EP0473233B1 - High-flux neutron tube - Google Patents

High-flux neutron tube Download PDF

Info

Publication number
EP0473233B1
EP0473233B1 EP91202149A EP91202149A EP0473233B1 EP 0473233 B1 EP0473233 B1 EP 0473233B1 EP 91202149 A EP91202149 A EP 91202149A EP 91202149 A EP91202149 A EP 91202149A EP 0473233 B1 EP0473233 B1 EP 0473233B1
Authority
EP
European Patent Office
Prior art keywords
neutron tube
anode
revolution
ion source
cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91202149A
Other languages
German (de)
French (fr)
Other versions
EP0473233A1 (en
Inventor
Henri Société Civile S.P.I.D. Bernardet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SODERN SA
Koninklijke Philips NV
Original Assignee
SODERN SA
Koninklijke Philips Electronics NV
Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SODERN SA, Koninklijke Philips Electronics NV, Philips Electronics NV filed Critical SODERN SA
Publication of EP0473233A1 publication Critical patent/EP0473233A1/en
Application granted granted Critical
Publication of EP0473233B1 publication Critical patent/EP0473233B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H3/00Production or acceleration of neutral particle beams, e.g. molecular or atomic beams
    • H05H3/06Generating neutron beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/04Ion sources; Ion guns using reflex discharge, e.g. Penning ion sources

Definitions

  • the present invention relates to a neutron tube comprising an ion source having at least one anode and at least one cathode having at least one extraction orifice and also comprising an acceleration device arranged so as to project at least one beam ion source ion on a target to produce a reaction resulting in the emission of neutrons.
  • Neutron tubes are most often in the form of sealed tubes containing a gaseous mixture of deuterium and tritium under low pressure from which the ion source forms a confined ionized gas.
  • the emission (or extraction) orifice is made in the cathode, the acceleration (and extraction) electrode making it possible to project the ion beam axially on a target electrode.
  • Plasma confinement can be obtained using magnetic and / or electric fields.
  • Neutron tubes are used in techniques for examining matter using fast, thermal, epithermal or cold neutrons: neutrography, activation analysis, spectrometry analysis of inelastic scattering or radiative captures, neutron scattering, etc.
  • the most used type of ion source is the Penning type source which has the advantage of being robust, of being cold cathode (hence a long service life), of giving currents significant discharge for low pressures (of the order of 7.5 ⁇ 10 ⁇ 2 A / Pa (10 A / torr)), to have a high extraction efficiency (from 20 to 40%) and be small.
  • This type of source requires a magnetic field of the order of a thousand gauss, parallel to the axis of the chamber ionization, introducing a significant transverse inhomogeneity of current density of the ions inside the discharge and at the level of the extraction which takes place along the common axis of the field and the source.
  • the fusion reaction d (3 H ), 4 He ) n delivering 14 MeV neutrons is usually the most used because of its large cross section for relatively low ion energies.
  • the number of neutrons obtained per unit of charge passing through the beam is always increasing as the energy of the ions directed towards a thick target is itself increasing and this largely at the beyond the energies of the ions obtained in the currently available sealed tubes and supplied by a THT rarely exceeding 250 kV.
  • the erosion of the target by ion bombardment is one of the most determining.
  • Erosion is a function of the chemical nature and structure of the target on the one hand, the energy of the incident ions and their density distribution profile on the impact surface on the other.
  • the target is made up of a hydrurable material (Titanium, Scandium, Zirconium, Erbium etc ...) capable of fixing and releasing large quantities of hydrogen without unacceptable disruption of its mechanical strength; the total quantity set is a function of the target temperature and the hydrogen pressure in the tube.
  • the target materials used are deposited in the form of thin layers, the thickness of which is limited by problems of adhesion of the layer to its support.
  • One way of delaying the erosion of the target consists, for example, in forming the active absorbent layer from a stack of identical layers isolated from each other by a diffusion barrier. The thickness of each of the active layers is of the order of the depth of penetration of the deuterium ions coming to strike the target.
  • Another way to protect the target and therefore increase the life of the tube is to act on the ion beam so as to improve its density distribution profile on the impact surface.
  • this improvement results from a distribution as uniform as possible of the current density over the entire surface offered by the target to the bombardment of the ions.
  • a disadvantage results from the fact that the ions extracted and accelerated towards the target react with the molecules of the gas contained in the tube at a pressure, with the first contrant order, to produce effects of ionization, dissociation and exchange of charges resulting on the one hand a decrease in the average energy on the target, that is to say a reduction in the production of neutrons and on the other hand the formation of ions and electrons which are then accelerated and bombard the ion source or the tube electrodes.
  • an average bombardment density of 0.5 mA should make it possible to exceed one thousand hours of operation; as for the neutron level, for an acceleration voltage of 250 kV, it would be around 3.1010 n / cm.2s of 14 MeV neutrons. Obtaining a level of 1013 n / s would require a target area of 300 cm2 and 3000 cm2 for 1014 n / s.
  • the basic idea of the invention consists in carrying out an extraction of ions no longer axial, but radial on the one hand, starting from the recognition of the fact that it allows a reduction of the electric fields producing the cold emission of electrodes, and the number of breakdowns resulting therefrom, thanks to an asymmetry in the distribution of the electric field and further by the fact that it makes it possible to arrange the target cylindrically around the ion source, from where an extremely gain important with regard to the size of a source with a high neutron flux.
  • a neutron tube according to the invention is thus characterized in that the ion source is arranged along at least a portion of a first surface of revolution and arranged to produce an emission of radial ions and directed towards the outside of said first surface, in that the acceleration device is arranged along at least a portion of a second surface of revolution surrounding said first surface, and in that the target is arranged along at least part of a third surface of revolution surrounding said second surface.
  • the radial extraction mode towards the outside partly eliminates the sheath effect due to the perimeter of the extraction electrode and results, all things being equal. moreover, an increase in the extraction efficiency of the source.
  • the tube according to the invention may comprise a device for suppressing secondary electrons known per se and arranged along at least a portion of a fourth surface of revolution comprised between the second and the third surface.
  • the acceleration device can advantageously be a cylindrical electrode.
  • the ion source consists of at least one elementary source with a Penning structure, which can in particular comprise a plurality of elementary sources arranged in at least portions of superimposed rings.
  • the first surface of revolution is a first cylinder and it comprises a first cylindrical magnet disposed on the smallest radius of the first cylinder, and at least a second cylindrical magnet contained in said cathode along the largest radius of the first cylinder, so as to produce a radial magnetic field.
  • An anode can be cylindrical or frustoconical of revolution. It can preferably be made up of two parallel discs or with a frustoconical section, which makes it possible to produce a single anode per ring, hence simplifying the production.
  • the extraction orifice can be an annular slot, which is favorable to the extraction efficiency.
  • the ion source consists of a structure of the inverted magnetron type.
  • a structure is usually used only as a measuring instrument (ionization gauge).
  • ionization gauge On this point one will refer to the work The Physical Basis of Ultrahigh Vacuum (Redhead et al National Research Council Ottawa, CDN edited by Chapman and Hall Ltd LONDON (GB), in its pages 333 and 334.
  • Such a device is used here as an ion source by providing at least one extraction opening in the cathode. At least one anode can be annular.
  • a third annular magnet can be arranged so as to produce a longitudinal magnetic field.
  • the magnetic field can be obtained by a solenoid surrounding the third (or if appropriate the fourth) cylindrical surface and arranged so as to produce a longitudinal magnetic field
  • a cylindrical anode can be arranged according to the smallest radius of the first cylinder and extend substantially over the height of the first cylinder. It is thus possible to obtain, with a single anode and a single cathode, an emission on a surface of revolution, especially cylindrical, elongated.
  • the ion source is of the orbitron type comprising a second cylindrical anode disposed along the smallest radius of the first cylinder and extending substantially over the height of said first cylinder.
  • the ion source may also include a hot cathode.
  • the ion source is of the electrostatic reflex type (SIRE) and has at least one annular anode, or advantageously a multiannular electrode.
  • SIRE electrostatic reflex type
  • FIG. 1 shows the main basic elements of a sealed neutron tube 11 containing a gas mixture under low pressure to be ionized such as deuterium-tritium and which comprises an ion source 1 and an acceleration electrode 2 between which there is a very high potential difference allowing the extraction and the focusing of the ion beam 3 and its projection on the target 4 where the fusion reaction takes place resulting in an emission of neutrons at 14 MeV for example.
  • a gas mixture under low pressure to be ionized such as deuterium-tritium and which comprises an ion source 1 and an acceleration electrode 2 between which there is a very high potential difference allowing the extraction and the focusing of the ion beam 3 and its projection on the target 4 where the fusion reaction takes place resulting in an emission of neutrons at 14 MeV for example.
  • the ion source 1 secured to an insulator 5 which can allow the THT supply connector, for example 250 kV (not shown) to pass, is a Penning type source for example, consisting of a cylindrical anode 6, of a cathodic structure 7 in which is incorporated a magnet with an axial magnetic field which confines the ionized gas 9 around the axis of the anode cylinder and whose lines of force 10 show a certain divergence.
  • An ion emission channel 12 is formed in said cathode structure opposite the anode.
  • the anode is brought to a higher potential of the order of a few (1 to 6 for example) kV than that of the cathode, itself brought to the very high voltage THT.
  • the acceleration electrode 2 and the target 4 are generally at ground potential.
  • a neutron tube is, according to the invention with radial emission and extraction.
  • the ion source consists of a plurality of sources of the Penning type, arranged according to a cylindrical symmetry (as shown) or else conical. To do this, it has an annular structure, or else a plurality of superimposed annular structures 20 (and of the same section in the case of a cylindrical symmetry).
  • Each annular structure 20 mechanically fixed on a central axis 18 brought to a high potential (200 to 250 kV) comprises a cylindrical magnet 8 on the smallest radius of the annular structure 20, and a flat ring 14, as well as a cylindrical part 8 ′ disposed on the largest radius of the annular structure 20.
  • the flat ring 14 forms a part of metallic structure now holding the cylindrical magnet 8 and the cylindrical part 8 ′, which can itself be constituted by a cylindrical magnet contained in the cathode structure 7.
  • the cathode 7 is then formed by the internal cylindrical surfaces corresponding on the one hand to the inner radius of lower value and on the other hand to the outer radius of higher value.
  • the cylindrical magnet 8 has a height at least equal to that of the cathode 7.
  • the flat ring due to the fact that it serves as a magnetic circuit, is itself made of magnetic material (soft iron or magnetic alloy for example).
  • a plurality of cylindrical anodes 6 are distributed radially around the periphery of the annular structure 20, and have substantially the same axis as the extraction openings 12 formed in the cylindrical part 8 ′ of the cathode structure 7.
  • An acceleration electrode 2 is in the form of a cylinder (or a cone) having acceleration openings 21 located opposite the openings 12.
  • the target has a cylindrical (or conical) support 4 on which the acceleration electrode 2 can be connected mechanically and electrically.
  • a tapered high-voltage insulator 5 mechanically holds the assembly.
  • the ion source can be arranged in such a way that the emission takes place over the entire periphery or only over a part or sector thereof.
  • the ring can extend over 360 ° or only over a more limited angle, and has openings 12 only at the useful places.
  • the openings 12 of two superimposed rings can be angularly offset for example for better homogeneity of the beam on the target.
  • a deuterium-tritium reservoir is shown at 23 as well as a pressure measurement gauge 22.
  • Electrodes 24 suppressing secondary electrons are arranged in intermediate planes between the rings, outside of the ion beams 3. Insulating bushings 25 distributed around the perimeter allow their mechanical fixing and / or their electrical supply.
  • the electrodes 24 are brought to a negative potential (-5 kV for example) relative to those of the acceleration electrode 2 and the target 4 grounded, and is advantageously made of a refractory material.
  • the electrodes 24 are preferably toric in V section to match at best the profile of the ion beams 3.
  • a second model of ion source structure always of the Penning type, consists in integrating the n cylindrical (or conical) ion source modules in an annular structure having close electrical mapping, the distribution of the magnetic field being similar to the previous.
  • the anode of the structure consists of two parallel 16 or inclined 16 ′ discs relative to each other to better match the lines of force of the magnetic field. These structures are shown in Figures 3a to 3d.
  • the cathode 7 of the structure is formed by the internal cylindrical surfaces corresponding on the one hand to the inner radius of lower value and on the other hand to the outer radius of higher value, this latter surface is pierced over its entire length with a extraction slot 32 of height and depth coupled so as to avoid excessive penetration of the electric field applied by the acceleration electrode.
  • the magnetic field inside the structure must be greater than the cut-off field (value linked on the one hand to the geometric structure: distance between the two anode rings and to a lesser degree at the intercathode distance and on the other hand to the voltage applied between anode and cathode) that is to say to the magnetic field preventing the electrons from reaching the anode from oscillations without ionizing shock.
  • the cut-off field value linked on the one hand to the geometric structure: distance between the two anode rings and to a lesser degree at the intercathode distance and on the other hand to the voltage applied between anode and cathode
  • the magnets used to produce this magnetic field consist as above of rings distributed in two assemblies held mechanically by metal carcasses 14 serving as a magnetic circuit (magnetic material).
  • the first set consists of two rings 8 'arranged on either side of the extraction slot.
  • the second magnet consists of a cylinder 8 whose thickness is a function of the magnetic field necessary for the proper functioning of the source and the nature of the material used. Its height is at least equal to the height of the cathode 7.
  • annular structures corresponding to fig.3a, but of different radii, are stacked to form a frustoconical structure.
  • the acceleration electrode 2 and the target 4 can also be frustoconical.
  • the ion source is produced from a structure called "inverted magnetron", known to produce an ionization gauge (book by Redhead et al supra).
  • the dimensions are practically identical to those of the Penning structure as well as the operating pressure and tensions.
  • the anode consists of a ring 40 (for example 3 cm high, on a radius of 5 cm) located inside the cathode cavity 42, the main element of which is constituted by the cylindrical cathode wall 41 separated into two parts by the extraction slot 32.
  • the height of an elementary cell may for example be 6 to 8 cm.
  • the electric field is, in this zone, radial and the confining magnetic field is generally perpendicular and therefore parallel to the axis of symmetry of the structure.
  • the electrons accelerated towards the anode are deflected towards the cathode by the magnetic field and describe cycloids (figure 4b) on the basis of the cylindrical surface (or the equipotential surface) on which they were created.
  • the confining magnetic field can be created by magnets 48 in the form of discs arranged symmetrically with respect to the plane of symmetry of the structure; these magnets 48 can be mechanically held on a metal support 43 acting as a magnetic circuit and the diameter is less than the anodic diameter. It can also be created by a coil 50 placed outside the tube structure ( Figures 5 and 6) and leading to the production of a magnetic field greater than the cut-off field.
  • the coil 50 has a height which can advantageously be 1.5 to 2 times the total height of the cathode structures. This configuration may be advantageous in certain uses requiring braking of the neutrons, use of a heavy coiling material, cooled by circulation of water which can also be used for cooling the target.
  • the anode can be constituted (FIG. 5) by a ring 40 disposed in each cathode cavity 42 delimited by flat rings 52 of conductive material, the cathode being constituted by conductive rings 51 (for example 3 to 4 cm in height) integral with the flat rings 52 (for example 2 mm in height) between which there are extraction slots 32.
  • the anode is preferably made up (FIG. 6) by a single cylinder ( or truncated cone) 55 fixed by spacers 56, the flat rings 52 being removed.
  • the structures presented now include an ion source, radially extracted according to the invention, with an electric confining field.
  • Figures 7 and 8 show an orbitron structure having an anode 70 of small dimension (diameter for example between 0.05 and 0.1 cm), located on the axis of cathode 51 (diameter for example between 10 and 15 cm).
  • This structure can be cold cathode ( Figure 7) and therefore requiring a high anode voltage and an operating pressure at best in the range of 1.3 ⁇ 10 ⁇ 2 - 1.3 ⁇ 10 ⁇ 1 Pa (10 ⁇ 4-10 ⁇ 3 torr) or also having a hot cathode 71 ( Figure 8), thus causing a greater extension of the operating range towards low pressures.
  • the operating principle is as follows: the electrons emitted by the filaments or the cathodes are attracted to the anode; according to their angle of emission and their initial energy, they can "miss" the anode and thus oscillate for a long time inside the structure, the probability of ionization is thus strongly increased and a discharge, with formation of a plasma is created.
  • the ions are attracted to the cathode and their extraction is done through one where several cylindrical slots 32.
  • the extraction and the position of the slots 32 can be carried out in a similar manner to the inverted magnetron structure with solenoid.
  • the acceleration 2 and suppression 24 structure of the target's secondary electrons are similar to that of ion source systems with magnetic confinement fields.
  • the shape and position of the suppressor electrode 24 must take account of the higher operating pressures, in accordance with the provisions taken in the aforementioned French patent n ° 88 13186.
  • FIGS 9 and 10 show electrostatic reflex structures (EIRS) with cold cathode.
  • the anode 90 is close to the cylindrical cathode 51 (diameter of the cathode for example between 2 and 3 cm) and the electrons oscillate between the two plane sections of the cathode; the ion current density is much greater on the two flat sections of the cathode, in particular at low pressure (1.3 ⁇ 10 ⁇ 1 Pa) (10 ⁇ 3 torr).
  • the radial extraction takes place via cylindrical slots 32 formed in the cylindrical wall of the cathode 51, under conditions similar to those of the inverted magnetron structure.
  • Their relative surface compared to the total surface of the cylindrical part of the cathode
  • the number of slots depends on the height of the structure of the ion source and its dimensions.
  • the number of annular anodes (circular or cylindrical section) cooled or not and arranged in the middle part between the extraction surfaces is a function of the height of the structure.
  • Figure 9 shows a structure with four extraction "rings"
  • Figure 10 shows a much higher neutron tube with N extraction structures (N> 4). In this case, an anode having several rings 91 is used.
  • the parts “acceleration” 2 and “suppression of secondary electrons” 24 are similar to those of structures with magnetic fields.
  • the diameter of the SIRE structure can be of the order of 10 to 15 cm.
  • Their operating pressures are generally between 1.3 ⁇ 10 ⁇ 1 Pa (10 ⁇ 3 torr) and some 1.3 Pa (10 ⁇ 2 torr), and their voltages between a few kV and 12 kV.
  • electrostatic structures their larger volume and their own configuration allows only a reduced number of complementary cells, knowing that the dimensions of the tube are close to those of magnetic field structures and that electrostatic structures are equipped with several extraction slots. It is also advantageous to modify the structures themselves (position and number of anodes in the SIRE structure, height of the cylindrical cathodes in the SIRE and orbitron structures).
  • the invention is not limited to the embodiments described and shown. It also applies, for example, to neutron tubes in a Deuterium atmosphere only (production of 2.6 MeV neutrons).
  • a pulsed operation is possible after installation in the ion source, in a manner known per se for sources with axial emission, of a source of electrons or of an ⁇ and / or ⁇ emitter and / or ⁇ producing the first electric particles at the origin of the ignition and the discharge in the ion source.

