne résistance à la corrosion vis à vis du fluide de refroidissement. Un support en cuivre par exemple répond partiellement à ces critères mais présente un coefficient de pulvérisation élevé. Une cible de bonne tenue mécanique est difficilement réalisable avec ce support du fait que le coefficient de dilatation linéaire du titane est très différent de celui du cuivre. De plus, dans le cas d'un faisceau à densité d'énergie non uniforme, la durée de vie de la cible serait très limitée du fait qu'après érosion de la couche de titane aux endroits de forte densité du faisceau d'ions, le cuivre du support se trouverait rapidement pulvérisé sur la surface de titane environnante et ralentirait considérablement l'énergie des ions et par suite le rendement en neutrons ; on aboutirait simultanément au percement de la couche de support.Consequently, these materials must be used in thin layers on a support or a substrate which must have a low absorption and diffusion coefficient with respect to hydrogen, a good thermal conductivity allowing the dissipation of the dissipated energy. and good resistance to corrosion with respect to the coolant. A copper support, for example, partially meets these criteria but has a high sputtering coefficient. A target with good mechanical strength is difficult to achieve with this support because the coefficient of linear expansion of titanium is very different from that of copper. Furthermore, in the case of a beam with a non-uniform energy density, the lifetime of the target would be very limited because after erosion of the titanium layer at the places of high density of the ion beam, the copper of the support would quickly be pulverized on the surrounding titanium surface and would considerably slow down the energy of the ions and consequently the yield of neutrons; this would lead simultaneously to the piercing of the support layer.

Un moyen d'éviter ce phénomène consiste à élaborer entre la couche support et la couche métallique superficielle absorbant l'hydrogène, une couche intermédiaire d'un matériau tel que le molybdène plus résistant à l'érosion ionique et moins perméable à l'hydrogène et à ses isotopes. Ainsi la concentration en ions hydrogène de la couche superficielle augmente rapidement jusqu'à l'établissement d'un état d'équilibre dans lequel la quantité d'hydrogène qui pénètre dans ladite couche superficielle est égale à celle qui en sort par diffusion. On atteint alors le maximum de concentration d'atomes de tritium dans la mince couche de titane et par conséquent le rendement neutronique le plus élevé.One way of avoiding this phenomenon is to form an intermediate layer of a material such as molybdenum, more resistant to ionic erosion and less permeable to hydrogen, between the support layer and the hydrogen-absorbing surface metal layer. to its isotopes. Thus the concentration of hydrogen ions in the surface layer increases rapidly until a state of equilibrium is established in which the quantity of hydrogen which penetrates into said surface layer is equal to that which leaves it by diffusion. We then reach the maximum concentration of atoms of tritium in the thin layer of titanium and therefore the highest neutron yield.

Dans le brevet français n° 2 438 953 précité , l'élaboration d'une deuxième couche intermédiaire en un matériau tel que le vanadium dont le coefficient de dilatation linéaire est situé entre ceux de la couche support et de la première couche intermédiaire, permet une meilleure adhérence des surfaces en contact.In the aforementioned French patent No. 2,438,953 , the development of a second intermediate layer of a material such as vanadium, the coefficient of linear expansion of which is situated between those of the support layer and of the first intermediate layer, allows better adhesion of surfaces in contact.

Les améliorations successives apportées à l'élaboration de la cible dans les réalisations précitées visaient à prolonger sa durée de vie en ralentissant le processus d'érosion du substrat sous l'effet du bombardement ionique, étant entendu par ailleurs que le faisceau est constitué d'un mélange équimoléculaire deutérium-tritium de telle sorte que les ions extraits de la source et implantés dans la cible après accélération ne conduisent pas à un appauvrissement des noyaux cible au profit des noyaux du faisceau.The successive improvements made to the development of the target in the abovementioned embodiments were aimed at extending its lifetime by slowing down the process of erosion of the substrate under the effect of ion bombardment, it being understood moreover that the beam is made up of an equimolecular deuterium-tritium mixture so that the ions extracted from the source and implanted in the target after acceleration do not lead to a depletion of the target nuclei in favor of the nuclei of the beam.

