EP0480518B1 - Electron source providing a particle retention device - Google Patents

Electron source providing a particle retention device Download PDF

Info

Publication number
EP0480518B1
EP0480518B1 EP91202587A EP91202587A EP0480518B1 EP 0480518 B1 EP0480518 B1 EP 0480518B1 EP 91202587 A EP91202587 A EP 91202587A EP 91202587 A EP91202587 A EP 91202587A EP 0480518 B1 EP0480518 B1 EP 0480518B1
Authority
EP
European Patent Office
Prior art keywords
extraction
electron source
electron
plasma
downstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91202587A
Other languages
German (de)
French (fr)
Other versions
EP0480518A1 (en
Inventor
Henri Bernardet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SODERN SA
Koninklijke Philips NV
Original Assignee
SODERN SA
Koninklijke Philips Electronics NV
Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SODERN SA, Koninklijke Philips Electronics NV, Philips Electronics NV filed Critical SODERN SA
Publication of EP0480518A1 publication Critical patent/EP0480518A1/en
Application granted granted Critical
Publication of EP0480518B1 publication Critical patent/EP0480518B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J3/00Details of electron-optical or ion-optical arrangements or of ion traps common to two or more basic types of discharge tubes or lamps
    • H01J3/02Electron guns
    • H01J3/025Electron guns using a discharge in a gas or a vapour as electron source

Definitions

  • the present invention relates to a vacuum arc electron source comprising a plasma source having an anode and a cathode arranged opposite so as to form a plasma following the application of a potential difference. between the anode and the cathode, an electron extraction device and a material retention device located between the extraction device and the plasma source.
  • An electron source is known from EP-A-0 286 191, which describes a retention device in the form of a grid of baffles which are arranged downstream of an extraction device.
  • the baffles define staggered openings, so that the plasma projections are collected.
  • a source of electrons is known from the article "Grid-controlled plasma cathodes” by S. HUMPRIES and collaborators in the “Journal of Applied Physics” vol. n ° 3 (February 1985) p. 700-713.
  • the retention device is constituted by an ion control grid (ICG) which is arranged within the plasma and at the same electrical potential as the plasma source, and the extraction device comprises an extraction cathode K constituted by a grid polarized positively with respect to the plasma source as well as an electron collecting anode A.
  • ICG ion control grid
  • the function of the ICG ion control grid is to separate the ions from the electrons in the ICG grid - K cathode space, the electrons being extracted or not depending on the space charge in the extraction interval located between the cathode K and anode A.
  • Such a structure requires pulsed operation of the plasma source and in particular an operating condition is that the pulse length of the plasma must not be too large compared to the pulse length sought by the electrons to avoid charging. electrically grid and lead to breakdowns.
  • the basic idea of the invention is to decouple optically and electrically the plasma of the extraction zone in order to avoid the aforementioned drawbacks.
  • the electron source according to the invention is for this purpose characterized in that the material retention device comprises, in the direction of extraction of the electrons, an upstream baffle and an electrically conductive downstream baffle and having staggered openings, so that, when the baffles are brought to a given potential, the plasma does not extend downstream of the downstream baffle.
  • This provides effective retention of materials, namely ions, neutralized or not, as well as neutrals and micro-particles emitted simultaneously.
  • At least one opening may be a transverse slit relative to the direction of extraction of the electrons.
  • At least one baffle may have around at least one opening, a folded edge on the side of the plasma source. This improves the retention of plasma ions, as well as neutrals and micro-particles emitted simultaneously by the vacuum arc.
  • the upstream baffle and the downstream baffle have said folded edges, aligned in the direction of extraction of the electrons.
  • the width of the openings can be greater than or equal to the interval between the openings.
  • the distance between the baffles can be at least equal to the width of the openings and the interval between the openings.
  • the quantity of electrons extracted indeed increases with the relative width of the openings compared to their interval, as well as with the distance between the baffles.
  • an upstream extraction electrode and a substantially parallel downstream extraction electrode which are preferably spaced a distance at least equal to the pitch of said baffles.
  • At least one extraction electrode can advantageously be arranged in the passage located downstream of the openings of the downstream baffle in the direction of extraction of the electrons. This improves the extraction yield at equal potential.
  • an electron source has an ion source comprising at least a cathode 1 and an anode 2 (diode type) and possibly a trigger 3 (triode type) or else a secondary arc as in French patent 8708196 filed on June 12, 1987 by the Applicant and issued on November 24, 1989 under number FR 2616587 (tetrode type).
  • diode type the anode 2 and the cathode 1 are very close to one another and the initiation of the plasma arc P is simply obtained by application of a sufficient anode voltage.
  • the trigger 3 whose position, shape and mode of supply allow the ignition of a cathode spot at the origin of the main arc P, is close to the cathode 1 while the anode 2 is far from it.
  • the main plasma arc P is initiated by injection of a plasma coming from a secondary arc of short duration compared to the main arc P and dissipating a very low energy opposite the main arc P.
  • these plasma sources can be produced in the form of thin layers deposited on insulators, generally allowing large instantaneous and more reproducible emissions, but with a reduced number of operating shots.
  • Fig. 2 illustrates the device described in the publication by S. HUMPHRIES and collaborators, and according to which an ion control grid (ICG) is placed in the plasma P and at the same potential as the latter.
  • An extraction cathode K acting as an extraction grid being positively polarized with respect to the grid (ICG) the potential difference thus created prevents the ions from entering the extraction space, that is to say say the space between cathode K and a target anode A.
  • the electrons are prevented from crossing the extraction space AK.
  • a condition on the density of extracted current is that the width of the space in which the separation between the ions and the electrons takes place is substantially equal to or greater than half the width of the openings of the extraction grid K.
  • Another condition is that the length of the pulses producing the plasma cannot be much greater than the length of pulse designated for the electrons, this to avoid electrically charging the extraction grid K and to reduce the probability of breakdown. In other words, a plasma pulse can only correspond to one single electron extraction.
  • the cathode (or anode) plasma is optically isolated by two baffles 10 and 20, comprising, in the direction of electron extraction (arrow F) an upstream baffle 10, and a downstream baffle 20 , brought to ground or anode potential (for a cathode plasma), and provided with openings respectively 16 and 26 staggered with respect to each other.
  • the two baffles 10 and 20 are constituted by a single member with two baffle functions (upstream and downstream) or by two mechanically separate members but electrically connected together so that they are always brought to the same potential.
  • the plasma in the absence of any extraction voltage, is intercepted by the baffles and cannot penetrate downstream of the downstream baffle 20. In the case of FIG.
  • the ICG grid is arranged within the plasma P, which always extends downstream thereof until it comes close to the extraction cathode K.
  • the plasma P is stopped by the baffles and cannot s 'extend downstream of these.
  • the extraction electrode 30 is, whatever the operating conditions, free from any pollution by the plasma P which can therefore be maintained continuously for the entire time necessary for obtaining the desired number of electron extracts .
  • such a baffle structure at at least two levels also allows the interception of the micro-projections emitted by the cathode 1.
  • FIG. 3b shows the equipotential lines between the separation surfaces 12 which delimit the contour of the plasma and according to which the electrons are extracted. These surfaces 12 are a function of the extraction voltage and the density, in electrical charges, of the plasma emitted. The surfaces 12 are located between the two baffles 10 and 20, in a general direction perpendicular to these and substantially from one edge to the other of the openings 16 and 26.
  • the equipotentials (22 to 25) evolve between a shape ( 22) having a first part parallel to the baffle 20 and a second part clearly re-entering the inter-baffle space outside the plasma P, a shape (23) more downstream of the baffles and also with two parts, the second being less reentrant in the inter-cabinet space, a shape (24) even further downstream and which is practically planar, which makes it possible to direct the electrons essentially according to the direction of extraction F (they were indeed extracted essentially perpendicular to this direction), and finally a shape (25) substantially sinusoidal in the vicinity of the extraction grid 30.
  • FIG. 3c shows a practically ideal shape (14) of the separation surface 12, with a very marked digging which clearly increases the extraction surface, and therefore the extraction yield.
  • the double baffle device makes it possible to easily design a geometry having an extraction surface greater than that of the prior art, that is to say on the surface of the extraction grid.
  • the retention of plasma and material in the baffles, and especially in the downstream baffle (20) is favored by the presence of folded edges 21 (and / or 11), of a distance respectively d respectivement (and / or d2) upstream.
  • the parameters influencing the extraction are the spacing h between the baffles 10 and 20, the width l1 of the intervals between openings of the upstream baffle 10, the width l2 of the openings 16 of the upstream baffle 10, it being understood that the downstream baffle 20 is the "negative" of the upstream cabinet 10.
  • the applied electric field is determining as for the quantity of electrons extracted.
  • Two extreme positions (30A: extraction electrodes not downstream of the edges of the openings; 30B: extraction electrodes in the center of the openings and the intervals between them) for identical polarizations correspond to the maximum extraction (30A) and minimum (30B), knowing that interception by the extraction electrode is maximum in (30A).
  • the ideal maximum yield corresponds to: l1 ⁇ l2 ⁇ h and to the form 14 of the plasma meniscus of FIG. 3c.
  • a large source is obtained by paralleling n plasma sources (massive or layered) distributed so as to ensure a homogeneous plasma density on the baffles 10 and 20 (or 10 ′ and 20 ′). These sources are supplied either individually from a source (-HT) through a resistor R for each (fig. 7), or collectively through a single resistor R / n (fig. 8).
  • two extraction grids are used, referenced 30 and 31, located one behind the other.
  • the second extraction grid 31 at the same potential as the first, screens the accelerating voltages of the electrons and allows free transit of these over a distance D greater than the pitch (l1 + l2) of the extraction baffles. This allows an overlap between the beams extracted from contiguous openings 26 of the downstream baffle 20 and attenuates the density distortions.
  • the upstream extraction grid is located near the downstream baffle 20, whereas according to Figure 10, it is removed.
  • a grid reducing the energy of the electrons is present (reference 40) downstream of the extraction grid (s) (30, 31).
  • the grid 40 is brought to a potential lower than that of the extraction grid (s) (30, 31).
  • the grid 40 is associated with the two extraction grids 30 and 31, hence optimization of both the extraction and the energy of electrons.
  • the potential of the gate 40 can be adjusted between the voltage of the extraction device (30, 31) and the bias voltage of the baffles (10, 20).