Description

La présente invention a pour objet un tube neutronique comportant une source d'ions présentant au moins une anode et au moins une cathode présentant au moins un orifice d'extraction et comportant également un dispositif d'accélération disposé de manière à projeter au moins un faisceau ionique de la source d'ions sur une cible pour y produire une réaction entraînant une émission de neutrons.The present invention relates to a neutron tube comprising an ion source having at least one anode and at least one cathode having at least one extraction orifice and also comprising an acceleration device arranged so as to project at least one beam ion source ion on a target to produce a reaction resulting in the emission of neutrons.

Les tubes neutroniques se présentent le plus souvent sous la forme de tubes scellés contenant un mélange gazeux de deutérium et de tritium sous faible pression à partir duquel la source d'ions forme un gaz ionisé confiné. L'orifice d'émission (ou d'extraction) est pratiqué dans la cathode, l'électrode d'accélération (et d'extraction) permettant de projeter le faisceau d'ions axialement sur une électrode cible.Neutron tubes are most often in the form of sealed tubes containing a gaseous mixture of deuterium and tritium under low pressure from which the ion source forms a confined ionized gas. The emission (or extraction) orifice is made in the cathode, the acceleration (and extraction) electrode making it possible to project the ion beam axially on a target electrode.

Un confinement du plasma peut être obtenu à l'aide de champs magnétiques et/ou électrique. Les tubes neutroniques sont utilisés dans les techniques d'examen de la matière par neutrons rapides, thermiques, épithermiques ou froids : neutrographie, analyse par activation, analyse par spectrométrie des diffusions inélastiques ou des captures radiatives, diffusion des neutrons etc...Plasma confinement can be obtained using magnetic and / or electric fields. Neutron tubes are used in techniques for examining matter using fast, thermal, epithermal or cold neutrons: neutrography, activation analysis, spectrometry analysis of inelastic scattering or radiative captures, neutron scattering, etc.