A ce stade, l'implantation ionique du faisceau s'effectue dans des couches des matériaux supports dont le pouvoir d'arrêt, beaucoup plus élevé que dans la couche active, fait chuter fortement l'émission neutronique entraînant la fin de vie opérationnelle du tube.At this stage, the ion implantation of the beam takes place in layers of the support materials, the stopping power of which, much higher than in the active layer, causes the neutron emission to drop considerably, leading to the end of the operational life of the tube .

Le but de l'invention est de procurer un générateur de neutrons avec une cible qui est frappée par un faisceau d'ions d'hydrogène, la durée de vie de cette cible soumise à l'influence d'un bombardement par faisceau d'ions à grande intensité étant plus longue que la durée de vie des cibles de générateurs de neutrons connues.The object of the invention is to provide a neutron generator with a target which is struck by a beam of hydrogen ions, the lifetime of this target subject to the influence of an ion beam bombardment. high intensity being longer than the lifetime of known neutron generator targets.

Conformément à l'invention, le générateur de neutrons du genre mentionné dans le préambule est remarquable en ce que la couche activée à fort coefficient d'absorption est constituée d'un empilage de 2 à 5 couches métalliques identiques isolées les unes des autres par une barrière de diffusion, l'épaisseur desdites couches à fort coefficient d'absorption étant égale par exemple à la profondeur de pénétration des ions deutérium qui viennent frapper la cible.According to the invention, the neutron generator of the kind mentioned in the preamble is remarkable in that the activated layer with high absorption coefficient consists of a stack of 2 to 5 identical metallic layers isolated from each other by a diffusion barrier, the thickness of said layers with a high absorption coefficient being equal for example to the penetration depth of the deuterium ions which strike the target.

De cette façon, l'hydruration des couches profondes ne s'effectue que par étapes au fur et à mesure du percement des barrières de diffusion sous l'effet de l'érosion due au bombardement. La durée de vie des cibles connues comportant une seule couche comme couche active peut ainsi être multipliée par le nombre de couches métalliques superposées dans la cible de l'invention.In this way, the deep layers are hydrated only in stages as the diffusion barriers are pierced under the effect of erosion due to bombardment. The lifespan of known targets comprising a single layer as active layer can thus be multiplied by the number of metallic layers superimposed in the target of the invention.

De plus, la limitation de la diffusion du tritium à l'épaisseur d'une couche permet de ne pas diluer la concentration des noyaux cible au-delà de la zone de pénétration du faisceau, ce qui présente le double avantage d'accélérer l'imprégnation de la cible et d'améliorer le rendement neutronique.In addition, limiting the diffusion of tritium to the thickness of a layer makes it possible not to dilute the concentration of the target nuclei beyond the beam penetration zone, which has the double advantage of accelerating the impregnating the target and improving the neutron yield.

Un autre avantage consiste en la réduction de la quantité totale de mélange deutérium-tritium nécessaire au fonctionnement du tube, surtout marqué en ce qui concerne la quantité de tritium dont on sait qu'il se décompose progressivement en He3, ce qui augmente corrélativement la pression résiduelle dans le tube.Another advantage consists in the reduction of the total amount of deuterium-tritium mixture necessary for the functioning of the tube, especially marked with regard to the amount of tritium which is known to decompose progressively into He3, which correlatively increases the pressure residual in the tube.

Le métal des couches très perméables à l'hydrogène appartient au groupe comportant le titane, le zirconium, le scandium, l'yttrium et les lanthanides, alors que le métal formant la couche de support appartient au groupe comportant le molybdène, le tungstène, le tantale, le chrome et le niobium.The metal of the highly hydrogen permeable layers belongs to the group comprising titanium, zirconium, scandium, yttrium and lanthanides, while the metal forming the support layer belongs to the group comprising molybdenum, tungsten, tantalum, chromium and niobium.

Les barrières de diffusion peuvent être élaborées par des moyens chimiques tels que nitruration en plasma réactif, dépôt de couche passivée par oxydation ou par des moyens physiques tels que dépôts de couche métallique appropriée, implantation ionique etc...Diffusion barriers can be developed by chemical means such as nitriding in reactive plasma, deposition of passivated layer by oxidation or by physical means such as deposition of an appropriate metallic layer, ion implantation, etc.