Landscapes

  • Electron Sources, Ion Sources (AREA)

Description

La présente invention concerne une source d'électrons à arc sous vide comportant une source de plasma présentant une anode et une cathode disposées en vis-à-vis de manière à former un plasma à la suite de l'application d'une différence de potentiel appropriée entre l'anode et la cathode, un dispositif d'extraction des électrons et un dispositif de rétention de matières situé entre le dispositif d'extraction et la source de plasma.The present invention relates to a vacuum arc electron source comprising a plasma source having an anode and a cathode arranged opposite so as to form a plasma following the application of a potential difference. between the anode and the cathode, an electron extraction device and a material retention device located between the extraction device and the plasma source.

Une source d'électrons est connue de EP-A-0 286 191, qui décrit un dispositif de rétention en forme d'une grille de baffles qui sont disposés en aval d'un dispositif d'extraction. Les baffles définissent des ouvertures en quinconce, de telle sorte que les projections de plasma sont récupérées.An electron source is known from EP-A-0 286 191, which describes a retention device in the form of a grid of baffles which are arranged downstream of an extraction device. The baffles define staggered openings, so that the plasma projections are collected.

Une source d'électrons est connue de l'article "Grid-controlled plasma cathodes" de S. HUMPRIES et collaborateurs dans le "Journal of Applied Physics" vol. n° 3 (Février 1985) p. 700-713.A source of electrons is known from the article "Grid-controlled plasma cathodes" by S. HUMPRIES and collaborators in the "Journal of Applied Physics" vol. n ° 3 (February 1985) p. 700-713.

Selon cette antériorité, le dispositif de rétention est constitué par une grille contrôleuse d'ions (ICG) qui est disposée au sein du plasma et au même potentiel électrique que la source de plasma, et le dispositif d'extraction comporte une cathode d'extraction K constituée par une grille polarisée positivement par rapport à la source de plasma ainsi qu'une anode A collectrice d'électrons. La grille contrôleuse d'ions ICG a pour fonction de séparer les ions des électrons dans l'espace grille ICG - cathode K, les électrons étant extraits ou non en fonction de la charge d'espace dans l'intervalle d'extraction située entre la cathode K et l'anode A.According to this prior art, the retention device is constituted by an ion control grid (ICG) which is arranged within the plasma and at the same electrical potential as the plasma source, and the extraction device comprises an extraction cathode K constituted by a grid polarized positively with respect to the plasma source as well as an electron collecting anode A. The function of the ICG ion control grid is to separate the ions from the electrons in the ICG grid - K cathode space, the electrons being extracted or not depending on the space charge in the extraction interval located between the cathode K and anode A.