Le type de source d'ions qui est le plus utilisé est la source de type Penning qui a l'avantage d'être robuste, d'être à cathode froide (d'où une longue durée d'utilisation), de donner des courants de décharge importants pour de faibles pressions (de l'ordre de 7,5 · 10⁻² A/Pa (10 A/torr)), d'avoir un rendement d'extraction élevé (de 20 à 40 %) et d'être de faibles dimensions. Ce type de source nécessite un champ magnétique de l'ordre du millier de gauss, parallèle à l'axe de la chambre d'ionisation, introduisant une inhomogénéité transverse importante de densité de courant des ions à l'intérieur de la décharge et au niveau de l'extraction qui s'effectue suivant l'axe commun du champ et de la source.The most used type of ion source is the Penning type source which has the advantage of being robust, of being cold cathode (hence a long service life), of giving currents significant discharge for low pressures (of the order of 7.5 · 10⁻² A / Pa (10 A / torr)), to have a high extraction efficiency (from 20 to 40%) and be small. This type of source requires a magnetic field of the order of a thousand gauss, parallel to the axis of the chamber ionization, introducing a significant transverse inhomogeneity of current density of the ions inside the discharge and at the level of the extraction which takes place along the common axis of the field and the source.

La réaction de fusion d(3H), 4He)n délivrant des neutrons de 14 MeV est habituellement la plus utilisée en raison de sa grande section efficace pour des énergies d'ions relativement faibles. Toutefois, quelle que soit la réaction utilisée, le nombre de neutrons obtenu par unité de charge transitant dans le faisceau est toujours croissant au fur et à mesure que l'énergie des ions dirigés vers une cible épaisse est elle-même croissante et ceci largement au delà des énergies des ions obtenus dans les tubes scellés actuellement disponibles et alimentés par une THT n'excédant que rarement 250 kV.The fusion reaction d (3 H ), 4 He ) n delivering 14 MeV neutrons is usually the most used because of its large cross section for relatively low ion energies. However, whatever the reaction used, the number of neutrons obtained per unit of charge passing through the beam is always increasing as the energy of the ions directed towards a thick target is itself increasing and this largely at the beyond the energies of the ions obtained in the currently available sealed tubes and supplied by a THT rarely exceeding 250 kV.

Parmi les principaux facteurs limitatifs de la durée de vie d'un tube neutronique, l'érosion de la cible par le bombardement ionique est l'un des plus déterminants.Among the main factors limiting the life of a neutron tube, the erosion of the target by ion bombardment is one of the most determining.

L'érosion est fonction de la nature chimique et de la structure de la cible d'une part, de l'énergie des ions incidents et de leur profil de répartition en densité sur la surface d'impact d'autre part.Erosion is a function of the chemical nature and structure of the target on the one hand, the energy of the incident ions and their density distribution profile on the impact surface on the other.

Dans la plupart des cas, la cible est constituée par un matériau hydrurable (Titane, Scandium, Zirconium, Erbium etc...) capable de fixer et de relâcher des quantités importantes d'hydrogène sans perturbation rédhibitoire de sa tenue mécanique ; la quantité totale fixée est fonction de la température de la cible et de la pression d'hydrogène dans le tube. Les matériaux cibles utilisés sont déposés sous forme de couches minces dont l'épaisseur est limitée par des problèmes d'adhérence de la couche sur son support. Un moyen de retarder l'érosion de la cible consiste par exemple à former la couche active absorbante d'un empilage de couches identiques isolées les unes des autres par une barrière de diffusion. L'épaisseur de chacune des couches actives est de l'ordre de la profondeur de pénétration des ions deutérium venant frapper la cible.In most cases, the target is made up of a hydrurable material (Titanium, Scandium, Zirconium, Erbium etc ...) capable of fixing and releasing large quantities of hydrogen without unacceptable disruption of its mechanical strength; the total quantity set is a function of the target temperature and the hydrogen pressure in the tube. The target materials used are deposited in the form of thin layers, the thickness of which is limited by problems of adhesion of the layer to its support. One way of delaying the erosion of the target consists, for example, in forming the active absorbent layer from a stack of identical layers isolated from each other by a diffusion barrier. The thickness of each of the active layers is of the order of the depth of penetration of the deuterium ions coming to strike the target.

Une autre façon de protéger la cible et donc d'accroître la durée de vie du tube consiste à agir sur le faisceau d'ions de manière à améliorer son profil de répartition en densité sur la surface d'impact. A courant d'ions total constant sur la cible ce qui entraîne une émission neutronique constante, cette amélioration résulte d'une répartition aussi uniforme que possible de la densité de courant sur l'ensemble de la surface offerte par la cible au bombardement des ions.Another way to protect the target and therefore increase the life of the tube is to act on the ion beam so as to improve its density distribution profile on the impact surface. At a constant total ion current on the target, which results in a constant neutron emission, this improvement results from a distribution as uniform as possible of the current density over the entire surface offered by the target to the bombardment of the ions.

Un inconvénient résulte du fait que les ions extraits et accélérés vers la cible réagissent avec les molécules du gaz contenues dans le tube à une pression, au premier ordre contrante, pour produire des effets d'ionisation, de dissociation et d'échange de charges entraînant d'une part une diminution de l'énergie moyenne sur la cible, c'est-à-dire une réduction de la production de neutrons et d'autre part la formation d'ions et d'électrons qui sont ensuite accélérés et bombardent la source d'ions ou les électrodes du tube.A disadvantage results from the fact that the ions extracted and accelerated towards the target react with the molecules of the gas contained in the tube at a pressure, with the first contrant order, to produce effects of ionization, dissociation and exchange of charges resulting on the one hand a decrease in the average energy on the target, that is to say a reduction in the production of neutrons and on the other hand the formation of ions and electrons which are then accelerated and bombard the ion source or the tube electrodes.

Il en résulte des dépôts d'énergies qui accroissent la température des matériaux des électrodes tels que le molybdène ou l'acier inoxydable. L'échauffement de ces matériaux provoque la désorption d'impuretés telles que l'oxyde de carbone qu'ils renferment et perturbe ainsi la qualité de l'atmosphère du tube. Les ions d'impuretés formés dans le tube, CO⁺ par exemple, bombardent la cible avec un coefficient de pulvérisation supérieur d'un facteur 10² à 10³ à celui des ions deutérium-tritium, d'où une accentuation importante de l'érosion. Ces effets croissent avec la pression de fonctionnement dans le tube neutronique.This results in deposits of energy which increase the temperature of the materials of the electrodes such as molybdenum or stainless steel. The heating of these materials causes the desorption of impurities such as the carbon monoxide which they contain and thus disturbs the quality of the atmosphere of the tube. The impurity ions formed in the tube, CO⁺ for example, bombard the target with a spray coefficient greater by a factor of 10² to 10³ than that of the deuterium-tritium ions, resulting in a significant increase in erosion. These effects increase with the operating pressure in the neutron tube.

Ces considérations à caractère général valables quelque soit la nature de la source d'ions montrent que l'obtention de flux neutronique élevé avec de longues durées d'utilisation (par exemple plusieurs milliers d'heures) nécessite d'utiliser :

  • des cibles de grandes surfaces,
  • des densités de bombardement ionique des cibles compatible avec un refroidissement efficace et une faible pulvérisation,
  • des pressions de fonctionnement réduites nécessitant, par conséquent, des sources d'ions efficaces en production d'ions.
These general considerations valid whatever the nature of the ion source show that obtaining high neutron flux with long periods of use (for example several thousand hours) requires using:
  • targets of large areas,
  • ion bombardment densities of the targets compatible with efficient cooling and low sputtering,
  • reduced operating pressures therefore necessitating efficient ion sources in ion production.

A titre d'illustration, une densité moyenne de bombardement de 0,5 mA, avec un maxima de l'ordre de 1 mA devrait permettre de dépasser le millier d'heures de fonctionnement ; quant au niveau neutronique, pour une tension d'accélération de 250 kV, il serait d'environ 3.10¹⁰ n/cm.²s de neutrons de 14 MeV. L'obtention d'un niveau de 10¹³ n/s nécessiterait une surface de cible de 300 cm² et 3000 cm² pour 10¹⁴ n/s.By way of illustration, an average bombardment density of 0.5 mA, with a maximum of the order of 1 mA, should make it possible to exceed one thousand hours of operation; as for the neutron level, for an acceleration voltage of 250 kV, it would be around 3.10¹⁰ n / cm.²s of 14 MeV neutrons. Obtaining a level of 10¹³ n / s would require a target area of 300 cm² and 3000 cm² for 10¹⁴ n / s.

D'autres types connus de sources d'ions, à confinement électrostatique des ions, telle que celle décrite dans la demande de brevet français n° 88 13188 déposée par la Demanderesse le 7 Octobre 1988 et publiée sous le n° FR 26 37 727 présente des caractéristiques similaires en ce qui concerne l'usure de la cible.Other known types of ion sources, with electrostatic confinement of ions, such as that described in French patent application No. 88 13188 filed by the Applicant on October 7, 1988 and published under No. FR 26 37 727 present similar characteristics with regard to the wear of the target.

Il a par ailleurs été proposé par la Demanderesse dans la demande de brevet français n 88 13187 déposé le 7 octobre 1988 et publiée sous le n°FR 26 37 726 une source d'ions de type multicellulaire présentant une cellule de Penning comportant une anode multitrous disposée à l'intérieur de la cavité cathodique afin d'accroître le courant d'ions. Il est ainsi possible d'obtenir une homogénéité de courant plus élevée sur une cible de plus grande dimension, mais des niveaux d'émission tels que mentionnés ci-dessus demanderaient cependant des dimensions prohibitives.It has also been proposed by the Applicant in French patent application No. 88 13187 filed on October 7, 1988 and published under No. FR 26 37 726 a source of ions of multicellular type having a Penning cell comprising a multitrous anode arranged inside the cathode cavity in order to increase the current of ions. It is thus possible to obtain a higher homogeneity of current on a larger target, but emission levels as mentioned above would however require prohibitive dimensions.

L'idée de base de l'invention consiste à réaliser une extraction d'ions non plus axiale, mais radiale d'une part, en partant de la reconnaissance du fait qu'elle permet une réduction des champs électriques produisant l'émission froide des électrodes, et du nombre de claquage en résultant, grâce à une dissymétrie dans la répartition du champ électrique et d'autre par du fait qu'elle permet de disposer la cible cylindriquement autour de la source d'ions, d'où un gain extrêmement important en ce qui concerne l'encombrement d'une source à flux neutronique élevé.The basic idea of the invention consists in carrying out an extraction of ions no longer axial, but radial on the one hand, starting from the recognition of the fact that it allows a reduction of the electric fields producing the cold emission of electrodes, and the number of breakdowns resulting therefrom, thanks to an asymmetry in the distribution of the electric field and further by the fact that it makes it possible to arrange the target cylindrically around the ion source, from where an extremely gain important with regard to the size of a source with a high neutron flux.