La description suivante en regard du dessin annexé, le tout donné à titre d'exemple, fera bien comprendre comment l'invention peut être réalisée.The following description with reference to the appended drawing, all given by way of example, will make it clear how the invention can be implemented.

La figure 1a est une coupe longitudinale schématique d'un générateur de neutrons équipé de la cible conforme à l'invention.Figure 1a is a schematic longitudinal section of a neutron generator equipped with the target according to the invention.

La figure 1b représente à plus grande échelle une partie de la cible du générateur représenté par la figure 1a.FIG. 1b represents on a larger scale a part of the target of the generator represented by FIG. 1a.

Dans le générateur de neutrons que représente la figure 1a, une enveloppe 1 contient un mélange gazeux en proportions égales de deutérium et de tritium sous une pression de l'ordre de quelques dixièmes de Pascals (millièmes de millimètres de mercure). Ce mélange gazeux est fourni par l'intermédiaire d'un régulateur de pression 2. La pression gazeuse est contrôlée à l'aide d'un manomètre d'ionisation 3. Le mélange de deutérium et de tritium est ionisé dans la source d'ions 4 et un faisceau ionique en est extrait par l'électrode d'accélération 5 solidaire de l'enveloppe 1 et refroidie en 6 par une circulation d'eau. Par rapport à cette électrode 5, l'anode 7 est portée à un potentiel de très haute tension positif (+THT).In the neutron generator represented in FIG. 1a, an envelope 1 contains a gaseous mixture in equal proportions of deuterium and tritium under a pressure of the order of a few tenths of Pascals (thousandths of a millimeter of mercury). This gas mixture is supplied via a pressure regulator 2. The gas pressure is controlled using an ionization pressure gauge 3. The mixture of deuterium and tritium is ionized in the ion source 4 and an ion beam is extracted therefrom by the acceleration electrode 5 secured to the casing 1 and cooled at 6 by a circulation of water. With respect to this electrode 5, the anode 7 is brought to a positive very high voltage potential (+ THT).

La source d'ions 4 de type Penning comporte en outre deux cathodes 8 et 9 portées à un même potentiel négatif de l'ordre de 5 kV par rapport à l'anode 7 et un aimant permanent 10 créant un champ magnétique axial et dont le circuit magnétique est fermé par la douille ferromagnétique 11 qui enveloppe la source d'ions 4. La haute tension positive +THT est appliquée à la source par le câble 12 dont l'extrémité est entourée par les manchons isolants 13 et 14.The ion source 4 of the Penning type further comprises two cathodes 8 and 9 brought to the same negative potential of the order of 5 kV relative to the anode 7 and a permanent magnet 10 creating an axial magnetic field and the magnetic circuit is closed by the ferromagnetic socket 11 which envelops the ion source 4. The positive high voltage + THT is applied to the source by the cable 12, the end of which is surrounded by the insulating sleeves 13 and 14.

Le faisceau d'ions passe par l'électrode suppresseuse 15 et frappe la cible 16 refroidie en 17 par une circulation d'eau. Une partie de cette cible est représentée à plus grande échelle sur la figure 1b.The ion beam passes through the suppressor electrode 15 and strikes the target 16 cooled at 17 by a circulation of water. Part of this target is shown on a larger scale in Figure 1b.

La cible 16 est constituée d'un substrat en molybdène 18 formant la couche support sur laquelle est formée une couche de titane 19. Selon l'invention on élabore successivement une première barrière de diffusion de l'hydrogène 20 suivie d'une couche de titane 21, puis de la même façon, les barrières de diffusion 22, 24 et 26 en alternance avec les couches de titane 23, 25 et 27 respectivement, qui ont la même épaisseur.The target 16 consists of a molybdenum substrate 18 forming the support layer on which a titanium layer 19 is formed. According to the invention, a first hydrogen diffusion barrier 20 is successively produced, followed by a titanium layer. 21, then in the same way, the diffusion barriers 22, 24 and 26 alternating with the titanium layers 23, 25 and 27 respectively, which have the same thickness.