Une telle structure nécessite un fonctionnement pulsé de la source de plasma et en particulier une condition de fonctionnement est que la longueur d'impulsion du plasma ne doit pas être trop grande par rapport à la longueur d'impulsion recherchée par les électrons pour éviter de charger électriquement la grille et de conduire à des claquages.Such a structure requires pulsed operation of the plasma source and in particular an operating condition is that the pulse length of the plasma must not be too large compared to the pulse length sought by the electrons to avoid charging. electrically grid and lead to breakdowns.

L'idée de base de l'invention est de découpler optiquement et électriquement le plasma de la zone d'extraction afin d'éviter les inconvénients précités.The basic idea of the invention is to decouple optically and electrically the plasma of the extraction zone in order to avoid the aforementioned drawbacks.

La source d'électrons selon l'invention est dans ce but caractérisée en ce que le dispositif de rétention de matières comporte, dans le sens d'extraction des électrons, un baffle amont et un baffle aval électriquement conducteurs et présentant des ouvertures en quinconce, de telle sorte que, lorsque les baffles sont portés à un potentiel donné, le plasma ne s'étende pas en aval du baffle aval. On obtient ainsi, une rétention efficace des matières, à savoir des ions, neutralisés ou non, ainsi que des neutres et des micro-particules émis simultanément.The electron source according to the invention is for this purpose characterized in that the material retention device comprises, in the direction of extraction of the electrons, an upstream baffle and an electrically conductive downstream baffle and having staggered openings, so that, when the baffles are brought to a given potential, the plasma does not extend downstream of the downstream baffle. This provides effective retention of materials, namely ions, neutralized or not, as well as neutrals and micro-particles emitted simultaneously.

Au moins une ouverture peut être une fente transversale par rapport au sens d'extraction des électrons.At least one opening may be a transverse slit relative to the direction of extraction of the electrons.

Au moins un baffle peut comporter autour d'au moins une ouverture, un bord replié du coté de la source de plasma. Ceci permet d'améliorer la rétention des ions du plasma, ainsi que des neutres et des micro-particules émis simultanément par l'arc sous vide. Selon un mode préféré de réalisation du dispositif de rétention de matières, le baffle amont et le baffle aval comportent desdits bords repliés, alignés dans le sens d'extraction des électrons.At least one baffle may have around at least one opening, a folded edge on the side of the plasma source. This improves the retention of plasma ions, as well as neutrals and micro-particles emitted simultaneously by the vacuum arc. According to a preferred embodiment of the material retention device, the upstream baffle and the downstream baffle have said folded edges, aligned in the direction of extraction of the electrons.

La largeur des ouvertures peut être supérieure ou égale à l'intervalle entre les ouvertures. La distance entre les baffles peut être au moins égale à la largeur des ouvertures et à l'intervalle entre les ouvertures. La quantité d'électrons extraits croît en effet avec la largeur relative des ouvertures par rapport à leur intervalle, ainsi qu'avec la distance entre les baffles.The width of the openings can be greater than or equal to the interval between the openings. The distance between the baffles can be at least equal to the width of the openings and the interval between the openings. The quantity of electrons extracted indeed increases with the relative width of the openings compared to their interval, as well as with the distance between the baffles.

Selon un mode de réalisation particulièrement avantageux en ce qui concerne l'homogénéité du faisceau d'électrons, sont prévues, dans le sens d'extraction des électrons, une électrode d'extraction amont et une électrode d'extraction aval sensiblement parallèles, lesquelles sont de préférence espacées d'une distance au moins égale au pas desdits baffles.According to a particularly advantageous embodiment with regard to the homogeneity of the electron beam, there are provided, in the direction of extraction of the electrons, an upstream extraction electrode and a substantially parallel downstream extraction electrode, which are preferably spaced a distance at least equal to the pitch of said baffles.

Au moins une électrode d'extraction peut avantageusement être disposée dans le passage situé en aval des ouvertures du baffle aval dans le sens d'extraction des électrons. On améliore ainsi le rendement d'extraction à potentiel égal.At least one extraction electrode can advantageously be arranged in the passage located downstream of the openings of the downstream baffle in the direction of extraction of the electrons. This improves the extraction yield at equal potential.

Les précédentes structures d'extraction conduisent à des émissions d'électrons à une énergie (exprimée en eV) proche de la tension d'extraction tout en lui restant inférieure. Pour réduire cette énergie initiale et obtenir une meilleure maîtrise du faisceau, il est avantageux de prévoir une électrode réductrice d'énergie des électrons disposée en aval du dispositif d'extraction dans le sens d'extraction des électrons, une telle réduction pouvant être alors obtenue en portant ladite électrode à un potentiel électrique inférieur à celui du dispositif d'extraction.The previous extraction structures lead to electron emissions at an energy (expressed in eV) close to the extraction voltage while remaining lower. To reduce this initial energy and obtain better control of the beam, it is advantageous to provide an electron energy reducing electrode disposed downstream of the extraction device in the direction of electron extraction, such reduction can then be obtained by bringing said electrode to an electrical potential lower than that of the extraction device.