Un tube neutronique selon l'invention est ainsi caractérisé en ce que la source d'ions est disposée selon au moins une portion d'une première surface de révolution et agencée pour produire une émission d'ions radiale et dirigée vers l'extérieur de ladite première surface, en ce que le dispositif d'accélération est disposé selon au moins une portion d'une deuxième surface de révolution entourant ladite première surface, et en ce que la cible est disposée selon au moins une partie d'une troisième surface de révolution entourant ladite deuxième surface.A neutron tube according to the invention is thus characterized in that the ion source is arranged along at least a portion of a first surface of revolution and arranged to produce an emission of radial ions and directed towards the outside of said first surface, in that the acceleration device is arranged along at least a portion of a second surface of revolution surrounding said first surface, and in that the target is arranged along at least part of a third surface of revolution surrounding said second surface.

On notera en outre qu'en ce qui concerne la source d'ions, le mode d'extraction radiale vers l'extérieur supprime en partie l'effet de gaine dû au périmètre de l'électrode d'extraction et entraîne, toutes choses égales par ailleurs, un accroissement du rendement d'extraction de la source.It will also be noted that, as far as the ion source is concerned, the radial extraction mode towards the outside partly eliminates the sheath effect due to the perimeter of the extraction electrode and results, all things being equal. moreover, an increase in the extraction efficiency of the source.

Le tube selon l'invention peut comporter un dispositif suppresseur d'électrons secondaires connu en soi et disposé selon au moins une portion d'une quatrième surface de révolution comprise entre la deuxième et la troisième surface.The tube according to the invention may comprise a device for suppressing secondary electrons known per se and arranged along at least a portion of a fourth surface of revolution comprised between the second and the third surface.

Le dispositif d'accélération peut être avantageusement une électrode cylindrique.The acceleration device can advantageously be a cylindrical electrode.

Selon un premier mode de réalisation, à confinement magnétique, la source d'ions est constituée par au moins une source élémentaire à structure Penning, pouvant notamment comporter une pluralité de sources élémentaires disposées selon au moins des portions d'anneaux superposés. Selon un mode de réalisation avantageux, la première surface de révolution est un premier cylindre et il comporte un premier aimant cylindrique disposé sur le plus petit rayon du premier cylindre, et au moins un deuxième aimant cylindrique contenu dans ladite cathode selon le plus grand rayon du premier cylindre, de manière à produire un champ magnétique radial.According to a first embodiment, with magnetic confinement, the ion source consists of at least one elementary source with a Penning structure, which can in particular comprise a plurality of elementary sources arranged in at least portions of superimposed rings. According to an advantageous embodiment, the first surface of revolution is a first cylinder and it comprises a first cylindrical magnet disposed on the smallest radius of the first cylinder, and at least a second cylindrical magnet contained in said cathode along the largest radius of the first cylinder, so as to produce a radial magnetic field.

Une anode peut être cylindrique ou tronconique de révolution. Elle peut être de préférence constituée de deux disques parallèles ou à section tronconique, ce qui permet de réaliser une seule anode par anneau, d'où simplification de la réalisation. L'orifice d'extraction peut être une fente annulaire, ce qui est favorable au rendement d'extraction.An anode can be cylindrical or frustoconical of revolution. It can preferably be made up of two parallel discs or with a frustoconical section, which makes it possible to produce a single anode per ring, hence simplifying the production. The extraction orifice can be an annular slot, which is favorable to the extraction efficiency.

Selon un deuxième mode de réalisation, à confinement magnétique, la source d'ions est constituée par une structure de type magnétron inversé. Une telle structure est habituellement utilisée uniquement comme instrument de mesure (jauge à ionisation). Sur ce point on se reportera à l'ouvrage The Physical Basis of Ultrahigh Vacuum (Redhead et al National Research Council Ottawa, CDN édité par Chapman and Hall Ltd LONDON (GB), en ses pages 333 et 334. Un tel dispositif est utilisé ici comme source d'ions en ménageant au moins un orifice d'extraction dans la cathode. Au moins une anode peut être annulaire. Un troisième aimant annulaire peut être disposé de manière à produire un champ magnétique longitudinal. Le champ magnétique peut être obtenu grâce à un solénoïde entourant la troisième (ou en cas échéant la quatrième) surface cylindrique et agencé de manière à produire un champ magnétique longitudinal. Dans ce cas et selon une variante préférée de l'invention, une anode cylindrique peut être disposée selon le plus petit rayon du premier cylindre et s'étendre sensiblement sur la hauteur du premier cylindre. On peut ainsi obtenir avec une seule anode et une seule cathode une émission sur une surface de révolution, notamment cylindrique, allongée.According to a second embodiment, with magnetic confinement, the ion source consists of a structure of the inverted magnetron type. Such a structure is usually used only as a measuring instrument (ionization gauge). On this point one will refer to the work The Physical Basis of Ultrahigh Vacuum (Redhead et al National Research Council Ottawa, CDN edited by Chapman and Hall Ltd LONDON (GB), in its pages 333 and 334. Such a device is used here as an ion source by providing at least one extraction opening in the cathode. At least one anode can be annular. A third annular magnet can be arranged so as to produce a longitudinal magnetic field. The magnetic field can be obtained by a solenoid surrounding the third (or if appropriate the fourth) cylindrical surface and arranged so as to produce a longitudinal magnetic field In this case and according to a preferred variant of the invention, a cylindrical anode can be arranged according to the smallest radius of the first cylinder and extend substantially over the height of the first cylinder. It is thus possible to obtain, with a single anode and a single cathode, an emission on a surface of revolution, especially cylindrical, elongated.

Selon un troisième mode de réalisation, à confinement électrostatique, la source d'ions est du type orbitron comportant une deuxième anode cylindrique disposée selon le plus petit rayon du premier cylindre et s'étendant sensiblement sur la hauteur dudit premier cylindre. La source d'ions peut également comporter une cathode chaude.According to a third embodiment, with electrostatic confinement, the ion source is of the orbitron type comprising a second cylindrical anode disposed along the smallest radius of the first cylinder and extending substantially over the height of said first cylinder. The ion source may also include a hot cathode.

Selon un quatrième mode de réalisation, à confinement électrostatique, la source d'ions est du type Reflex électrostatique (SIRE) et présente au moins une anode annulaire, ou avantageusement un électrode multiannulaire.According to a fourth embodiment, with electrostatic confinement, the ion source is of the electrostatic reflex type (SIRE) and has at least one annular anode, or advantageously a multiannular electrode.

L'invention sera mieux comprise à la lecture de la description qui va suivre, donnée à titre d'exemple non limitatif, en liaison avec les dessins qui représentent :

  • la figure 1, un tube neutronique à extraction axiale du type Penning, selon l'art antérieur (demande FR 2637725).
  • les fig. 2a et 2b, dans une même structure cylindrique, deux variantes d'un tube à source d'ions de type Penning, à extraction radiale selon l'invention, les fig. 2c et 2d étant des détails des fig. 2a et 2b.
  • les fig. 3a et 3b, dans une même structure cylindrique, deux variantes préférées d'un tube à source Penning, à extraction radiale selon l'invention, les fig. 3c et 3d étant des détails des fig 3a et 3b, et la fig. 3e une variante de la fig.3a correspondant à une émission tronconique.
  • la fig. 4 une première variante d'un tube à source d'ions de type magnétron inversé, à extraction radiale selon l'invention, la fig. 4b représentant le cheminement des électrons ionisants dans une telle source d'ions.
  • les fig. 5 et 6 deux variantes d'un tube à source magnétron inversé, à extraction radiale selon l'invention, avec aimant ou solénoïde.
  • les fig. 7 et 8 deux variantes d'un tube à source d'ions du type orbitron, à extraction radiale selon l'invention.
  • et les fig. 9 et 10 deux variantes d'un tube à source d'ions de type Reflex électrostatique, à extraction radiale selon l'invention.
The invention will be better understood on reading the description which follows, given by way of nonlimiting example, in conjunction with the drawings which represent:
  • FIG. 1, a neutron tube with axial extraction of the Penning type, according to the prior art (application FR 2637725).
  • fig. 2a and 2b, in the same cylindrical structure, two variants of an ion source tube of the Penning type, with radial extraction according to the invention, FIGS. 2c and 2d being details of FIGS. 2a and 2b.
  • fig. 3a and 3b, in the same cylindrical structure, two preferred variants of a Penning source tube, with radial extraction according to the invention, FIGS. 3c and 3d being details of figs 3a and 3b, and fig. 3rd a variant of fig.3a corresponding to a frustoconical emission.
  • fig. 4 a first variant of an ion source tube of inverted magnetron type, with radial extraction according to the invention, FIG. 4b representing the path of the ionizing electrons in such an ion source.
  • fig. 5 and 6 two variants of an inverted magnetron source tube, with radial extraction according to the invention, with magnet or solenoid.
  • fig. 7 and 8 two variants of an ion source tube of the orbitron type, with radial extraction according to the invention.
  • and fig. 9 and 10 two variants of an ion source tube of the electrostatic Reflex type, with radial extraction according to the invention.

Le dessin de la figure 1 montre les principaux éléments de base d'un tube neutronique scellé 11 renfermant un mélange gazeux sous faible pression à ioniser tel que deutérium-tritium et qui comporte une source d'ions 1 et une électrode d'accélération 2 entre lesquelles existe une différence de potentiel très élevée permettant l'extraction et la focalisation du faisceau d'ions 3 et sa projection sur la cible 4 où s'effectue la réaction de fusion entraînant une émission de neutrons à 14 MeV par exemple.The drawing of Figure 1 shows the main basic elements of a sealed neutron tube 11 containing a gas mixture under low pressure to be ionized such as deuterium-tritium and which comprises an ion source 1 and an acceleration electrode 2 between which there is a very high potential difference allowing the extraction and the focusing of the ion beam 3 and its projection on the target 4 where the fusion reaction takes place resulting in an emission of neutrons at 14 MeV for example.

La source d'ions 1 solidaire d'un isolateur 5 pouvant permettre le passage du connecteur d'alimentation en THT par exemple 250 kV (non représenté) est une source de type Penning par exemple, constituée d'une anode cylindrique 6, d'une structure cathodique 7 à laquelle est incorporé un aimant à champ magnétique axial qui confine le gaz ionisé 9 aux alentours de l'axe du cylindre d'anode et dont les lignes de force 10 accusent une certaine divergence. Un canal d'émission des ions 12 est pratiqué dans ladite structure cathodique en vis-à-vis de l'anode.The ion source 1 secured to an insulator 5 which can allow the THT supply connector, for example 250 kV (not shown) to pass, is a Penning type source for example, consisting of a cylindrical anode 6, of a cathodic structure 7 in which is incorporated a magnet with an axial magnetic field which confines the ionized gas 9 around the axis of the anode cylinder and whose lines of force 10 show a certain divergence. An ion emission channel 12 is formed in said cathode structure opposite the anode.