Le choix de l'épaisseur desdites couches est en relation avec la profondeur de pénétration des ions deutérium venant frapper la cible en titane pour y engendrer par collision avec les ions tritium implantés, une émission neutronique de 14 MeV. On évite ainsi l'appauvrissement de la concentration superficielle de la cible en noyaux tritium qui résulterait de leur diffusion vers l'intérieur d'une couche plus épaisse.The choice of the thickness of said layers is related to the penetration depth of the deuterium ions coming to strike the titanium target to generate there by collision with the implanted tritium ions, a neutron emission of 14 MeV. This avoids the depletion of the surface concentration of the target in tritium nuclei which would result from their diffusion towards the inside of a thicker layer.

La régénération des noyaux cible tritium est convenablement assurée si le mélange deutérium-tritium à l'intérieur du tube neutronique de la figure 1a se trouve en quantités égales.The regeneration of the tritium target nuclei is suitably ensured if the deuterium-tritium mixture inside the neutron tube of FIG. 1a is found in equal amounts.

Du fait de la répartition non uniforme en densité du faisceau ionique indiquée en 28, il y a implantation de tritium en plus grande quantité dans la zone de cible frappée par la partie centrale du faisceau et corrélativement une érosion de plus en plus accentuée de la première couche de titane 27, au fur et à mesure qu'on se rapproche de cette partie centrale tel qu'indiqué en 29. Le perçage de la couche 27 se produit donc dans cette même partie centrale suivi de l'érosion puis du perçage de la barrière de diffusion 26. La couche de titane 25 déjà partiellement imprégnée par les ions ayant franchi les zones érodées de la couche 27 et de la barrière 26 commence alors à être directement imprégnée par le faisceau tandis que la barrière 24 remplit son rôle protecteur pour limiter la diffusion des ions hydrogène et donc maintenir leur concentration sensiblement au même niveau qu'elle avait dans la couche immédiatement supérieure.Due to the non-uniform distribution in density of the ion beam indicated in 28, there is implantation of tritium in greater quantity in the target area struck by the central part of the beam and correspondingly an increasingly accentuated erosion of the first layer of titanium 27, as one approaches this central part as indicated in 29. The drilling of layer 27 therefore occurs in this same central part followed by erosion and then drilling of the diffusion barrier 26. The titanium layer 25 already partially impregnated with the ions having crossed the eroded zones of the layer 27 and of the barrier 26 then begins to be directly impregnated by the beam while the barrier 24 fulfills its protective role to limit the diffusion of hydrogen ions and therefore maintain their concentration at roughly the same level as it had in the immediately upper layer.

Ainsi de proche en proche, après chaque percement d'une barrière de diffusion, on va imprégner la couche de titane sous-jacente tout en prévenant par la barrière suivante la pénétration par diffusion des ions tritium vers les couches inférieures. Il en résulte que le taux de concentration en ions hydrogène dans les couches de titane successives et par suite le niveau d'émission neutronique sont maintenus sensiblement constants au fur et à mesure de l'érosion de ces couches successives.So step by step, after each piercing of a diffusion barrier, we will impregnate the underlying titanium layer while preventing the next barrier by diffusion penetration of tritium ions to the lower layers. As a result, the concentration rate of hydrogen ions in the successive titanium layers and consequently the level of neutron emission are kept substantially constant as these successive layers are eroded.

On s'est limité à la réalisation d'une cible à cinq couches actives permettant un gain voisin de cinq sur la durée de vie, la multiplication d'un nombre de couches supérieur à la valeur ci-dessus risquant de poser des problèmes plus complexes à maîtriser.We limited ourselves to achieving a target with five active layers allowing a gain close to five over the lifetime, the multiplication of a number of layers greater than the above value being liable to pose more complex problems. to master.