L'invention sera mieux comprise à la lecture de la description qui va suivre, donnée à titre d'exemple non limitatif, en liaison avec les dessins qui représentent :

  • la figure 1, une source d'électrons selon l'art antérieur (état général de la technique), la figure 2 correspondant à l'article de HUMPRIES et al. précité
  • la figure 3a à 3c, une source d'électrons selon un mode de réalisation de l'invention, la figure 3b étant un détail de la fig. 3a montrant les lignes de champ, et la fig. 3c un détail de la fig. 3a en vue de préciser les dimensions.
  • la fig. 4 des diagrammes de courant et de tension en vue de l'extraction des électrons.
  • la fig. 5, 6a, 6b et 6c des modes de réalisation des ouvertures des baffles selon l'invention, les figures 6b et 6c représentant respectivement en vue de dessus et en coupe XX′ un dispositif à symétrie cylindrique de révolution.
  • la fig. 7 et 8 des modes de connexion de source de plasma en parallèle en vue d'obtenir une émission d'électrons de grande section.
  • et les fig. 9 à 12 quatre variantes de l'invention présentant une extraction améliorée, la fig. 12 correspondant à un mode de réalisation préféré.
The invention will be better understood on reading the description which follows, given by way of nonlimiting example, in conjunction with the drawings which represent:
  • FIG. 1, an electron source according to the prior art (general state of the art), FIG. 2 corresponding to the article by HUMPRIES et al. above
  • FIG. 3a to 3c, an electron source according to an embodiment of the invention, FIG. 3b being a detail of FIG. 3a showing the field lines, and FIG. 3c a detail of fig. 3a in order to specify the dimensions.
  • fig. 4 current and voltage diagrams for the extraction of electrons.
  • fig. 5, 6a, 6b and 6c of the embodiments of the openings of the baffles according to the invention, FIGS. 6b and 6c respectively representing in top view and in section XX ′ a device with cylindrical symmetry of revolution.
  • fig. 7 and 8 of the plasma source connection modes in parallel in order to obtain an emission of electrons of large section.
  • and fig. 9 to 12 four variants of the invention presenting an improved extraction, FIG. 12 corresponding to a preferred embodiment.

Selon la figure 1, une source d'électrons comporte une source d'ions comportant au moins une cathode 1 et une anode 2 (type diode) et éventuellement une gâchette 3 (type triode) ou bien un arc secondaire comme dans le brevet français 8708196 déposé le 12 juin 1987 par la Demanderesse et délivré le 24 novembre 1989 sous le numéro FR 2616587 (type tétrode). Pour le type diode, l'anode 2 et la cathode 1 sont très proches d'une de l'autre et l'initiation de l'arc de plasma P est simplement obtenue par application d'une tension anodique suffisante. Pour le type triode, la gâchette 3, dont la position, la forme et le mode d'alimentation permettent l'amorçage d'un spot cathodique à l'origine de l'arc principal P, est proche de la cathode 1 alors que l'anode 2 en est éloignée. Pour le type tétrode, l'arc principal de plasma P est initié par injection d'un plasma provenant d'un arc secondaire de faible durée par rapport à l'arc principal P et dissipant une très faible énergie en regard de l'arc principal P.According to Figure 1, an electron source has an ion source comprising at least a cathode 1 and an anode 2 (diode type) and possibly a trigger 3 (triode type) or else a secondary arc as in French patent 8708196 filed on June 12, 1987 by the Applicant and issued on November 24, 1989 under number FR 2616587 (tetrode type). For the diode type, the anode 2 and the cathode 1 are very close to one another and the initiation of the plasma arc P is simply obtained by application of a sufficient anode voltage. For the triode type, the trigger 3, whose position, shape and mode of supply allow the ignition of a cathode spot at the origin of the main arc P, is close to the cathode 1 while the anode 2 is far from it. For the tetrode type, the main plasma arc P is initiated by injection of a plasma coming from a secondary arc of short duration compared to the main arc P and dissipating a very low energy opposite the main arc P.

De même, ces sources de plasma peuvent être réalisées sous forme de couches minces déposées sur des isolants, permettant en général des émissions instantanées importantes et plus reproductibles, mais avec un nombre de tirs de fonctionnement réduit.Likewise, these plasma sources can be produced in the form of thin layers deposited on insulators, generally allowing large instantaneous and more reproducible emissions, but with a reduced number of operating shots.

Les matériaux cathodiques utilisés sont dans le principe indifférents ; leur choix est un compromis entre :

  • l'énergie nécessaire pour l'obtention d'un arc stable (influence du courant électronique recherché)
  • la dissipation thermique des électrodes, en particulier de la cathode, et les problèmes de refroidissement,
  • le temps d'établissement de l'arc et la vitesse de projection du plasma (influence des températures de fusion des matériaux),
  • l'aptitude à un traitement chimique ultérieur de nettoyage de la source,
  • leur pureté, sous l'aspect désorption à chaud de gaz susceptible de perturber la qualité du vide.

Les électrons sont extraits du plasma P par un dispositif d'extraction d'électrons EE (par exemple une grille), le sens d'extraction (flèche F) étant perpendiculaire audit dispositif d'extraction EE. En tant que de besoin, un dispositif FA de focalisation et d'accélération dirige les électrons vers une cible A.The cathode materials used are in principle indifferent; their choice is a compromise between:
  • the energy required to obtain a stable arc (influence of the electronic current sought)
  • the heat dissipation of the electrodes, in particular of the cathode, and the cooling problems,
  • the arc establishment time and the plasma projection speed (influence of material melting temperatures),
  • suitability for further chemical cleaning of the source,
  • their purity, under the hot desorption aspect of gas liable to disturb the quality of the vacuum.

The electrons are extracted from the plasma P by an electron extraction device EE (for example a grid), the direction extraction (arrow F) being perpendicular to said extraction device EE. When necessary, a focusing and acceleration device FA directs the electrons towards a target A.

La fig. 2 illustre le dispositif décrit dans la publication de S. HUMPHRIES et collaborateurs, et selon lequel une grille de contrôle des ions (ICG), est disposée dans le plasma P et au même potentiel que celui-ci. Une cathode d'extraction K faisant fonction de grille d'extraction étant polarisée positivement par rapport à la grille (ICG), la différence de potentiel ainsi créée empêche les ions de pénétrer dans l'espace d'extraction, c'est-à-dire l'espace situé entre la cathode K et une anode cible A. En l'absence d'un potentiel d'extraction, les électrons sont empêchés de franchir l'espace d'extraction A-K. Une condition sur la densité de courant extrait est que la largeur de l'espace dans lequel intervient la séparation entre les ions et les électrons est sensiblement égale ou supérieure à la moitié de la largeur des ouvertures de la grille d'extraction K. Une autre condition est que la longueur des impulsions produisant le plasma ne peut être très supérieure à la longueur d'impulsion désignée pour les électrons, ce pour éviter de charger électriquement la grille d'extraction K et pour réduire la probabilité de claquage. En d'autres termes, à une impulsion de plasma ne peut correspondre qu'une seule extraction d'électrons.Fig. 2 illustrates the device described in the publication by S. HUMPHRIES and collaborators, and according to which an ion control grid (ICG) is placed in the plasma P and at the same potential as the latter. An extraction cathode K acting as an extraction grid being positively polarized with respect to the grid (ICG), the potential difference thus created prevents the ions from entering the extraction space, that is to say say the space between cathode K and a target anode A. In the absence of an extraction potential, the electrons are prevented from crossing the extraction space AK. A condition on the density of extracted current is that the width of the space in which the separation between the ions and the electrons takes place is substantially equal to or greater than half the width of the openings of the extraction grid K. Another condition is that the length of the pulses producing the plasma cannot be much greater than the length of pulse designated for the electrons, this to avoid electrically charging the extraction grid K and to reduce the probability of breakdown. In other words, a plasma pulse can only correspond to one single electron extraction.