L'anode est portée à un potentiel supérieur de l'ordre de quelques (1 à 6 par exemple) kV à celui de la cathode, elle même portée à la très haute tension THT. L'électrode d'accélération 2 et la cible 4 sont en général au potentiel de masse.The anode is brought to a higher potential of the order of a few (1 to 6 for example) kV than that of the cathode, itself brought to the very high voltage THT. The acceleration electrode 2 and the target 4 are generally at ground potential.

Selon les figures 2a et 2c, un tube neutronique est, selon l'invention à émission et à extraction radiale. La source d'ions est constituée d'une pluralité de sources de type Penning, arrangées selon une symétrie cylindrique (comme représenté) ou bien conique. Pour ce faire elle compte une structure annulaire, ou bien une pluralité de structures annulaires superposées 20 (et de même section dans le cas d'une symétrie cylindrique). Chaque structure annulaire 20 fixée mécaniquement sur un axe central 18 porté à un potentiel élevé (200 à 250 kV) comporte un aimant cylindrique 8 sur le plus petit rayon de la structure annulaire 20, et un anneau plat 14, ainsi qu'une partie cylindrique 8′ disposée sur le plus grand rayon de la structure annulaire 20. L'anneau plat 14 forme une partie de structure métallique maintenant solidaires l'aimant cylindrique 8 et la partie cylindrique 8′, qui peut être elle-même constituée par un aimant cylindrique contenu dans la structure cathodique 7. La cathode 7 est alors constituée par les surfaces cylindriques internes correspondant d'une part au rayon intérieur de plus faible valeur et d'autre part par au rayon extérieur de plus forte valeur. L'aimant cylindrique 8 a une hauteur au moins égale à celle de la cathode 7. L'anneau plat, du fait qu'il sert de circuit magnétique est constitué lui-même de matériau magnétique (fer doux ou alliage magnétique par exemple).According to Figures 2a and 2c, a neutron tube is, according to the invention with radial emission and extraction. The ion source consists of a plurality of sources of the Penning type, arranged according to a cylindrical symmetry (as shown) or else conical. To do this, it has an annular structure, or else a plurality of superimposed annular structures 20 (and of the same section in the case of a cylindrical symmetry). Each annular structure 20 mechanically fixed on a central axis 18 brought to a high potential (200 to 250 kV) comprises a cylindrical magnet 8 on the smallest radius of the annular structure 20, and a flat ring 14, as well as a cylindrical part 8 ′ disposed on the largest radius of the annular structure 20. The flat ring 14 forms a part of metallic structure now holding the cylindrical magnet 8 and the cylindrical part 8 ′, which can itself be constituted by a cylindrical magnet contained in the cathode structure 7. The cathode 7 is then formed by the internal cylindrical surfaces corresponding on the one hand to the inner radius of lower value and on the other hand to the outer radius of higher value. The cylindrical magnet 8 has a height at least equal to that of the cathode 7. The flat ring, due to the fact that it serves as a magnetic circuit, is itself made of magnetic material (soft iron or magnetic alloy for example).

Une pluralité d'anodes cylindriques 6 sont réparties radialement sur le pourtour de la structure annulaire 20, et ont sensiblement le même axe que les ouvertures d'extraction 12 ménagées dans la partie cylindrique 8′ de la structure cathodique 7. Une électrode d'accélération 2 se présente sur la forme d'un cylindre (ou d'un cône) présentant des ouvertures d'accélération 21 situées en face des ouvertures 12. La cible comporte un support cylindrique (ou conique) 4 sur lequel l'électrode d'accélération 2 peut être raccordée mécaniquement et électriquement. Un isolateur haute tension tronconique 5 maintient mécaniquement l'ensemble. La source d'ions peut être agencée de manière telle que l'émission ait lieu sur tout le pourtour ou seulement sur une partie ou secteur de celui-ci. Pour ce faire l'anneau peut s'étendre sur 360° ou seulement sur un angle plus limité, et comporte des ouvertures 12 seulement aux endroits utiles. Les ouvertures 12 de deux anneaux superposés peuvent être décalés angulairement par exemple pour une meilleure homogénéité du faisceau sur la cible. Un réservoir de deutérium-tritium est figuré en 23 ainsi qu'une jauge de mesure de pression 22. Des électrodes 24 suppresseurs d'électrons secondaires sont disposées dans des plans intermédiaires entre les anneaux, en dehors des faisceaux ioniques 3. Des traversées isolantes 25 réparties sur le pourtour permettent leur fixation mécanique et/ou leur alimentation électrique. Les électrodes 24 sont portées à un potentiel négatif (-5 kV par exemple) par rapport à ceux de l'électrode d'accélération 2 et de la cible 4 mises à la masse, et est avantageusement réalisée en un matériau réfractaire. Pour plus de renseignements, on se reportera à la demande de brevet français n° 88 13186 déposée le 7 Octobre 1988 par la Demanderesse et publiée sous le n° FR 2 637 725. Les électrodes 24 sont de préférence toriques à section en V pour épouser au mieux le profil des faisceaux ioniques 3.A plurality of cylindrical anodes 6 are distributed radially around the periphery of the annular structure 20, and have substantially the same axis as the extraction openings 12 formed in the cylindrical part 8 ′ of the cathode structure 7. An acceleration electrode 2 is in the form of a cylinder (or a cone) having acceleration openings 21 located opposite the openings 12. The target has a cylindrical (or conical) support 4 on which the acceleration electrode 2 can be connected mechanically and electrically. A tapered high-voltage insulator 5 mechanically holds the assembly. The ion source can be arranged in such a way that the emission takes place over the entire periphery or only over a part or sector thereof. To do this, the ring can extend over 360 ° or only over a more limited angle, and has openings 12 only at the useful places. The openings 12 of two superimposed rings can be angularly offset for example for better homogeneity of the beam on the target. A deuterium-tritium reservoir is shown at 23 as well as a pressure measurement gauge 22. Electrodes 24 suppressing secondary electrons are arranged in intermediate planes between the rings, outside of the ion beams 3. Insulating bushings 25 distributed around the perimeter allow their mechanical fixing and / or their electrical supply. The electrodes 24 are brought to a negative potential (-5 kV for example) relative to those of the acceleration electrode 2 and the target 4 grounded, and is advantageously made of a refractory material. For more information, reference is made to French patent application No. 88 13186 filed on October 7, 1988 by the Applicant and published under No. FR 2 637 725. The electrodes 24 are preferably toric in V section to match at best the profile of the ion beams 3.

Aux figures 2b et 2d, les anodes 6' sont coniques et non cylindriques. Ces deux variantes ont été représentées par convenance sur une même structure cylindrique. On trouvera plus d'indication sur cette forme d'anode dans la demande de brevet français n° 88 13185 déposée le 7 Octobre 1988 par la Demanderesse et publiée sous le n° FR 2 637 724.In Figures 2b and 2d, the anodes 6 'are conical and not cylindrical. These two variants have been represented for convenience on the same cylindrical structure. More information on this form of anode can be found in French patent application No. 88 13185 filed on October 7, 1988 by the Applicant and published under No. FR 2 637 724.

Un deuxième modèle de structure de source d'ions, toujours de type Penning consiste à intégrer les n modules de source d'ions cylindriques (ou coniques) dans une structure annulaire présentant une cartographie électrique proche, la répartition du champ magnétique étant semblable à la précédente. Pour ce faire, l'anode de la structure est constituée de deux disques parallèles 16 ou inclinés 16′ l'un par rapport à l'autre pour mieux épouser les lignes de force de champ magnétique. Ces structures sont représentées figures 3a à 3d. La cathode 7 de la structure est constituée par les surfaces cylindriques internes correspondant d'une part au rayon intérieur de plus faible valeur et d'autre part au rayon extérieur de plus forte valeur, cette dernière surface est percée sur toute sa longueur d'une fente d'extraction 32 de hauteur et de profondeur couplées de façon à éviter la pénétration trop importante du champ électrique appliqué par l'électrode d'accélération. Comme dans une structure Penning classique, le champ magnétique à l'intérieur de la structure doit être supérieur au champ de coupure (valeur liée d'une part à la structure géométrique : distance entre les deux anneaux anodiques et à degré moindre à la distance intercathodique et d'autre part à la tension appliquée entre anode et cathode) c'est-à-dire au champ magnétique empêchant les électrons d'atteindre l'anode à partir d'oscillations sans choc ionisant.A second model of ion source structure, always of the Penning type, consists in integrating the n cylindrical (or conical) ion source modules in an annular structure having close electrical mapping, the distribution of the magnetic field being similar to the previous. To do this, the anode of the structure consists of two parallel 16 or inclined 16 ′ discs relative to each other to better match the lines of force of the magnetic field. These structures are shown in Figures 3a to 3d. The cathode 7 of the structure is formed by the internal cylindrical surfaces corresponding on the one hand to the inner radius of lower value and on the other hand to the outer radius of higher value, this latter surface is pierced over its entire length with a extraction slot 32 of height and depth coupled so as to avoid excessive penetration of the electric field applied by the acceleration electrode. As in a classic Penning structure, the magnetic field inside the structure must be greater than the cut-off field (value linked on the one hand to the geometric structure: distance between the two anode rings and to a lesser degree at the intercathode distance and on the other hand to the voltage applied between anode and cathode) that is to say to the magnetic field preventing the electrons from reaching the anode from oscillations without ionizing shock.

Les aimants utilisés pour produire ce champ magnétique sont constitués comme précédemment d'anneaux répartis en deux ensembles maintenus mécaniquement par des carcasses métalliques 14 servant de circuit magnétique (matériau magnétique). Le premier ensemble est constitué de deux anneaux 8′ disposés de part et d'autre de la fente d'extraction. Le deuxième aimant est constitué d'un cylindre 8 dont l'épaisseur est fonction du champ magnétique nécessaire au bon fonctionnement de la source et de la nature du matériau utilisé. Sa hauteur est au moins égale à la hauteur de la cathode 7.The magnets used to produce this magnetic field consist as above of rings distributed in two assemblies held mechanically by metal carcasses 14 serving as a magnetic circuit (magnetic material). The first set consists of two rings 8 'arranged on either side of the extraction slot. The second magnet consists of a cylinder 8 whose thickness is a function of the magnetic field necessary for the proper functioning of the source and the nature of the material used. Its height is at least equal to the height of the cathode 7.

Selon la figure 3e, des structures annulaires correspondant à la fig.3a, mais de rayons différents, sont empilés pour former une structure tronconique. L'électrode d'accélération 2 et la cible 4 peuvent être également tronconiques.According to Figure 3e, annular structures corresponding to fig.3a, but of different radii, are stacked to form a frustoconical structure. The acceleration electrode 2 and the target 4 can also be frustoconical.