La cible de l'invention peut être réalisée selon une méthode de pulvérisation cathodique comportant les étapes suivantes :

  • 1 - On dépose une couche de titane sur un substrat en molybdène constituant l'anode du dispositif de pulvérisation dont la cathode est une cible en titane. Cette cible est bombardée par les ions d'un gaz neutre et lourd tel que l'argon à coefficient de pulvérisation élevé. Les atomes d'argon ionisés sont ensuite projetés sur le substrat jusqu'à ce que l'épaisseur désirée soit atteinte.
  • 2 - On évacue l'argon que l'on remplace par de l'azote, gaz moins lourd et non neutre à partir duquel il va se déposer une couche de nitrure de titane qui constitue la barrière de diffusion par dessus la couche précédente de titane.
  • 3 - On évacue l'azote pour le remplacer par de l'argon afin de déposer une autre couche de titane.
  • 4 - Les étapes 2 et 3 sont renouvelées autant de fois qu'on le désire en introduisant alternativement de l'argon et de l'azote dans le bâti de pulvérisation sans interrompre nécessairement le processus de dépôt.
The target of the invention can be produced according to a sputtering method comprising the following steps:
  • 1 - A layer of titanium is deposited on a molybdenum substrate constituting the anode of the sputtering device whose cathode is a titanium target. This target is bombarded by ions of a neutral and heavy gas such as argon with a high spray coefficient. The ionized argon atoms are then projected onto the substrate until the desired thickness is reached.
  • 2 - The argon is removed and replaced with nitrogen, a lighter, non-neutral gas from which a layer of titanium nitride is deposited which forms the diffusion barrier over the previous layer of titanium .
  • 3 - The nitrogen is removed to replace it with argon in order to deposit another layer of titanium.
  • 4 - Steps 2 and 3 are repeated as many times as desired by alternately introducing argon and nitrogen into the spray frame without necessarily interrupting the deposition process.

Cette méthode d'obtention des barrières de diffusion par nitruration en plasma réactif n'est pas limitative. Elle n'exclut évidemment pas l'utilisation des barrières obtenues par tout autre procédé chimique tel que l'oxydation, ou procédé physique tel que le dépôt de couches métalliques intermédiaires ou de barrières réalisées par implantation ionique.This method of obtaining diffusion barriers by nitriding in reactive plasma is not limiting. It obviously does not exclude the use of barriers obtained by any other chemical process such as oxidation, or physical process such as the deposition of intermediate metallic layers or barriers produced by ion implantation.

Claims (4)

  1. A neutron generator, comprising a target which is struck by a hydrogen isotope ion beam and which is formed by a structure comprising an active layer which is formed by a metallic layer having a high hydrogen absorption coefficient which is deposited on a carrier layer which is made of a metal having a high thermal conductivity coefficient and a low degree of volatilization, characterized in that said layer having a high hydrogen absorption coefficient is formed by a stack of from 2 to 5 identical layers which are isolated from one another by a diffusion barrier.
  2. A neutron generator as claimed in Claim 1, characterized in that the metal of said layers having a high hydrogen absorption coefficient belongs to the group comprising titanium, zirconium, scandium, yttrium and the lanthanides, whereas the metal forming said carrier layer belongs to the group comprising molybdenum, tungsten, tantalum, chromium and niobium.
  3. A neutron generator as claimed the Claim 1 or 2, characterized in that said diffusion barriers are formed by titanium nitride layers.
  4. A target intended for a neutron generator as claimed in any one of the preceding Claims.
EP89200928A 1988-04-19 1989-04-13 High-flux neutron source with long life target Expired - Lifetime EP0338619B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8805147A FR2630251B1 (en) 1988-04-19 1988-04-19 HIGH-FLOW NEUTRON GENERATOR WITH LONG LIFE TARGET
FR8805147 1988-04-19

Publications (2)

Publication Number Publication Date
EP0338619A1 EP0338619A1 (en) 1989-10-25
EP0338619B1 true EP0338619B1 (en) 1995-07-19

Family

ID=9365435

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89200928A Expired - Lifetime EP0338619B1 (en) 1988-04-19 1989-04-13 High-flux neutron source with long life target

Country Status (5)