Selon les figures 3a à 3c et 5, le plasma cathodique (ou anodique) est isolé optiquement par deux baffles 10 et 20, comportant, dans le sens d'extraction des électrons (flêche F) un baffle amont 10, et un baffle aval 20, portés à la masse ou potentiel d'anode (pour un plasma cathodique), et pourvu d'ouvertures respectivement 16 et 26 en quinconce les unes par rapport aux autres. En pratique, les deux baffles 10 et 20 sont constitués par un organe unique à deux fonctions de baffle (amont et aval) ou par deux organes mécaniquement séparés mais reliés électriquement entre eux de façon qu'ils soient toujours portés au même potentiel. Le plasma, en l'absence de toute tension d'extraction, est intercepté par les baffles et ne peut pénétrer en aval du baffle aval 20. Dans le cas de la figure 2 (art antérieur), la grille ICG est disposée au sein du plasma P, qui s'étend toujours en aval de celle-ci jusqu'à parvenir à proximité de la cathode d'extraction K. Au contraire, dans le cas de l'invention, le plasma P est arrété par les baffles et ne peut s'étendre en aval de ceux-ci. L'électrode d'extraction 30 est, quelles que soient les conditions de fonctionnement, dégagée de toute pollution par le plasma P qui peut donc être maintenu en continu pendant toute la durée nécessaire à l'obtension du nombre désiré d'extractions d'électrons. En outre, une telle structure de baffle à au moins deux niveaux permet également l'interception des micro-projections émises par la cathode 1. La figure 4 montre, en a le profil du courant Iarc de la source de plasma, en b le potentiel d'extraction (plusieurs impulsions, pour un seul allumage du plasma), et en c le courant Iext des électrons extraits. Pour une tension d'extraction Vext (de quelques kV) à profil en plateaux plats, le courant Iext. présente, de manière classique, des plateaux à pente négative.According to FIGS. 3a to 3c and 5, the cathode (or anode) plasma is optically isolated by two baffles 10 and 20, comprising, in the direction of electron extraction (arrow F) an upstream baffle 10, and a downstream baffle 20 , brought to ground or anode potential (for a cathode plasma), and provided with openings respectively 16 and 26 staggered with respect to each other. In practice, the two baffles 10 and 20 are constituted by a single member with two baffle functions (upstream and downstream) or by two mechanically separate members but electrically connected together so that they are always brought to the same potential. The plasma, in the absence of any extraction voltage, is intercepted by the baffles and cannot penetrate downstream of the downstream baffle 20. In the case of FIG. 2 (prior art), the ICG grid is arranged within the plasma P, which always extends downstream thereof until it comes close to the extraction cathode K. On the contrary, in the case of the invention, the plasma P is stopped by the baffles and cannot s 'extend downstream of these. The extraction electrode 30 is, whatever the operating conditions, free from any pollution by the plasma P which can therefore be maintained continuously for the entire time necessary for obtaining the desired number of electron extracts . In addition, such a baffle structure at at least two levels also allows the interception of the micro-projections emitted by the cathode 1. FIG. 4 shows, in a the profile of the current Iarc of the plasma source, in b the potential extraction (several pulses, for a single ignition of the plasma), and in c the Iext current of the extracted electrons. For an extraction voltage Vext (of a few kV) with a profile in flat plates, the current Iext. presents, in a conventional manner, trays with a negative slope.

La figure 3b montre les lignes d'équipotentielles entre les surfaces 12 de séparation qui délimitent le contour du plasma et selon lesquelles les électrons sont extraits. Ces surfaces 12 sont fonction de la tension d'extraction et de la densité, en charges électriques, du plasma émis. Les surfaces 12 sont situées entre les deux baffles 10 et 20, selon une direction générale perpendiculaire à ceux-ci et sensiblement d'un bord à l'autre des ouvertures 16 et 26. Les équipotentielles (22 à 25) évoluent entre une forme (22) présentant une première partie parallèle au baffle 20 et une deuxième partie nettement rentrante dans l'espace inter-baffles en dehors du plasma P, une forme (23) plus en aval des baffles et également à deux parties, la deuxième étant moins rentrante dans l'espace inter-baffles, une forme (24) encore plus en aval et qui est pratiquement plane, ce qui permet de diriger les électrons essentiellement selon la direction d'extraction F (ils ont été en effet extraits essentiellement perpendiculairement à cette direction), et enfin une forme (25) sensiblement sinusoïdale au voisinage de la grille d'extraction 30.FIG. 3b shows the equipotential lines between the separation surfaces 12 which delimit the contour of the plasma and according to which the electrons are extracted. These surfaces 12 are a function of the extraction voltage and the density, in electrical charges, of the plasma emitted. The surfaces 12 are located between the two baffles 10 and 20, in a general direction perpendicular to these and substantially from one edge to the other of the openings 16 and 26. The equipotentials (22 to 25) evolve between a shape ( 22) having a first part parallel to the baffle 20 and a second part clearly re-entering the inter-baffle space outside the plasma P, a shape (23) more downstream of the baffles and also with two parts, the second being less reentrant in the inter-cabinet space, a shape (24) even further downstream and which is practically planar, which makes it possible to direct the electrons essentially according to the direction of extraction F (they were indeed extracted essentially perpendicular to this direction), and finally a shape (25) substantially sinusoidal in the vicinity of the extraction grid 30.