Pour la figure 3a, on peut avoir les valeurs suivantes : r₁ = 4 cm, r₂ = 7 cm, r₃ = 10,5 cm, r₄ = 15 cm ; épaisseur de l'aimant 8 : 1 cm ; épaisseur de l'aimant 8′ : 1,5 cm ; hauteur d'un anneau h = 6 cm.For Figure 3a, we can have the following values: r₁ = 4 cm, r₂ = 7 cm, r₃ = 10.5 cm, r₄ = 15 cm; thickness of magnet 8: 1 cm; thickness of magnet 8 ′: 1.5 cm; height of a ring h = 6 cm.

Selon les figures 4a et 4b, la source d'ions est réalisée à partir d'une structure dite "magnétron inversé", connue pour réaliser une jauge à ionisation (livre de Redhead et al précité). Les dimensions sont pratiquement identiques à celles de la structure Penning ainsi que la pression et les tensions de fonctionnement.According to FIGS. 4a and 4b, the ion source is produced from a structure called "inverted magnetron", known to produce an ionization gauge (book by Redhead et al supra). The dimensions are practically identical to those of the Penning structure as well as the operating pressure and tensions.

Dans cette structure (figure 4a), l'anode est constituée par un anneau 40 (par exemple de hauteur 3 cm, sur un rayon de 5 cm) situé à l'intérieur de la cavité cathodique 42 dont l'élément principal est constitué par la paroi cathodique cylindrique 41 séparée en deux parties par la fente d'extraction 32. La hauteur d'une cellule élémentaire peut être par exemple de 6 à 8 cm. Le champ électrique est, dans cette zone, radial et le champ magnétique de confinement est globalement perpendiculaire et par conséquent parallèle à l'axe de symétrie de la structure. Les électrons accélérés vers l'anode sont déviés vers la cathode par le champ magnétique et décrivent des cycloïdes (figure 4b) avec pour base la surface cylindrique (ou la surface équipotentielle) sur laquelle ils ont été créés.In this structure (FIG. 4a), the anode consists of a ring 40 (for example 3 cm high, on a radius of 5 cm) located inside the cathode cavity 42, the main element of which is constituted by the cylindrical cathode wall 41 separated into two parts by the extraction slot 32. The height of an elementary cell may for example be 6 to 8 cm. The electric field is, in this zone, radial and the confining magnetic field is generally perpendicular and therefore parallel to the axis of symmetry of the structure. The electrons accelerated towards the anode are deflected towards the cathode by the magnetic field and describe cycloids (figure 4b) on the basis of the cylindrical surface (or the equipotential surface) on which they were created.

Le champ magnétique de confinement peut être créé par des aimants 48 en forme de disques disposés symétriquement par rapport au plan de symétrie de la structure ; ces aimants 48 peuvent être maintenus mécaniquement sur un support métallique 43 faisant office de circuit magnétique et dont le diamètre est inférieur au diamètre anodique. Il peut être également créé par une bobine 50 disposée à l'extérieur de la structure tube (figures 5 et 6) et conduisant à l'obtention d'un champ magnétique supérieur au champ de coupure. La bobine 50 a une hauteur qui peut être avantageusement égale à 1,5 à 2 fois la hauteur totale des structures cathodiques. Cette configuration peut être intéressante dans certaines utilisations nécessitant un freinage des neutrons, utilisation d'un matériau de bobinage lourd, refroidi par circulation d'eau pouvant servir également au refroidissement de la cible. Dans cette configuration un avantage important est que les électrons secondaires de la cible sont piégés (renvoi sur la cible 4) par le champ magnétique et l'électrode supresseuse 24 n'est plus strictement nécessaire en fonctionnement à basse pression (quelques 1,3 · 10⁻² Pa à 1,3 Pa) (quelques 10⁻⁴ à 10⁻² Torr). Dans le cas des figures 5 et 6, l'anode peut être constituée (fig.5) par un anneau 40 disposé dans chaque cavité cathodique 42 délimitée par des anneaux plats 52 en matériau conducteur, la cathode étant constituée par des anneaux conducteurs 51 (par exemple de hauteur 3 à 4 cm) solidaires des anneaux plats 52 (par exemple de hauteur 2 mm) entre lesquels sont disposées des fentes d'extraction 32. L'anode est de préférence constituée (fig.6) par un seul cylindre (ou tronc de cône) 55 fixé par des entretoises 56, les anneaux plats 52 étant supprimés.The confining magnetic field can be created by magnets 48 in the form of discs arranged symmetrically with respect to the plane of symmetry of the structure; these magnets 48 can be mechanically held on a metal support 43 acting as a magnetic circuit and the diameter is less than the anodic diameter. It can also be created by a coil 50 placed outside the tube structure (Figures 5 and 6) and leading to the production of a magnetic field greater than the cut-off field. The coil 50 has a height which can advantageously be 1.5 to 2 times the total height of the cathode structures. This configuration may be advantageous in certain uses requiring braking of the neutrons, use of a heavy coiling material, cooled by circulation of water which can also be used for cooling the target. In this configuration an important advantage is that the secondary electrons of the target are trapped (return to the target 4) by the magnetic field and the suppressor electrode 24 is no longer strictly necessary in operation at low pressure (some 1.3 · 10⁻² Pa to 1.3 Pa) (some 10⁻⁴ to 10⁻² Torr). In the case of FIGS. 5 and 6, the anode can be constituted (FIG. 5) by a ring 40 disposed in each cathode cavity 42 delimited by flat rings 52 of conductive material, the cathode being constituted by conductive rings 51 ( for example 3 to 4 cm in height) integral with the flat rings 52 (for example 2 mm in height) between which there are extraction slots 32. The anode is preferably made up (FIG. 6) by a single cylinder ( or truncated cone) 55 fixed by spacers 56, the flat rings 52 being removed.

Les structures présentées maintenant comportent une source d'ions, à extraction radiale selon l'invention, avec un champ électrique de confinement.The structures presented now include an ion source, radially extracted according to the invention, with an electric confining field.

Les figures 7 et 8 présentent une structure orbitron présentant une anode 70 de faible dimension (de diamètre par exemple compris entre 0,05 et 0,1 cm), située sur l'axe de la cathode 51 (de diamètre par exemple compris entre 10 et 15 cm). Cette structure peut être à cathode froide (figure 7) et par conséquent nécessitant une tension anodique élevée et une pression de fonctionnement comprise au mieux dans la plage des 1,3 · 10⁻² - 1,3 · 10⁻¹ Pa (10⁻⁴-10⁻³ torr) ou présentant également une cathode chaude 71 (figure 8), entraînant alors une extension plus grande de la plage de fonctionnement vers les basses pressions. Le principe de fonctionnement est le suivant : les électrons émis par les filaments ou les cathodes sont attirés par l'anode ; suivant leur angle d'émission et leur énergie initiale, ils peuvent "manquer" l'anode et ainsi osciller longuement à l'intérieur de la structure, la probabilité d'ionisation est ainsi fortement augmentée et une décharge, avec formation d'un plasma est créée. Les ions sont attirés sur la cathode et leur extraction est faite à travers une où plusieurs fentes cylindriques 32. L'extraction et la position des fentes 32 peuvent être réalisées de manière similaire à la structure magnétron inversé avec solénoïde. La structure d'accélération 2 et de suppression 24 des électrons secondaires de la cible sont semblables à celles des systèmes de source d'ions à champ magnétique de confinement. La forme et la position de l'électrode suppresseuse 24 doivent tenir compte des pressions de fonctionnement plus élevées, conformément aux dispositions prises dans le brevet français n° 88 13186 précitée.Figures 7 and 8 show an orbitron structure having an anode 70 of small dimension (diameter for example between 0.05 and 0.1 cm), located on the axis of cathode 51 (diameter for example between 10 and 15 cm). This structure can be cold cathode (Figure 7) and therefore requiring a high anode voltage and an operating pressure at best in the range of 1.3 · 10⁻² - 1.3 · 10⁻¹ Pa (10⁻ ⁴-10⁻³ torr) or also having a hot cathode 71 (Figure 8), thus causing a greater extension of the operating range towards low pressures. The operating principle is as follows: the electrons emitted by the filaments or the cathodes are attracted to the anode; according to their angle of emission and their initial energy, they can "miss" the anode and thus oscillate for a long time inside the structure, the probability of ionization is thus strongly increased and a discharge, with formation of a plasma is created. The ions are attracted to the cathode and their extraction is done through one where several cylindrical slots 32. The extraction and the position of the slots 32 can be carried out in a similar manner to the inverted magnetron structure with solenoid. The acceleration 2 and suppression 24 structure of the target's secondary electrons are similar to that of ion source systems with magnetic confinement fields. The shape and position of the suppressor electrode 24 must take account of the higher operating pressures, in accordance with the provisions taken in the aforementioned French patent n ° 88 13186.

Les figures 9 et 10 présentent des structures Reflex électrostatiques (SIRE) à cathode froide. L'anode 90 est proche de la cathode cylindrique 51 (diamètre de la cathode par exemple compris entre 2 et 3 cm) et les électrons oscillent entre les deux sections planes de la cathode ; la densité de courant ionique est beaucoup plus importante sur les deux sections planes de la cathode, en particulier à basse pression (1,3 · 10⁻¹ Pa) (10⁻³ torr). L'extraction radiale se fait par l'intermédiaire de fentes cylindriques 32 ménagées dans la paroi cylindrique de la cathode 51, dans des conditions similaires à celles de la structure magnétron inversé. Leur surface relative (par rapport à la surface totale de la partie cylindrique de la cathode) peut être importante car l'essentiel de la décharge est due aux sections planes. Le nombre de fentes est fonction de la hauteur de la structure de la source d'ions et de ses dimensions. Le nombre d'anodes annulaires (section circulaire ou cylindrique) refroidies ou non et disposées dans la partie médiane entre les surfaces d'extraction est fonction de la hauteur de la structure. La figure 9 représente une structure à quatre "anneaux" d'extraction, tandis que la figure 10 représente un tube neutronique beaucoup plus haut avec N structures d'extraction (N > 4). Dans ce cas, on met en oeuvre une anode présentant plusieurs anneaux 91. Les parties "accélaration" 2 et "suppression d'électrons secondaires" 24 sont semblables à celles des structures à champs magnétiques. Le diamètre de la structure SIRE peut être de l'ordre de 10 à 15 cm. Leurs pressions de fonctionnement sont en général comprises entre 1,3 · 10⁻¹ Pa (10⁻³ torr) et quelques 1,3 Pa (10⁻² torr), et leurs tensions entre quelques kV et 12 kV.Figures 9 and 10 show electrostatic reflex structures (EIRS) with cold cathode. The anode 90 is close to the cylindrical cathode 51 (diameter of the cathode for example between 2 and 3 cm) and the electrons oscillate between the two plane sections of the cathode; the ion current density is much greater on the two flat sections of the cathode, in particular at low pressure (1.3 · 10⁻¹ Pa) (10⁻³ torr). The radial extraction takes place via cylindrical slots 32 formed in the cylindrical wall of the cathode 51, under conditions similar to those of the inverted magnetron structure. Their relative surface (compared to the total surface of the cylindrical part of the cathode) can be important because most of the discharge is due to the plane sections. The number of slots depends on the height of the structure of the ion source and its dimensions. The number of annular anodes (circular or cylindrical section) cooled or not and arranged in the middle part between the extraction surfaces is a function of the height of the structure. Figure 9 shows a structure with four extraction "rings", while Figure 10 shows a much higher neutron tube with N extraction structures (N> 4). In this case, an anode having several rings 91 is used. The parts "acceleration" 2 and "suppression of secondary electrons" 24 are similar to those of structures with magnetic fields. The diameter of the SIRE structure can be of the order of 10 to 15 cm. Their operating pressures are generally between 1.3 · 10⁻¹ Pa (10⁻³ torr) and some 1.3 Pa (10⁻² torr), and their voltages between a few kV and 12 kV.