Country Link
US (1) US4935194A (en)
EP (1) EP0338619B1 (en)
JP (1) JPH01312500A (en)
DE (1) DE68923476T2 (en)
FR (1) FR2630251B1 (en)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990014670A1 (en) * 1989-05-02 1990-11-29 Electric Power Research Institute, Inc. Isotope deposition, stimulation, and direct energy conversion for nuclear fusion in a solid
WO1992012415A1 (en) * 1990-12-31 1992-07-23 General Research Corporation Contraband detection apparatus and method
US5942206A (en) * 1991-08-23 1999-08-24 The United States Of America As Represented By The Secretary Of The Navy Concentration of isotopic hydrogen by temperature gradient effect in soluble metal
FR2710782A1 (en) 1993-09-29 1995-04-07 Sodern Neutron tube with magnetic confinement of electrons by permanent magnets and its manufacturing process.
US5557108A (en) * 1993-10-25 1996-09-17 T+E,Uml U+Ee Mer; T+E,Uml U+Ee May O. Integrated substance detection and identification system
US5446288A (en) * 1993-10-25 1995-08-29 Tumer; Tumay O. Integrated substance detection instrument
JP2844304B2 (en) 1994-02-15 1999-01-06 日本原子力研究所 Plasma facing material
WO1996003751A1 (en) * 1994-07-21 1996-02-08 Gregory Lowell Millspaugh Method of and system for controlling energy, including in fusion reactors
KR970705920A (en) * 1994-08-19 1997-10-09 안소니 제이. 롤린스 Superconducting cyclotrons and targets for the production of heavy isotopes (SUPERCONDUCTING CYCLOTRON AND TARGET FOR USE IN THE PRODUCTION OF HEAVY ISOTOPES)
US6208704B1 (en) 1995-09-08 2001-03-27 Massachusetts Institute Of Technology Production of radioisotopes with a high specific activity by isotopic conversion
US5784423A (en) * 1995-09-08 1998-07-21 Massachusetts Institute Of Technology Method of producing molybdenum-99
IT1292817B1 (en) * 1997-03-20 1999-02-11 Renzo Boscoli METHOD AND MACHINE FOR THE PRODUCTION OF ENERGY BY NUCLEAR FUSION REACTIONS.
JP3122081B2 (en) * 1998-11-25 2001-01-09 石油公団 Neutron generator tube
US6441569B1 (en) 1998-12-09 2002-08-27 Edward F. Janzow Particle accelerator for inducing contained particle collisions
US6975072B2 (en) * 2002-05-22 2005-12-13 The Regents Of The University Of California Ion source with external RF antenna
US7176469B2 (en) * 2002-05-22 2007-02-13 The Regents Of The University Of California Negative ion source with external RF antenna
US20050135533A1 (en) * 2003-01-16 2005-06-23 Soc. Anonyme D'etudes Et Realisations Nucleaires Coded target for neutron source
JP4994589B2 (en) * 2004-11-08 2012-08-08 住友重機械工業株式会社 Target for radioisotope production
WO2006119080A2 (en) * 2005-04-29 2006-11-09 Larsen Lewis G Apparatus and method for generation of ultra low momentum neutrons
JP5004072B2 (en) * 2006-05-17 2012-08-22 学校法人慶應義塾 Ion irradiation effect evaluation method, process simulator and device simulator
WO2009148648A1 (en) * 2008-02-27 2009-12-10 Starfire Industries Llc Long life high-efficiency neutron generator
JP5522562B2 (en) * 2009-09-09 2014-06-18 独立行政法人日本原子力研究開発機構 Radiopharmaceutical comprising yttrium radioisotope and method and apparatus for producing the same
FR2953091B1 (en) 2009-11-25 2012-01-06 Mofakhami Florence PROCESS FOR GENERATING NEUTRONS
EP2505043A1 (en) 2009-11-25 2012-10-03 Mofakhami, Florence Method for generating neutrons
US20110216866A1 (en) * 2010-03-08 2011-09-08 Timothy Raymond Pearson Method and apparatus for the production of nuclear fusion
RU2467429C1 (en) * 2011-04-12 2012-11-20 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Pulsed acceleration tube
EP2824999B1 (en) * 2012-03-06 2020-05-06 Riken Neutron generation source, and neutron generation device
CN105407622B (en) * 2014-09-11 2018-04-20 邱慈云 The target of nucleic bombardment, bombardment system and method
DE102018007843B3 (en) * 2018-10-01 2020-01-16 Forschungszentrum Jülich GmbH Method for finding a target material and target material for a neutron source
US20230009459A1 (en) * 2021-04-02 2023-01-12 Tae Technologies, Inc. Materials and configurations for protection of objective materials