La figure 3c montre une forme (14) pratiquement idéale de la surface de séparation 12, avec un creusement très marqué ce qui augmente nettement la surface d'extraction, et donc le rendement d'extraction. Il est à noter que le dispositif à double baffle permet de concevoir facilement une géométrie présentant une surface d'extraction supérieure à celle de l'art antérieur, c'est-à-dire à la surface de la grille d'extraction. D'autre part, la retenue du plasma et de matière dans les baffles, et surtout dans le baffle aval (20) est favorisée par la présence de bords repliés 21 (et/ou 11), d'une distance respectivement d₁ (et/ou d₂) vers l'amont.FIG. 3c shows a practically ideal shape (14) of the separation surface 12, with a very marked digging which clearly increases the extraction surface, and therefore the extraction yield. It should be noted that the double baffle device makes it possible to easily design a geometry having an extraction surface greater than that of the prior art, that is to say on the surface of the extraction grid. On the other hand, the retention of plasma and material in the baffles, and especially in the downstream baffle (20) is favored by the presence of folded edges 21 (and / or 11), of a distance respectively d respectivement (and / or d₂) upstream.

Les paramètres influant sur l'extraction sont l'écartement h entre les baffles 10 et 20, la largeur l₁ des intervalles entre ouvertures du baffle amont 10, la largeur l₂ des ouvertures 16 du baffle amont 10, étant entendu que le baffle aval 20 est le "négatif" du baffle amont 10.The parameters influencing the extraction are the spacing h between the baffles 10 and 20, the width l₁ of the intervals between openings of the upstream baffle 10, the width l₂ of the openings 16 of the upstream baffle 10, it being understood that the downstream baffle 20 is the "negative" of the upstream cabinet 10.

La quantité d'électrons extraits croît :

  • dans le même sens que h
  • inversement à l'évolution de l₂ et de l₁ c'est'à-dire avec le nombre de cellules.
The quantity of electrons extracted increases:
  • along the same lines as h
  • conversely to the evolution of l₂ and l₁, that is to say with the number of cells.

Par ailleurs, le champ électrique appliqué est déterminant quant à la quantité d'électrons extraits. Deux positions extrêmes (voir Fig.5) (30A : électrodes d'extraction non en aval des bords des ouvertures ; 30B : électrodes d'extraction au centre des ouvertures et des intervalles entre elles) pour des polarisations identiques correspondent au maximum d'extraction (30A) et minimum (30B), sachant que l'interception par l'électrode d'extraction est maximale en (30A).In addition, the applied electric field is determining as for the quantity of electrons extracted. Two extreme positions (see Fig. 5) (30A: extraction electrodes not downstream of the edges of the openings; 30B: extraction electrodes in the center of the openings and the intervals between them) for identical polarizations correspond to the maximum extraction (30A) and minimum (30B), knowing that interception by the extraction electrode is maximum in (30A).

Le rendement maximal idéal correspond à : l₁ ≦ l₂ < h

Figure imgb0001

et à la forme 14 de ménisque de plasma de la figure 3c.The ideal maximum yield corresponds to: l₁ ≦ l₂ <h
Figure imgb0001

and to the form 14 of the plasma meniscus of FIG. 3c.

Les structures de configuration préférées des baffles découlent de ces considérations :

  • structures linéaires avec l₁ ≦ l₂ et h > l₂ avec les électrodes d'extraction constituées par des fils (ou barres) proches de l'alignement des bords relevés (11 et 21) des baffles 10 et 20, et légèrement masquées par le baffle 20 (figures 3a et 3b).
  • structures à ouvertures circulaires (16′, 26′) (fig. 6a), pour des faisceaux cylindriques (de révolution ou non) et plus particulièrement lorsque l'homogénéïté doit présenter une symétrie axiale (figures 6b et 6c) : aux figures 6b et 6c, les baffles amont 10 et aval 20 deviennent des anneaux à bords relevés 10′ et 20′, reliés entre eux sur des rayons pour assurer le maintien mécanique (à la figure 6b, les anneaux 16′ sont représentés en pointillés).
The preferred configuration structures of baffles arise from these considerations:
  • linear structures with l₁ ≦ l₂ and h> l₂ with the extraction electrodes constituted by wires (or bars) close to the alignment of the raised edges (11 and 21) of the baffles 10 and 20, and slightly masked by the baffle 20 (Figures 3a and 3b).
  • structures with circular openings (16 ′, 26 ′) (fig. 6a), for cylindrical beams (of revolution or not) and more particularly when the homogeneity must have an axial symmetry (Figures 6b and 6c): in Figures 6b and 6c, the upstream 10 and downstream 20 baffles become rings with raised edges 10 ′ and 20 ′, interconnected on spokes to provide mechanical support (in FIG. 6b, the rings 16 ′ are shown in dotted lines).

Pour deux anneaux (baffles 10′ et 20′) de rang i et i-1, on aura : R₁₀′,i - R₁₀′,(i-1) ≦ R₂₀′i - R₂₀′,i-1

Figure imgb0002

h > R₂₀′,i - R₂₀′,i-1
Figure imgb0003
For two rings (10 ′ and 20 ′ baffles) of rank i and i-1, we will have: R₁₀ ′, i - R₁₀ ′, (i-1) ≦ R₂₀′i - R₂₀ ′, i-1
Figure imgb0002

h> R₂₀ ′, i - R₂₀ ′, i-1
Figure imgb0003

Selon les figures 7 et 8, une source de grande dimension est obtenue en mettant en parallèle n sources de plasma (massives ou en couches) réparties de façon à assurer une densité homogène de plasma sur les baffles 10 et 20 (ou 10′ et 20′). Ces sources sont alimentées soit individuellement à partir d'une source (-HT) à travers une résistance R pour chacune (fig.7), soit collectivement à travers une seule résistance R/n (fig.8).According to Figures 7 and 8, a large source is obtained by paralleling n plasma sources (massive or layered) distributed so as to ensure a homogeneous plasma density on the baffles 10 and 20 (or 10 ′ and 20 ′). These sources are supplied either individually from a source (-HT) through a resistor R for each (fig. 7), or collectively through a single resistor R / n (fig. 8).