Un accroissement important de l'émission neutronique, avec un accroissement - en valeur relative - beaucoup plus réduit du volume peut être obtenu en disposant plusieurs structures semblables suivant le même axe, comme l'indiquent les figures 2a à 2d, 3a à 3d, 4a, 5, 9 et 10. En effet, les parties isolement électrique et éventuellement les supports magnétiques, restent les mêmes, seules les parties actives composées des électrodes et (éventuellement) des aimants sont démultipliées. L'empilement peut être réalisé de manière à former des cylindres ou des troncs de cône. On peut, à titre d'exemple, donner les solutions suivantes.

  • structure de source d'ions de type Penning : les circuits magnétiques en forme d'anneaux sont communs à deux structures consécutives et chaque structure a ses aimants propres (figures 2a à 2d, 3a à 3d.
  • structure de source d'ions de type magnétron inversé avec aimants : deux structures consécutives ont les mêmes aimants 48 et les circuits magnétiques 41 sont empilés les uns et les autres et par conséquent propres à chaque structure (figure 4a),
  • structure de sources d'ions de type magnétron inversé avec bobine extérieure ; la bobine extérieure 50 est plus longue que les structures de source d'ions empilées les unes sur les autres. La densité d'enroulement par unité de longueur est approximativement constante (figure 5).
A significant increase in neutron emission, with a much smaller increase - in relative value - in the volume can be obtained by placing several similar structures along the same axis, as shown in Figures 2a to 2d, 3a to 3d, 4a , 5, 9 and 10. Indeed, the electrical isolation parts and possibly the magnetic supports remain the same, only the active parts composed of the electrodes and (possibly) of the magnets are multiplied. The stacking can be carried out so as to form cylinders or truncated cones. The following solutions can be given by way of example.
  • Penning-type ion source structure: the magnetic circuits in the form of rings are common to two consecutive structures and each structure has its own magnets (Figures 2a to 2d, 3a to 3d.
  • inverted magnetron type ion source structure with magnets: two consecutive structures have the same magnets 48 and the magnetic circuits 41 are stacked one and the other and consequently specific to each structure (FIG. 4a),
  • structure of ion sources of inverted magnetron type with external coil; the outer coil 50 is longer than the ion source structures stacked one on the other other. The winding density per unit length is approximately constant (Figure 5).

Quant aux structures électrostatiques, leur volume plus grand et leur configuration propre ne permet que de disposer d'un nombre réduit de cellules complémentaires, sachant que les dimensions du tube sont proches de celles des structures à champ magnétique et que les structures électrostatiques sont équipées de plusieurs fentes d'extraction. Il est aussi avantageux de modifier les structures elles-mêmes (position et nombre d'anodes dans la structure SIRE, hauteur des cathodes cylindriques dans les structures SIRE et orbitron).As for electrostatic structures, their larger volume and their own configuration allows only a reduced number of complementary cells, knowing that the dimensions of the tube are close to those of magnetic field structures and that electrostatic structures are equipped with several extraction slots. It is also advantageous to modify the structures themselves (position and number of anodes in the SIRE structure, height of the cylindrical cathodes in the SIRE and orbitron structures).

L'ensemble des structures décrites et représentées ci-dessus présentent les avantages de l'extraction radiale. L'extraction se faisant suivant une surface cylindrique (ou troconique), les structures bénéficient, indépendamment de l'effet de divergence du faisceau d'ions, d'un accroissement de la surface bombardée (cible 4) correspondant au rapport des rayons de la cible 4 et de l'électrode d'extraction (8′, 41). En ce qui concerne la source d'ions proprement dite, l'extraction radiale, en particulier par une fente cylindrique 32, supprime en partie l'effet de gaine dû au périmètre de l'électrode d'extraction (c'est-à-dire la partie de la cathode où s'effectue l'extraction) et entraîne une augmentation du rendement d'extraction de la source, toutes choses égales par ailleurs.All of the structures described and shown above have the advantages of radial extraction. As the extraction takes place along a cylindrical (or tapered) surface, the structures benefit, independently of the diverging effect of the ion beam, from an increase in the bombarded surface (target 4) corresponding to the ratio of the rays of the target 4 and the extraction electrode (8 ′, 41). As far as the ion source itself is concerned, the radial extraction, in particular by a cylindrical slot 32, partially eliminates the sheath effect due to the perimeter of the extraction electrode (i.e. say the part of the cathode where the extraction takes place) and leads to an increase in the extraction efficiency of the source, all other things being equal.

Un deuxième avantage des structures à extraction radiale est de conduire à une réduction des champs électriques produisant l'émission froide des électrodes et du nombre de claquages en résultant grâce à une dissymétrie dans la répartition du champ électrique : pour une distance d'entre deux électrodes, le champ électrique appliqué moyen varie en 1/r : électrode intérieure (électrode d'extraction 8′, 41)   E ex =k V r ex

Figure imgb0001
électrode extérieure (électrode d'accélération 2)   E acc =k′ V r ex+d
Figure imgb0002

Eex = champ d'extraction ; Eacc = champ d'accélération
rex = rayon d'extraction, d = distance d'accélération,
k et k′ sont des constantes.A second advantage of structures with radial extraction is to lead to a reduction in the electric fields producing the cold emission of the electrodes and in the number of breakdowns resulting therefrom thanks to an asymmetry in the distribution of the electric field: for a distance between two electrodes , the average applied electric field varies in 1 / r: internal electrode (extraction electrode 8 ′, 41) E ex = k V r ex
Figure imgb0001
external electrode (acceleration electrode 2) E acc = k ′ V r ex + d
Figure imgb0002

E ex = extraction field; E acc = acceleration field
r ex = extraction radius, d = acceleration distance,
k and k ′ are constants.

Ainsi pour des distances d'accélération d de l'ordre de 20 mm et des électrodes d'extraction de rayon rex 150 mm, la variation du champ électrique global par rapport à une structure classique (électrodes planes et parallèles) serait de l'ordre de 5 à 10 %. Cet écart faible correspond à une diminution du courant d'émission froide de l'ordre de 5 à 10 par rapport à une émission axiale.Thus for acceleration distances d of the order of 20 mm and extraction electrodes of radius r ex 150 mm, the variation of the overall electric field compared to a conventional structure (flat and parallel electrodes) would be around 5 to 10%. This small difference corresponds to a decrease in the cold emission current of the order of 5 to 10 compared to an axial emission.

L'invention ne se limite pas aux modes de réalisation décrits et représentés. Elle s'applique également par exemple aux tubes neutroniques en atmosphère de Deutérium uniquement (production de neutrons de 2,6 MeV). En outre, un fonctionnement pulsé est possible après mise en place dans la source d'ions, de manière connue en soi pour les sources à émission axiale, d'une source d'électrons ou d'un émetteur α et/ou β et/ou γ produisant les premières particules électriques à l'origine de l'armorçage et de la décharge dans la source d'ions.The invention is not limited to the embodiments described and shown. It also applies, for example, to neutron tubes in a Deuterium atmosphere only (production of 2.6 MeV neutrons). In addition, a pulsed operation is possible after installation in the ion source, in a manner known per se for sources with axial emission, of a source of electrons or of an α and / or β emitter and / or γ producing the first electric particles at the origin of the ignition and the discharge in the ion source.

Claims (20)

  1. A neutron tube, comprising an ion source which has at least one anode and at least one cathode, with at least one extraction orifice, and also comprising an accelerator device arranged so as to project at least one beam of ions from the ion source onto a target in order to produce a reaction therein which leads to an emission of neutrons, characterized in that the ion source is arranged according to at least a portion of a first surface of revolution (8′, 41, 51) and is arranged so as to produce a radial emission of ions towards the exterior of said first surface (8′, 41, 51), in that the accelerator device (2) is arranged according to at least a portion of a second surface of revolution surrounding said first surface (8′, 41, 51), and in that the target (4) is arranged according to at least a portion of a third surface of revolution surrounding said second surface.
  2. A neutron tube as claimed in Claim 1, characterized in that it comprises a suppression device (24) for secondary electrons arranged according to at least a portion of a fourth surface of revolution which is situated between the second and the third surface.
  3. A neutron tube as claimed in Claim 1 or 2, characterized in that at least one of said surfaces of revolution is a cylinder.
  4. A neutron tube as claimed in Claim 3, characterized in that the accelerator device is a cylindrical electrode.
  5. A neutron tube as claimed in any one of the Claims 1 to 4, characterized in that the ion source is formed by at least one elementary source having a Penning structure (6, 8, 8′, 14).
  6. A neutron tube as claimed in Claim 5, characterized in that it comprises a plurality of elementary sources arranged according to at least portions of superposed rings (20).
  7. A neutron tube as claimed in Claim 5 or 6, characterized in that it comprises a first cylindrical magnet (8) arranged along the minor radius of the first surface of revolution and at least one second cylindrical magnet (8′) enclosed in the said cathode along the major radius of the first surface of revolution in such a way as to produce a radial magnetic field.
  8. A neutron tube as claimed in any one of the Claims 5 to 7, characterized in that at least one anode (6, 6′) is a body of revolution of cylindrical or truncated-cone shape.
  9. A neutron tube as claimed in any one of the Claims 5 to 7, characterized in that at least one anode is formed by two parallel discs (16).
  10. A neutron tube as claimed in Claim 6 or 7, characterized in that at least one anode is formed by two discs (16′) of truncated-cone shape.
  11. A neutron tube as claimed in Claim 9 or 10, characterized in that at least one extraction orifice is an annular slot (32).
  12. A neutron tube as claimed in any one of the Claims 1 to 4, characterized in that the ion source is formed by at least one structure of the inverted magnetron type (Figs. 4a, 5, 6).
  13. A neutron tube as claimed in Claim 12, characterized in that it comprises at least a third annular magnet (48) arranged so as to produce a longitudinal magnetic field.
  14. A neutron tube as claimed in Claim 12 or 13, characterized in that at least one anode (40) is annular.
  15. A neutron tube as claimed in Claim 12, characterized in that it comprises a solenoid (50) of a diameter greater than that of the third surface of revolution and arranged so as to produce a longitudinal magnetic field.
  16. A neutron tube as claimed in Claim 15, characterized in that it comprises a first cylindrical anode (55) disposed along the minor radius of the first surface of revolution and extending substantially over the height thereof.
  17. A neutron tube as claimed in any one of the Claims 1 to 4, characterized in that the ion source is of the orbitron type (Figs. 7, 8), comprising a second cylindrical anode (70) disposed along the minor radius of the first surface of revolution and extending substantially over the height thereof.
  18. A neutron tube as claimed in Claim 17, characterized in that it also comprises a hot cathode (71).
  19. A neutron tube as claimed in any one of the Claims 1 to 4, characterized in that the ion source is of the electrostatic Reflex type (SIRE) (Figs. 9 and 10) and comprises at least one annular anode (90), at least one extraction orifice being a slot (32).
  20. A neutron tube as claimed in Claim 19, characterized in that it comprises a multi-annular anode (91).
EP91202149A 1990-08-31 1991-08-22 High-flux neutron tube Expired - Lifetime EP0473233B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9010873A FR2666477A1 (en) 1990-08-31 1990-08-31 HIGH FLOW NEUTRONIC TUBE.
FR9010873 1990-08-31