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2009049A1 (en) * 1970-02-26 1971-09-09 Nukem Gmbh Target for generating neutrons in acceleration systems
US3963934A (en) * 1972-05-16 1976-06-15 Atomic Energy Of Canada Limited Tritium target for neutron source
US3924137A (en) * 1974-08-27 1975-12-02 Nasa Deuterium pass through target
NL7810299A (en) * 1978-10-13 1980-04-15 Philips Nv NEUTRON GENERATOR WITH A TREF PLATE.

Also Published As

Publication number Publication date
FR2630251B1 (en) 1990-08-17
US4935194A (en) 1990-06-19
JPH01312500A (en) 1989-12-18
DE68923476T2 (en) 1996-03-14
FR2630251A1 (en) 1989-10-20
DE68923476D1 (en) 1995-08-24
EP0338619A1 (en) 1989-10-25

Similar Documents

Publication Publication Date Title
EP0338619B1 (en) High-flux neutron source with long life target
Stott et al. Control of re-cycling and impurities in the ATC tokamak by means of gettered surfaces
Gavrilov et al. Development of technological sources of gas ions on the basis of hollow-cathode glow discharges
Bacal Volume production of hydrogen negative ions
EP0362947B1 (en) Sealed neutron tube equipped with a multicellular ion source with magnetic confinement
FR2637725A1 (en) DEVICE FOR EXTRACTING AND ACCELERATING IONS LIMITING THE REACCELERATION OF SECONDARY ELECTRONS IN A HIGH-FLOW SEALED NEUTRONIC TUBE
Coelho et al. Electrical characterization of defects introduced in n-Ge during electron beam deposition or exposure
Bacal et al. Effect due to plasma electrode adsorbates upon the negative ion current and electron current extracted from a negative ion source
JP3503787B2 (en) Thin film formation method
EP0362945A1 (en) Device for treating the Penning ion source in a neutron tube
Wada Fundamental Aspects of Surface Production of Hydrogen Negative Ions
Torrisi et al. Target normal sheath ion acceleration by fs laser irradiating metal/reduced graphene oxide targets
Vavilov et al. Persistent photoconductivity in semiconducting III–V compounds
Nassisi et al. Modification of Pd–H2 and Pd–D2 thin films processed by He–Ne laser
EP0483004A1 (en) Electron cyclotron resonance ion source for highly charged ions with polarisable probe
EP0819314B1 (en) Method and device for controlling the energy of at least one charged species bombarding a body immersed in a plasma
Fiorina Comparative aging studies on a single wire proportional chamber
Ehler et al. Origin of``energetic''ions from laser‐produced plasmas
Zgheib Characterization and modeling of a high power impulse magnetron sputtering discharge, application to thin films deposition
Oishi et al. EUV spectral shape variation of tungsten unresolved transition arrays in electron temperature range of 2–4 keV observed in the Large Helical Device
YABUNO et al. Effects of Gas Ion Density on Formation of Gas-Atom Encapsulated Silicon Fullerenes
Belchenko et al. Physics of Surface-Plasma H− Ion Sources
Hassan et al. Development of a Radio Frequency Coupled Broad Beam Ion Source for Material Processing
Hsu Review of plasma-wall interaction experiments in TMX and TMX-U
Bunkin et al. Observation of stimulated radiation as a result of transitions in He II pumped by a proton beam

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19900418

17Q First examination report despatched

Effective date: 19920629

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 68923476

Country of ref document: DE

Date of ref document: 19950824

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19951023

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19980331

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19980421

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19980622

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990413

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19990413

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991231

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000201