Selon les figures 9 et 10, on met en oeuvre deux grilles d'extraction, référencées 30 et 31, situées l'une derrière l'autre. La deuxième grille d'extraction 31, au même potentiel que la première fait écran aux tensions d'accélération des électrons et permet un transit libre de ceux-ci sur une distance D supérieure au pas (l₁ + l₂) des baffles d'extraction. Ceci permet un chevauchement entre les faisceaux extraits d'ouvertures 26 contigues du baffle aval 20 et atténue les distortions de densité. Selon la figure 9, la grille d'extraction amont est située près du baffle aval 20, alors que selon la figure 10, elle en est écartée.According to Figures 9 and 10, two extraction grids are used, referenced 30 and 31, located one behind the other. The second extraction grid 31, at the same potential as the first, screens the accelerating voltages of the electrons and allows free transit of these over a distance D greater than the pitch (l₁ + l₂) of the extraction baffles. This allows an overlap between the beams extracted from contiguous openings 26 of the downstream baffle 20 and attenuates the density distortions. According to FIG. 9, the upstream extraction grid is located near the downstream baffle 20, whereas according to Figure 10, it is removed.

Selon les figures 11 et 12, une grille réductrice d'énergie des électrons est présente (référence 40) en aval de la ou des grilles d'extraction (30, 31). La grille 40 est portée à un potentiel inférieur à celui de la ou des grilles d'extraction (30, 31). A la figure 11, seule est présente la grille d'extraction 30. A la figure 12, la grille 40 est associée aux deux grilles d'extraction 30 et 31, d'où optimisation à la fois de l'extraction et de l'énergie des électrons. Le potentiel de la grille 40 peut être ajusté entre la tension du dispositif d'extraction (30, 31) et la tension de polarisation des baffles (10, 20).According to FIGS. 11 and 12, a grid reducing the energy of the electrons is present (reference 40) downstream of the extraction grid (s) (30, 31). The grid 40 is brought to a potential lower than that of the extraction grid (s) (30, 31). In FIG. 11, only the extraction grid 30 is present. In FIG. 12, the grid 40 is associated with the two extraction grids 30 and 31, hence optimization of both the extraction and the energy of electrons. The potential of the gate 40 can be adjusted between the voltage of the extraction device (30, 31) and the bias voltage of the baffles (10, 20).

Claims (14)

  1. A vacuum arc electron source comprising a plasma source (1) having an anode and a cathode facing each other such that they produce a plasma (P) after an appropriate voltage difference has been applied between the anode and the cathode, an electron extractor device (30) and a material-retaining device (10, 20) arranged between the extractor device and the plasma source, characterized in that the material-retaining device includes, arranged in the electron extraction direction (F), at least un upstream baffle (10) and a downstream baffle (20) which are both electrically conducting and have apertures (26, 26) arranged in quincunx, such that when the baffles (10) and (20) are brought to a given potential which is the same for both baffles, i.e. earth (for an anode plasma) or anode potential (for a cathode plasma), the plasma does not extend beyond the downstream baffle (20).
  2. An electron source as claimed in Claim 1, characterized in that at least one aperture (16, 26) is a slot extending transversely of the direction of extraction of the electrons.
  3. An electron source as claimed in one of the Claims 1 or 2, characterized in that at least on baffle (10, 20) has around at least one aperture (16, 26) an edge (11, 21) which is folded at the side facing the plasma source.
  4. An electron source as claimed in Claim 3, characterized in that the upstream baffle (10) and the downstream baffle (20) include the said folded edges (11, 21), aligned in the electron extraction direction (F).
  5. An electron source as claimed in anyone of the preceding Claims, characterized in that the width of the apertures (26) of the downstream baffle (20) exceeds or is equal to the gap between the apertures (26).
  6. An electron source as claimed in anyone of the preceding Claims, characterized in that the distance (h) between the baffles is at least equal to the width of the apertures and the gap between the apertures.
  7. An electron source as claimed in anyone of the preceding Claims, characterized in that the extractor device includes at least one extraction electrode (30).
  8. An electron source as claimed in Claim 7, characterized in that at least one extraction electrode (30) comprises conductive wires which extend parallel to each other.
  9. An electron source as claimed in Claim 7 or 8, characterized in that at least one extraction electrode (30) comprises a conductive grid.
  10. An electron source as claimed in Claims 7 to 9, characterized in that it includes, arranged in the electron direction, an upstream extraction electrode (30) and a downstream extraction electrode (31), arranged substantially in parallel.
  11. An electron source as claimed in Claim 10, characterized in that the interspace between the upstream extraction electrode (30) and the downstream extraction electrode (31) is at least equal to the pitch of the apertures (16, 26) of said baffles (10, 20).
  12. An electron source as claimed in anyone of the Claims 7 to 11, characterized in that, at least one extraction electrode is provided in the path located downstream of the apertures (26) of the downstream baffles (20) in the extraction direction (F) of the electron.
  13. An electron source as claimed in anyone of the preceding Claims, characterized in that it comprises an electron energy reducing electrode (40) which is arranged downstream of the electron extractor device (30, 31), in such a manner that the energy of the extracted electrons is reduced when the electron source is brought to an electric potential which is lower than that of the extractor device (30, 31).
  14. An electron source as claimed in Claim 13, characterized in that it comprises means for adjusting the potential of the energy reducing grid (40) so that it lies between the voltage of the extractor device and the bias voltage of the baffles (10, 20).
EP91202587A 1990-10-12 1991-10-03 Electron source providing a particle retention device Expired - Lifetime EP0480518B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9012613 1990-10-12
FR9012613A FR2667980A1 (en) 1990-10-12 1990-10-12 ELECTRON SOURCE HAVING A MATERIAL RETENTION DEVICE.

Publications (2)

Publication Number Publication Date
EP0480518A1 EP0480518A1 (en) 1992-04-15
EP0480518B1 true EP0480518B1 (en) 1995-02-01

Family

ID=9401171

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91202587A Expired - Lifetime EP0480518B1 (en) 1990-10-12 1991-10-03 Electron source providing a particle retention device

Country Status (5)