Publications (2)

Publication Number Publication Date
EP0473233A1 EP0473233A1 (en) 1992-03-04
EP0473233B1 true EP0473233B1 (en) 1995-05-17

Family

ID=9399995

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91202149A Expired - Lifetime EP0473233B1 (en) 1990-08-31 1991-08-22 High-flux neutron tube

Country Status (5)

Country Link
US (1) US5215703A (en)
EP (1) EP0473233B1 (en)
JP (1) JPH06342699A (en)
DE (1) DE69109776T2 (en)
FR (1) FR2666477A1 (en)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2710782A1 (en) * 1993-09-29 1995-04-07 Sodern Neutron tube with magnetic confinement of electrons by permanent magnets and its manufacturing process.
US6383480B1 (en) 1996-07-10 2002-05-07 Meiji Milk Products, Co., Ltd. Composition comprising midkine or pleiotrophin protein and method of increasing hematopoietic cells
JP3122081B2 (en) * 1998-11-25 2001-01-09 石油公団 Neutron generator tube
US6441569B1 (en) 1998-12-09 2002-08-27 Edward F. Janzow Particle accelerator for inducing contained particle collisions
US6925137B1 (en) * 1999-10-04 2005-08-02 Leon Forman Small neutron generator using a high current electron bombardment ion source and methods of treating tumors therewith
US6907097B2 (en) * 2001-03-16 2005-06-14 The Regents Of The University Of California Cylindrical neutron generator
GB0120280D0 (en) 2001-08-21 2001-10-17 Sved John Low degradation rate linear geometry neutron generator appartus using plasma gas target
US7342988B2 (en) * 2002-02-06 2008-03-11 The Regents Of The University Of California Neutron tubes
US7176469B2 (en) * 2002-05-22 2007-02-13 The Regents Of The University Of California Negative ion source with external RF antenna
US6975072B2 (en) * 2002-05-22 2005-12-13 The Regents Of The University Of California Ion source with external RF antenna
WO2006119080A2 (en) * 2005-04-29 2006-11-09 Larsen Lewis G Apparatus and method for generation of ultra low momentum neutrons
US20100193685A1 (en) * 2005-06-29 2010-08-05 University Of Houston Miniature Neutron Generator for Active Nuclear Materials Detection
US7596197B1 (en) * 2005-08-05 2009-09-29 The Regents Of The University Of California Gamma source for active interrogation
US20070237281A1 (en) * 2005-08-30 2007-10-11 Scientific Drilling International Neutron generator tube having reduced internal voltage gradients and longer lifetime
US7659520B2 (en) * 2007-12-06 2010-02-09 Nextgen, Inc. Orbitron based stand-off explosives detection
US7639770B2 (en) * 2008-04-22 2009-12-29 The Regents Of The University Of California Cylindrical neutron generator
RU2494484C2 (en) 2008-05-02 2013-09-27 Шайн Медикал Текнолоджис, Инк. Production device and method of medical isotopes
US8446096B1 (en) * 2009-10-02 2013-05-21 The United States Of America As Represented By The Secretary Of The Navy Terahertz (THz) reverse micromagnetron
WO2012003009A2 (en) 2010-01-28 2012-01-05 Shine Medical Technologies, Inc. Segmented reaction chamber for radioisotope production
US10734126B2 (en) 2011-04-28 2020-08-04 SHINE Medical Technologies, LLC Methods of separating medical isotopes from uranium solutions
WO2013019129A2 (en) * 2011-08-03 2013-02-07 Institute Of Geological And Nuclear Sciences Limited Ion source
RU2477935C1 (en) * 2012-03-01 2013-03-20 Федеральное государственное бюджетное учреждение науки Институт общей физики им. А.М. Прохорова Российской академии наук Neutron generator
CA2869559C (en) 2012-04-05 2022-03-29 Shine Medical Technologies, Inc. Aqueous assembly and control method
GB201216368D0 (en) * 2012-09-13 2012-10-31 E2V Tech Uk Ltd Magnetron cathodes
CN104378905A (en) * 2014-08-29 2015-02-25 常州博锐恒电子科技有限公司 High current neutron generating device
EP3612865A1 (en) 2017-04-20 2020-02-26 Philip Teague Near-field sensitivity of formation and cement porosity measurements with radial resolution in a borehole
CN109496051A (en) * 2018-12-21 2019-03-19 北京中百源国际科技创新研究有限公司 It is a kind of for increasing the slowing down device of low number of neutrons
RU209936U1 (en) * 2021-11-24 2022-03-24 Федеральное Государственное Унитарное Предприятие "Всероссийский Научно-Исследовательский Институт Автоматики Им.Н.Л.Духова" (Фгуп "Внииа") Pulse neutron generator

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL50089C (en) * 1937-01-23
CH484585A (en) * 1967-04-10 1970-01-15 Inst Fizica Atomica Method of linear acceleration of ions or electrons, and device for carrying out this method
US4996017A (en) * 1982-03-01 1991-02-26 Halliburton Logging Services Inc. Neutron generator tube
US4529571A (en) * 1982-10-27 1985-07-16 The United States Of America As Represented By The United States Department Of Energy Single-ring magnetic cusp low gas pressure ion source
FR2637727A1 (en) * 1988-10-07 1990-04-13 Realisations Nucleaires Et NEUTRONIC TUBE WITH ION SOURCE WITH ELECTROSTATIC ELECTRONIC CONFINEMENT
FR2637725A1 (en) * 1988-10-07 1990-04-13 Sodern DEVICE FOR EXTRACTING AND ACCELERATING IONS LIMITING THE REACCELERATION OF SECONDARY ELECTRONS IN A HIGH-FLOW SEALED NEUTRONIC TUBE
FR2637726A1 (en) * 1988-10-07 1990-04-13 Realisations Nucleaires Et SEALED NEUTRON TUBE EQUIPPED WITH A MULTICELLULAR ION SOURCE WITH MAGNETIC CONTAINMENT
FR2637724B1 (en) * 1988-10-07 1990-12-28 Realisations Nucleaires Et DEVICE FOR IMPROVING THE PENNING-TYPE ION SOURCE IN A NEUTRONIC TUBE

Also Published As

Publication number Publication date
DE69109776T2 (en) 1995-12-07
US5215703A (en) 1993-06-01
JPH06342699A (en) 1994-12-13
EP0473233A1 (en) 1992-03-04
DE69109776D1 (en) 1995-06-22
FR2666477A1 (en) 1992-03-06

Similar Documents

Publication Publication Date Title
EP0473233B1 (en) High-flux neutron tube
Christiansen et al. Production of high current particle beams by low pressure spark discharges
EP0338619A1 (en) High-flux neutron source with long life target
FR2679653A1 (en) VACUMETER A IONIZATION.
EP0645947B1 (en) Neutron tube providing electron magnetic confinement by means of permanent magnets, and manufacturing method thereof
EP0362947B1 (en) Sealed neutron tube equipped with a multicellular ion source with magnetic confinement
FR2660999A1 (en) IMPROVED IONIZATION MANOMETER FOR VERY LOW PRESSURES.
EP0362946A1 (en) Ion extraction and acceleration device limiting reverse acceleration of secondary electrons in a sealed high flux neutron tube
EP0340832B1 (en) Sealed, high flux neutron tube
EP0300566B1 (en) Liquid metal ions source with a vacuum arc
WO2011151540A1 (en) Dose measurement device for plasma-immersion ion implantation
EP0077738B1 (en) Ion source having a gas ionization chamber with oscillations of electrons
EP0295743B1 (en) Ion source with four electrodes
EP0362953A1 (en) Sealed neutron tube provided with an ion source with electrostatic confinement
FR2637724A1 (en) DEVICE FOR IMPROVING PENNING-TYPE ION SOURCE IN A NEUTRON TUBE
EP0662607B1 (en) Ionisation gauge with micropoint cathode
EP0300932B1 (en) Electron source
FR2927761A1 (en) Neutron generator for e.g. analyzing material, has ion source producing ions from hydrogen gas, and target producing neutrons by interaction with ions, where source is constituted by plasma focus device
FR2933532A1 (en) ELECTRONIC CYCLOTRON RESONANCE ION GENERATING DEVICE
JPH024979B2 (en)
FR2647593A1 (en) LOW ENERGY ION TRAP
Semenov et al. Emission of a neutralized ion beam using a Penning cell with a ring-shaped cavity
Vasilevskii et al. Hollow electron beam with a pulse length 10/sup-4/s from a multitip explosive-emission cathode
CH332317A (en) Ion emitting device
EP0308560A1 (en) Charged-particle gun for the pulsed emission of particles having a fixed energy

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19920727

17Q First examination report despatched

Effective date: 19940719

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REF Corresponds to:

Ref document number: 69109776

Country of ref document: DE

Date of ref document: 19950622

ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950724

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970801

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19970819

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19971022

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980822

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19980822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990601

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050822