Country Link
US (1) US5256931A (en)
EP (1) EP0480518B1 (en)
JP (1) JPH04274149A (en)
DE (1) DE69107162T2 (en)
FR (1) FR2667980A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19621874C2 (en) * 1996-05-31 2000-10-12 Karlsruhe Forschzent Source for generating large-area, pulsed ion and electron beams
US7220937B2 (en) * 2000-03-17 2007-05-22 Applied Materials, Inc. Plasma reactor with overhead RF source power electrode with low loss, low arcing tendency and low contamination
US7196283B2 (en) 2000-03-17 2007-03-27 Applied Materials, Inc. Plasma reactor overhead source power electrode with low arcing tendency, cylindrical gas outlets and shaped surface
US7141757B2 (en) * 2000-03-17 2006-11-28 Applied Materials, Inc. Plasma reactor with overhead RF source power electrode having a resonance that is virtually pressure independent
US8048806B2 (en) 2000-03-17 2011-11-01 Applied Materials, Inc. Methods to avoid unstable plasma states during a process transition
US6894245B2 (en) * 2000-03-17 2005-05-17 Applied Materials, Inc. Merie plasma reactor with overhead RF electrode tuned to the plasma with arcing suppression
US8617351B2 (en) 2002-07-09 2013-12-31 Applied Materials, Inc. Plasma reactor with minimal D.C. coils for cusp, solenoid and mirror fields for plasma uniformity and device damage reduction
US6586886B1 (en) 2001-12-19 2003-07-01 Applied Materials, Inc. Gas distribution plate electrode for a plasma reactor
TWI283899B (en) 2002-07-09 2007-07-11 Applied Materials Inc Capacitively coupled plasma reactor with magnetic plasma control
US7470626B2 (en) 2003-05-16 2008-12-30 Applied Materials, Inc. Method of characterizing a chamber based upon concurrent behavior of selected plasma parameters as a function of source power, bias power and chamber pressure
US7910013B2 (en) 2003-05-16 2011-03-22 Applied Materials, Inc. Method of controlling a chamber based upon predetermined concurrent behavior of selected plasma parameters as a function of source power, bias power and chamber pressure
US7795153B2 (en) 2003-05-16 2010-09-14 Applied Materials, Inc. Method of controlling a chamber based upon predetermined concurrent behavior of selected plasma parameters as a function of selected chamber parameters
US7247218B2 (en) 2003-05-16 2007-07-24 Applied Materials, Inc. Plasma density, energy and etch rate measurements at bias power input and real time feedback control of plasma source and bias power
US7901952B2 (en) 2003-05-16 2011-03-08 Applied Materials, Inc. Plasma reactor control by translating desired values of M plasma parameters to values of N chamber parameters
US7452824B2 (en) 2003-05-16 2008-11-18 Applied Materials, Inc. Method of characterizing a chamber based upon concurrent behavior of selected plasma parameters as a function of plural chamber parameters
US7359177B2 (en) * 2005-05-10 2008-04-15 Applied Materials, Inc. Dual bias frequency plasma reactor with feedback control of E.S.C. voltage using wafer voltage measurement at the bias supply output
US8513619B1 (en) 2012-05-10 2013-08-20 Kla-Tencor Corporation Non-planar extractor structure for electron source

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2926393C2 (en) * 1979-06-29 1982-10-07 Siemens AG, 1000 Berlin und 8000 München Gas discharge indicator
US4507588A (en) * 1983-02-28 1985-03-26 Board Of Trustees Operating Michigan State University Ion generating apparatus and method for the use thereof
FR2613897B1 (en) * 1987-04-10 1990-11-09 Realisations Nucleaires Et DEVICE FOR SUPPRESSING MICRO PROJECTIONS IN A VACUUM ARC ION SOURCE
FR2616587B1 (en) * 1987-06-12 1989-11-24 Realisations Nucleaires Et SOURCE OF IONS WITH FOUR ELECTRODES
US5107170A (en) * 1988-10-18 1992-04-21 Nissin Electric Co., Ltd. Ion source having auxillary ion chamber

Also Published As

Publication number Publication date
DE69107162T2 (en) 1995-08-31
DE69107162D1 (en) 1995-03-16
US5256931A (en) 1993-10-26
FR2667980A1 (en) 1992-04-17
EP0480518A1 (en) 1992-04-15
JPH04274149A (en) 1992-09-30

Similar Documents

Publication Publication Date Title
EP0480518B1 (en) Electron source providing a particle retention device
EP0389326A1 (en) Beam switching X-ray tube with deflection plates
EP1496727B1 (en) Closed electron drift plasma accelerator
EP0473233A1 (en) High-flux neutron tube
FR2926668A1 (en) ELECTRON SOURCE BASED ON FIELD TRANSMITTERS FOR MULTIPOINT RADIOGRAPHY.
FR2764731A1 (en) X-RAY TUBE COMPRISING A MICROPOINT ELECTRON SOURCE AND MAGNETIC FOCUSING MEANS
FR2482768A1 (en) EXB MASS SEPARATOR FOR DOMINATED IONIC BEAMS BY SPACE LOADS
EP0248689A1 (en) Multiple-beam klystron
FR2524196A1 (en) ELECTRON GUN WITH TWO OPERATING MODES
FR2660999A1 (en) IMPROVED IONIZATION MANOMETER FOR VERY LOW PRESSURES.
EP0550335B1 (en) System to control the form of a charged particle beam
EP0645947A1 (en) Neutron tube providing electron magnetic confinement by means of permanent magnets, and manufacturing method thereof
FR2693592A1 (en) Photomultiplier tube segmented in N independent channels arranged around a central axis.
FR2491257A1 (en) LASER-DRIVEN HIGH DENSITY ELECTRON SOURCE
EP0228318B1 (en) Electron gun operating by secondary emission under ionic bombardment
EP0589030B1 (en) Compact electron gun comprising a micro-point electron source, and semiconductor laser using said gun for electron pumping
FR2472830A1 (en) DEVICE FOR CONTROLLING ELECTRICAL CONDUCTION IN PLASMA CROSS-CHAMPER MODE
EP0412868A1 (en) X-ray tube cathode and tube provided with such a cathode
EP0362946A1 (en) Ion extraction and acceleration device limiting reverse acceleration of secondary electrons in a sealed high flux neutron tube
EP0077738B1 (en) Ion source having a gas ionization chamber with oscillations of electrons
EP0128052A1 (en) Cyclotron with defocusing system
EP0064003A1 (en) Device for the pulsed electron beam processing of a specimen
EP0295743B1 (en) Ion source with four electrodes
CH395353A (en) Electrode immersed in an ionized gas subjected to a magnetic field
FR2691012A1 (en) Piercing gun with scaling electrode.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19920924

17Q First examination report despatched

Effective date: 19940317

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 69107162

Country of ref document: DE

Date of ref document: 19950316

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19951003

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19951003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19960628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19960702

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST